Поняття похідної коротко. Похідна, основні визначення та поняття

Вирішувати фізичні завдання або приклади з математики абсолютно неможливо без знань про похідну та методи її обчислення. Похідна – одне з найважливіших понять математичного аналізу. Цій фундаментальній темі ми вирішили присвятити сьогоднішню статтю. Що таке похідна, який її фізичний та геометричний сенсЯк порахувати похідну функції? Всі ці питання можна поєднати в одне: як зрозуміти похідну?

Геометричний та фізичний сенс похідної

Нехай є функція f(x) , задана в певному інтервалі (a, b) . Точки х і х0 належать до цього інтервалу. При зміні х змінюється сама функція. Зміна аргументу – різниця його значень х-х0 . Ця різниця записується як дельта ікс і називається збільшенням аргументу. Зміною або збільшенням функції називається різниця значень функції у двох точках. Визначення похідної:

Похідна функції у точці – межа відношення збільшення функції у цій точці до збільшення аргументу, коли останнє прагне нулю.

Інакше це можна записати так:

Який сенс у знаходженні такої межі? А ось який:

похідна від функції у точці дорівнює тангенсу кута між віссю OX та дотичною до графіка функції у цій точці.


Фізичний сенспохідної: похідна шляхи за часом дорівнює швидкості прямолінійного руху.

Справді, ще зі шкільних часів усім відомо, що швидкість – це приватна дорога. x=f(t) та часу t . Середня швидкістьза деякий проміжок часу:

Щоб дізнатися швидкість руху в момент часу t0 потрібно обчислити межу:

Правило перше: виносимо константу

Константу можна винести за знак похідної. Більше того – це треба робити. При вирішенні прикладів математики візьміть за правило - якщо можете спростити вираз, обов'язково спрощуйте .

приклад. Обчислимо похідну:

Правило друге: похідна суми функцій

Похідна суми двох функцій дорівнює сумі похідних цих функцій. Те саме справедливо і для похідної різниці функцій.

Не наводитимемо доказ цієї теореми, а краще розглянемо практичний приклад.

Знайти похідну функції:

Правило третє: похідна робота функцій

Похідна твори двох функцій, що диференціюються, обчислюється за формулою:

Приклад: знайти похідну функції:

Рішення:

Тут важливо сказати про обчислення складних похідних функцій. Похідна складної функції дорівнює добутку похідної цієї функції за проміжним аргументом на похідну проміжного аргументу за незалежною змінною.

У наведеному вище прикладі ми зустрічаємо вираз:

В даному випадку проміжний аргумент - 8х у п'ятому ступені. Для того, щоб обчислити похідну такого виразу спочатку вважаємо похідну зовнішньої функції за проміжним аргументом, а потім множимо на похідну безпосередньо проміжного аргументу за незалежною змінною.

Правило четверте: похідна приватного двох функцій

Формула для визначення похідної від частки двох функцій:

Ми постаралися розповісти про похідні для чайників з нуля. Ця тема не така проста, як здається, тому попереджаємо: у прикладах часто зустрічаються пастки, так що будьте уважні при обчисленні похідних.

З будь-яким питанням з цієї та інших тем ви можете звернутися до студентського сервісу. За короткий термін ми допоможемо вирішити найскладнішу контрольну та розібратися із завданнями, навіть якщо ви ніколи раніше не займалися обчисленням похідних.


Дата: 20.11.2014

Що таке похідна?

Таблиця похідних.

Похідна – одне з головних понять вищої математики. У цьому уроці ми познайомимося із цим поняттям. Саме познайомимося, без строгих математичних формулювань та доказів.

Це знайомство дозволить:

Розуміти суть нескладних завдань із похідною;

Успішно вирішувати ці самі не складні завдання;

Підготуватися до серйозніших уроків з похідної.

Спочатку – приємний сюрприз.)

Суворе визначення похідної полягає в теорії меж і штука досить складна. Це засмучує. Але практичне застосування похідної, як правило, не потребує таких великих і глибоких знань!

Для успішного виконання більшості завдань у школі та ВНЗ достатньо знати всього кілька термінів- щоб зрозуміти завдання, та всього кілька правил- Щоб його вирішити. І все. Це радує.

Приступимо до знайомства?)

Терміни та позначення.

В елементарної математики багато всяких математичних операцій. Додавання, віднімання множення, зведення в ступінь, логарифмування і т.д. Якщо до цих операцій додати ще одну, елементарна математика стає найвищою. Ця нова операція називається диференціювання.Визначення та зміст цієї операції будуть розглянуті в окремих уроках.

Тут важливо зрозуміти, що диференціювання - це просто математична операціянад функцією. Беремо будь-яку функцію і, певним правилам, Перетворюємо її. В результаті вийде нова функція. Ось ця нова функція і називається: похідна.

Диференціювання- Вплив над функцією.

Похідна- Результат цієї дії.

Так само, як, наприклад, сума- Результат складання. Або приватне- Результат розподілу.

Знаючи терміни, можна, як мінімум, розуміти завдання.) Формулювання бувають такі: визначити похідну функції; взяти похідну; продиференціювати функцію; обчислити похіднуі т.п. Це все одне і теж.Зрозуміло, бувають і складніші завдання, де перебування похідної (диференціювання) буде лише одним із кроків вирішення завдання.

Позначається похідна штрихом вгорі праворуч над функцією. Ось так: y"або f"(x)або S"(t)і так далі.

Читається игр штрих, еф штрих від ікс, ес штрих від те,Ну ви зрозуміли...)

Штрих також може позначати похідну конкретної функції, наприклад: (2х+3)", (x 3 )" , (sinx)"і т.д. Часто похідна позначається за допомогою диференціалів, але таке позначення у цьому уроці ми не розглядатимемо.

Припустимо, що розуміти завдання ми навчилися. Залишилося всього нічого – навчитися їх вирішувати.) Нагадаю ще раз: знаходження похідної – це перетворення функції за певними правилами.Цих правил, на диво, зовсім небагато.

Щоб знайти похідну функції, треба знати лише три речі. Три кити, на яких стоїть все диференціювання. Ось вони ці три кити:

1. Таблиця похідних (формули диференціювання).

3. Похідна складна функція.

Почнемо по порядку. У цьому вся уроці розглянемо таблицю похідних.

Таблиця похідних.

У світі - безліч функцій. Серед цієї множини є функції, які найважливіші для практичного застосування. Ці функції сидять у всіх законах природи. З цих функцій, як з цеглинок, можна сформулювати всі інші. Цей клас функцій називається елементарні функції.Саме ці функції і вивчаються у школі – лінійна, квадратична, гіпербола тощо.

Диференціювання функцій "з нуля", тобто. виходячи з визначення похідної та теорії меж - штука досить трудомістка. А математики – теж люди, так-так!) От і спростили собі (і нам) життя. Вони вирахували похідні елементарних функцій до нас. Вийшла таблиця похідних, де вже готово.)

Ось вона, ця табличка для найпопулярніших функцій. Зліва – елементарна функція, справа – її похідна.

Функція
y
Похідна функції y
y"
1 C (постійна величина) C" = 0
2 x x" = 1
3 x n (n – будь-яке число) (x n)" = nx n-1
x 2 (n = 2) (x 2)" = 2x
4 sin x (sin x)" = cosx
cos x (cos x)" = - sin x
tg x
ctg x
5 arcsin x
arccos x
arctg x
arcctg x
4 a x
e x
5 log a x
ln x ( a = e)

Рекомендую звернути увагу на третю групу функцій цієї таблиці похідних. Похідна степеневої функції- Одна з найуживаніших формул, якщо тільки не найуживаніша! Натяк зрозумілий?) Так, таблицю похідних бажано знати напам'ять. До речі, це не так важко, як може здатися. Спробуйте вирішувати більше прикладів, Таблиця сама і запам'ятається!)

Знайти табличне значення похідної, як ви знаєте, завдання не найважче. Тому дуже часто у подібних завданнях зустрічаються додаткові фішки. Або у формулюванні завдання, або у вихідній функції, якої в таблиці - начебто і немає.

Розглянемо кілька прикладів:

1. Знайти похідну функції y = x 3

Такої функції у таблиці немає. Але є похідна статечної функції в загальному вигляді(Третя група). У разі n=3. Ось і підставляємо трійку замість n та акуратно записуємо результат:

(x 3) " = 3 · x 3-1 = 3x 2

Ось і всі справи.

Відповідь: y" = 3x 2

2. Знайти значення похідної функції y = sinx у точці х = 0.

Це завдання означає, що треба спочатку знайти похідну від синуса, а потім підставити значення х = 0у цю саму похідну. Саме у такому порядку!А то, буває, відразу підставляють нуль у вихідну функцію... Нас просять знайти не значення вихідної функції, а значення її похідною.Похідна, нагадаю – це вже нова функція.

По табличці знаходимо синус та відповідну похідну:

y" = (sin x)" = cosx

Підставляємо нуль у похідну:

y"(0) = cos 0 = 1

Це буде відповідь.

3. Продиференціювати функцію:

Що, вселяє?) Такої функції в таблиці похідних близько немає.

Нагадаю, що продиференціювати функцію – це просто знайти похідну цієї функції. Якщо забути елементарну тригонометрію, шукати похідну нашої функції досить клопітко. Таблиця не допомагає...

Але якщо побачити, що наша функція – це косинус подвійного кута , То все відразу налагоджується!

Так Так! Запам'ятайте, що перетворення вихідної функції до диференціюванняцілком допускається! І, трапляється, здорово полегшує життя. За формулою косинуса подвійного кута:

Тобто. наша хитра функція є не що інше, як y = cosx. А це – таблична функція. Відразу отримуємо:

Відповідь: y" = - sin x.

Приклад для просунутих випускників та студентів:

4. Знайти похідну функції:

Такої функції у таблиці похідних немає, очевидно. Але якщо згадати елементарну математику, дії зі ступенями... Це цілком можна спростити цю функцію. Ось так:

А ікс ступеня одна десята - це вже таблична функція! Третя група, n = 1/10. Просто за формулою та записуємо:

От і все. Це буде відповідь.

Сподіваюся, що з першим китом диференціювання – таблицею похідних – все ясно. Залишилося розібратися з двома китами, що залишилися. У наступному уроці освоїмо правила диференціювання.

У координатній площині хОурозглянемо графік функції y=f(x). Зафіксуємо точку М(х 0; f (x 0)). Надамо абсцисі х 0приріст Δх. Ми отримаємо нову абсцису х 0 +Δх. Це абсциса точки N, а ордината дорівнюватиме f (х 0 +Δх). Зміна абсциси спричинила зміну ординати. Цю зміну називають збільшення функції і позначають Δy.

Δy = f (х 0 + Δх) - f (x 0).Через крапки Mі Nпроведемо січну MNяка утворює кут φ з позитивним напрямком осі Ох. Визначимо тангенс кута φ з прямокутного трикутника MPN.

Нехай Δхпрагне нуля. Тоді січна MNбуде прагнути зайняти положення щодо МТ, а кут φ стане кутом α . Значить, тангенс кута α є граничне значення тангенсу кута φ :

Межа відношення збільшення функції до збільшення аргументу, при прагненні останнього до нуля, називають похідною функції в даній точці:

Геометричний сенс похідної полягає в тому, що чисельно похідна функції в даній точці дорівнює тангенсу кута, утвореного дотичної, проведеної через цю точку до даної кривої, і позитивним напрямком осі Ох:

приклади.

1. Знайти збільшення аргументу та збільшення функції y= x 2, якщо початкове значення аргументу було рівне 4 , а нове - 4,01 .

Рішення.

Нове значення аргументу х = х 0 + Δx. Підставимо дані: 4,01 = 4 + Δх, звідси збільшення аргументу Δх=4,01-4=0,01. Приріст функції, за визначенням, дорівнює різниці між новим і колишнім значеннями функції, тобто. Δy = f (х 0 + Δх) - f (x 0). Тому що у нас функція y=x 2, то Δу=(х 0 + Δx) 2 - (х 0) 2 = (х 0) 2 + 2x 0 · Δx+(Δx) 2 - (х 0) 2 = 2x 0 · Δx+(Δx) 2 =

2 · 4 · 0,01+(0,01) 2 =0,08+0,0001=0,0801.

Відповідь: приріст аргументу Δх=0,01; збільшення функції Δу=0,0801.

Можна було збільшення функції знайти по-іншому: Δy= y (x 0 +Δx) -y (x 0) = у (4,01) - у (4) = 4,01 2 -4 2 = 16,0801-16 = 0,0801.

2. Знайти кут нахилу щодо графіку функції y=f(x)у точці х 0, якщо f"(х 0) = 1.

Рішення.

Значення похідної у точці торкання х 0і є значення тангенса кута нахилу дотичної (геометричний зміст похідної). Маємо: f "(х 0) = tgα = 1 → α = 45°,так як tg45°=1.

Відповідь: дотична до графіка цієї функції утворює з позитивним напрямом осі Ох кут, рівний 45°.

3. Вивести формулу похідної функції y=x n.

Диференціювання- Це дія знаходження похідної функції.

При знаходженні похідних застосовують формули, які були виведені на підставі визначення похідної, так само як ми вивели формулу похідного ступеня: (x n)" = nx n-1.

Ось ці формули.

Таблицю похіднихлегше буде завчити, промовляючи словесні формулювання:

1. Похідна постійної величини дорівнює нулю.

2. Ікс штрих дорівнює одиниці.

3. Постійний множник можна винести за похідний знак.

4. Похідна ступеня дорівнює добутку показника цього ступеня на ступінь з тією самою основою, але показником на одиницю менше.

5. Похідна кореня дорівнює одиниці, поділеній на два такі ж корені.

6. Похідна одиниці, поділеної на ікс дорівнює мінус одиниці, поділеної на ікс у квадраті.

7. Похідна синуса дорівнює косинусу.

8. Похідна косинуса дорівнює мінус синусу.

9. Похідна тангенса дорівнює одиниці, поділеній на квадрат косинуса.

10. Похідна котангенса дорівнює мінус одиниці, поділеної на квадрат синуса.

Вчимо правила диференціювання.

1. Похідна суми алгебри дорівнює алгебраїчній сумі похідних доданків.

2. Похідна твори дорівнює добутку похідної першого множника на другий плюс добуток першого множника на похідну другого.

3. Похідна «у», поділеного на «ве» дорівнює дробу, у чисельнику якого «у штрих помножений на «ве» мінус «у, помножений на ве штрих», а знаменнику — «ве в квадраті».

4. Окремий випадокформули 3.

Вчимо разом!

Сторінка 1 з 1 1

Важливі зауваження!
1. Якщо замість формул ти бачиш абракадабру, почисти кеш. Як це зробити у твоєму браузері написано тут:
2. Перш ніж почнеш читати статтю, зверни увагу на наш навігатор по самих корисним ресурсудля

Уявімо пряму дорогу, що проходить по горбистій місцевості. Тобто вона йде то вгору, то вниз, але праворуч чи ліворуч не повертає. Якщо вісь направити вздовж дороги горизонтально, а - вертикально, лінія дороги буде дуже схожа на графік якоїсь безперервної функції:

Ось - це рівень нульової висоти, у житті використовуємо як нього рівень моря.

Рухаючись вперед такою дорогою, ми також рухаємося вгору або вниз. Також можемо сказати: при зміні аргументу (просування вздовж осі абсцис) змінюється значення функції (рух вздовж осі ординат). А тепер давай подумаємо, як визначити «крутість» нашої дороги? Що може бути за величина? Дуже просто: на скільки зміниться висота під час просування вперед на певну відстань. Адже на різних ділянках дороги, просуваючись вперед (вздовж осі абсцис) на один кілометр, ми піднімемося або опустимося на різну кількість метрів щодо рівня моря (вздовж осі ординат).

Просування вперед позначимо (читається "дельта ікс").

Грецьку літеру (дельта) в математиці зазвичай використовують як приставку, що означає зміну. Тобто – це зміна величини, – зміна; тоді що таке? Правильно, зміна величини.

Важливо: вираз – це єдине ціле, одна змінна. Ніколи не можна відривати «дельту» від «ікса» чи будь-якої іншої літери! Тобто, наприклад, .

Отже, ми просунулися вперед по горизонталі, на. Якщо лінію дороги ми порівнюємо з графіком функції, як ми позначимо підйом? Звичайно, . Тобто, при просуванні вперед на ми піднімаємось вище.

Величину порахувати легко: якщо спочатку ми знаходилися на висоті, а після переміщення опинилися на висоті, то. Якщо кінцева точка виявилася нижчою за початкову, буде негативною - це означає, що ми не піднімаємося, а спускаємося.

Повернемося до «крутості»: це величина, яка показує, наскільки сильно (круто) збільшується висота при переміщенні вперед на одиницю відстані:

Припустимо, що на якійсь ділянці шляху під час просування на км дорога піднімається нагору на км. Тоді крутість у цьому місці дорівнює. А якщо дорога під час просування на м опустилася на км? Тоді крутість дорівнює.

А тепер розглянемо вершину якогось пагорба. Якщо взяти початок ділянки за півкілометра до вершини, а кінець через півкілометра після нього, видно, що висота практично однакова.

Тобто, за нашою логікою виходить, що крутість тут майже дорівнює нулю, що явно не відповідає дійсності. Просто на відстані в км може багато чого змінитися. Потрібно розглядати більш маленькі ділянки для більш адекватної та точної оцінки крутості. Наприклад, якщо вимірювати зміну висоти при переміщенні на один метр, результат буде набагато точнішим. Але і цієї точності нам може бути недостатньо - адже якщо посеред дороги стоїть стовп, ми можемо його просто проскочити. Яку відстань тоді виберемо? Сантиметр? Міліметр? Чим менше тим краще!

В реального життявимірювати відстань з точністю до міліметра - більш ніж достатньо. Але математики завжди прагнуть досконалості. Тому було вигадано поняття нескінченно малого, тобто величина по модулю менше за будь-яке число, яке тільки можемо назвати. Наприклад, ти скажеш: одна трильйонна! Куди менше? А ти поділи це число на – і буде ще менше. І так далі. Якщо хочемо написати, що величина дуже мала, пишемо так: (читаємо «ікс прагне до нуля»). Дуже важливо розуміти, що це число не дорівнює нулю!Але дуже близько до нього. Це означає, що з нього можна ділити.

Поняття, протилежне нескінченно малому – нескінченно велике (). Ти вже напевно штовхався з ним, коли займався нерівностями: це число за модулем більше за будь-яке число, яке тільки можеш придумати. Якщо ти вигадав найбільше з можливих чисел, просто помнож його на два, і вийде ще більше. А нескінченність ще більша за те, що вийде. Фактично нескінченно велике і нескінченно мале обернені один одному, тобто при, і навпаки: при.

Тепер повернемось до нашої дороги. Ідеально порахована крутість - це куртизна, обчислена для нескінченно малого відрізка шляху, тобто:

Зауважу, що при нескінченно малому переміщенні зміна висоти також буде нескінченно малою. Але нагадаю, нескінченно мале - не означає рівне нулю. Якщо поділити один на одного нескінченно малі числа, може вийти цілком звичайне число, наприклад . Тобто одна мала величина може бути рівно в рази більша за іншу.

Навіщо все це? Дорога, крутість… Адже ми не в автопробіг вирушаємо, а математику вчимо. А в математиці все так само, тільки називається по-іншому.

Поняття похідної

Похідна функції це відношення збільшення функції до збільшення аргументу при нескінченно малому збільшення аргументу.

Прирістому математиці називають зміну. Те, наскільки змінився аргумент () при просуванні вздовж осі, називається збільшенням аргументуі позначається Те, наскільки змінилася функція (висота) при просуванні вперед уздовж осі на відстань, називається збільшенням функціїта позначається.

Отже, похідна функції – це відношення до прі. Позначаємо похідну тією ж літерою, що й функцію, тільки зі штрихом зверху праворуч: або просто. Отже, запишемо формулу похідної, використовуючи ці позначення:

Як і в аналогії з дорогою тут при зростанні функції похідна позитивна, а при спаданні - негативна.

А чи буває похідна дорівнює нулю? Звичайно. Наприклад, якщо ми їдемо рівною горизонтальною дорогою, крутизна дорівнює нулю. І справді, висота ж не зовсім змінюється. Так і з похідною: похідна постійної функції (константи) дорівнює нулю:

оскільки збільшення такої функції дорівнює нулю за будь-якого.

Давай згадаймо приклад із вершиною пагорба. Там виходило, що можна так розташувати кінці відрізка по різні боки від вершини, що висота на кінцях виявляється однаковою, тобто відрізок розташовується паралельно до осі:

Але великі відрізки – ознака неточного виміру. Підніматимемо наш відрізок вгору паралельно самому собі, тоді його довжина буде зменшуватися.

Зрештою, коли ми будемо нескінченно близько до вершини, довжина відрізка стане дуже малою. Але при цьому він залишився паралельний осі, тобто різниця висот на його кінцях дорівнює нулю (не прагне, а саме дорівнює). Значить, похідна

Зрозуміти це можна так: коли ми стоїмо на самій вершині, дрібне зміщення вліво або вправо змінює нашу висоту мізерно мало.

Є й чисто алгебраїчне пояснення: лівіше за вершину функція зростає, а правіше - зменшується. Як ми вже з'ясували раніше, у разі зростання функції похідна позитивна, а при зменшенні - негативна. Але змінюється вона плавно, без стрибків (бо дорога ніде не змінює нахил різко). Тому між негативними та позитивними значеннями обов'язково має бути. Він і буде там, де функція не збільшується, не зменшується - у точці вершини.

Те саме справедливо і для западини (область, де функція зліва зменшується, а праворуч - зростає):

Трохи докладніше про збільшення.

Отже, змінюємо аргумент на величину. Змінюємо від якого значення? Якою вона (аргумент) тепер стала? Можемо вибрати будь-яку точку, і зараз від неї танцюватимемо.

Розглянемо точку з координатою. Значення функції у ній одно. Потім робимо те саме збільшення: збільшуємо координату на. Чому тепер дорівнює аргумент? Дуже легко: . А чому тепер рівне значення функції? Куди аргумент, туди та функція: . А що із збільшенням функції? Нічого нового: це, як і раніше, величина, на яку змінилася функція:

Потренуйся знаходити прирощення:

  1. Знайди збільшення функції в точці при збільшенні аргументу, що дорівнює.
  2. Те саме для функції в точці.

Рішення:

В різних точкахпри тому самому прирощенні аргументу прирощення функції буде різним. Значить, і похідна у кожній точці своя (це ми обговорювали на самому початку – крутість дороги у різних точках різна). Тому коли пишемо похідну, треба вказувати, у якій точці:

Ступінна функція.

Ступеневою називають функцію, де аргумент певною мірою (логічно, так?).

Причому - будь-якою мірою: .

Найпростіший випадок- це коли показник ступеня:

Знайдемо її похідну у точці. Згадуємо визначення похідної:

Отже, аргумент змінюється з до. Яке збільшення функції?

Приріст – це. Але функція у будь-якій точці дорівнює своєму аргументу. Тому:

Похідна дорівнює:

Похідна від рівня:

b) Тепер розглянемо квадратичну функцію (): .

А тепер згадаємо, що. Це означає, що значення приросту можна знехтувати, оскільки воно нескінченно мало, і тому незначно і натомість іншого доданку:

Отже, у нас народилося чергове правило:

c) Продовжуємо логічний ряд: .

Цей вираз можна спростити по-різному: розкрити першу дужку за формулою скороченого множення куб суми, або розкласти весь вираз на множники за формулою різниці кубів. Спробуй зробити це сам будь-яким із запропонованих способів.

Отже, у мене вийшло таке:

І знову згадаємо, що. Це означає, що можна знехтувати всіма складовими, що містять:

Отримуємо: .

d) Аналогічні правила можна отримати і для більших ступенів:

e) Виявляється, це правило можна узагальнити для статечної функції з довільним показником, навіть не цілим:

(2)

Можна сформулювати правило словами: «ступінь виноситься вперед як коефіцієнт, та був зменшується на».

Доведемо це правило пізніше (майже наприкінці). А зараз розглянемо кілька прикладів. Знайди похідну функцій:

  1. (двома способами: за формулою та використовуючи визначення похідної - порахувавши збільшення функції);

Тригонометричні функції.

Тут будемо використовувати один факт із вищої математики:

При виразі.

Доказ ти дізнаєшся на першому курсі інституту (а щоб там виявитись, треба добре здати ЄДІ). Зараз лише покажу це графічно:

Бачимо, що при функції не існує - точка на графіку виколота. Але чим ближче до значення, тим ближче функція до. Це і є те, що «прагне».

Додатково можна перевірити це правило за допомогою калькулятора. Так-так, не соромся, бери калькулятор, адже ми не на ЄДІ ще.

Отже, пробуємо: ;

Не забудь перевести калькулятор у режим Радіани!

і т.д. Бачимо, що менше, тим ближче значення ставлення до.

a) Розглянемо функцію. Як завжди, знайдемо її збільшення:

Перетворимо різницю синусів на твір. І тому використовуємо формулу (згадуємо тему « »): .

Тепер похідна:

Зробимо заміну: . Тоді при нескінченно малому і нескінченно мало: . Вираз для набуває вигляду:

А тепер згадуємо, що за вираз. А також, що якщо нескінченно малою величиною можна знехтувати у сумі (тобто при).

Отже, отримуємо наступне правило:похідна синуса дорівнює косінусу:

Це базові («табличні») похідні. Ось вони одним списком:

Пізніше ми до них додамо ще кілька, але ці найважливіші, тому що використовуються найчастіше.

Потренуйся:

  1. Знайди похідну функцію в точці;
  2. Знайди похідну функцію.

Рішення:

Експонента та натуральний логарифм.

Є в математиці така функція, похідна якої за будь-якого дорівнює значенню самої функції у своїй. Називається вона «експонента» і є показовою функцією

Підстава цієї функції - константа - це нескінченний десятковий дріб, тобто число ірраціональне (таке як). Його називають "число Ейлера", тому і позначають буквою.

Отже, правило:

Запам'ятати дуже легко.

Ну і не будемо далеко ходити, одразу ж розглянемо зворотну функцію. Яка функція є зворотною для показової функції? Логарифм:

У нашому випадку основою є число:

Такий логарифм (тобто логарифм із основою) називається «натуральним», і для нього використовуємо особливе позначення: натомість пишемо.

Чому дорівнює? Звичайно ж, .

Похідна від натурального логарифму також дуже проста:

Приклади:

  1. Знайди похідну функцію.
  2. Чому дорівнює похідна функції?

Відповіді: Експонента та натуральний логарифм- Функції унікально прості з точки зору похідної. Показові та логарифмічні функції з будь-якою іншою основою будуть мати іншу похідну, яку ми з тобою розберемо пізніше, після того, як ми пройдемо правила диференціювання.

Правила диференціювання

Правила чого? Знову новий термін, знову?!

Диференціювання- Це процес знаходження похідної.

Тільки і всього. А як ще назвати цей процес одним словом? Не производнование ж... Диференціалом математики називають те саме збільшення функції при. Відбувається цей термін від латинського різниця. Ось.

При виведенні всіх цих правил використовуватимемо дві функції, наприклад, і. Нам знадобляться також формули їх прирощень:

Усього є 5 правил.

Константа виноситься за знак похідної.

Якщо – якесь постійне число (константа), тоді.

Очевидно, це правило працює і для різниці: .

Доведемо. Нехай, чи простіше.

приклади.

Знайдіть похідні функції:

  1. у точці;
  2. у точці;
  3. у точці;
  4. у точці.

Рішення:

Похідна робота

Тут все аналогічно: введемо нову функціюі знайдемо її приріст:

Похідна:

Приклади:

  1. Знайдіть похідні функцій та;
  2. Знайдіть похідну функції у точці.

Рішення:

Похідна показової функції

Тепер твоїх знань достатньо, щоб навчитися знаходити похідну будь-якої показової функції, а не лише експоненти (не забув ще, що це таке?).

Отже, де – це якесь число.

Ми вже знаємо похідну функцію, тому давай спробуємо привести нашу функцію до нової основи:

Для цього скористаємося простим правилом: . Тоді:

Ну ось, вийшло. Тепер спробуй знайти похідну, і не забудь, що ця функція – складна.

Вийшло?

Ось, перевір себе:

Формула вийшла дуже схожа на похідну експоненти: як було, так і залишилося, з'явився лише множник, який є просто числом, але не змінною.

Приклади:
Знайди похідні функції:

Відповіді:

Похідна логарифмічна функція

Тут аналогічно: ти вже знаєш похідну від натурального логарифму:

Тому, щоб знайти довільну від логарифму з іншою основою, наприклад:

Потрібно привести цей логарифм до основи. А як змінити основу логарифму? Сподіваюся, ти пам'ятаєш цю формулу:

Тільки тепер замість писатимемо:

У знаменнику вийшла просто константа (постійне число без змінної). Похідна виходить дуже просто:

Похідні показової та логарифмічної функцій майже не зустрічаються в ЄДІ, але не буде зайвим знати їх.

Похідна складна функція.

Що таке "складна функція"? Ні, це не логарифм і не арктангенс. Дані функції може бути складними для розуміння (хоча, якщо логарифм тобі здається складним, прочитай тему «Логарифми» і все пройде), але з точки зору математики слово «складна» не означає «важка».

Уяви собі маленький конвеєр: сидять дві людини і роблять якісь дії з якимись предметами. Наприклад, перший загортає шоколадку в обгортку, а другий обв'язує її стрічкою. Виходить такий складовий об'єкт: шоколадка, обгорнена та обв'язана стрічкою. Щоб з'їсти шоколадку, тобі потрібно зробити зворотні дії зворотному порядку.

Давай створимо подібний математичний конвеєр: спочатку знаходитимемо косинус числа, а потім отримане число зводитимемо в квадрат. Отже, нам дають число (шоколадка), я знаходжу його косинус (обгортка), а ти потім зводиш те, що у мене вийшло, у квадрат (обв'язуєш стрічкою). Що вийшло? функція. Це і є приклад складної функції: коли знаходження її значення ми проробляємо першу дію безпосередньо з змінної, та був ще друге дію про те, що вийшло результаті першого.

Ми цілком можемо робити ті ж дії і в зворотному порядку: спочатку ти зводиш у квадрат, а потім шукаю косинус отриманого числа: . Нескладно здогадатися, що результат майже завжди буде різним. Важлива особливість складних функцій: зміна порядку дій функція змінюється.

Іншими словами, складна функція – це функція, аргументом якої є інша функція: .

На перший приклад, .

Другий приклад: (те саме). .

Дію, яку робимо останнім, називатимемо "зовнішньої" функцією, а дія, що вчиняється першою - відповідно «внутрішньою» функцією(це неформальні назви, я їх вживаю лише для того, щоб пояснити матеріал простою мовою).

Спробуй визначити сам, яка функція є зовнішньою, а яка внутрішньою:

Відповіді:Поділ внутрішньої та зовнішньої функцій дуже схожий на заміну змінних: наприклад, функції

виконуємо заміну змінних та отримуємо функцію.

Ну що ж, тепер витягуватимемо нашу шоколадку - шукати похідну. Порядок дій завжди зворотний: спочатку шукаємо похідну зовнішньої функції, потім множимо результат на похідну внутрішньої функції. Стосовно вихідного прикладу це так:

Інший приклад:

Отже, сформулюємо нарешті офіційне правило:

Алгоритм знаходження похідної складної функції:

Начебто все просто, так?

Перевіримо на прикладах:

ВИРОБНИЧА. КОРОТКО ПРО ГОЛОВНЕ

Похідна функції- відношення збільшення функції до збільшення аргументу при нескінченно малому збільшення аргументу:

Базові похідні:

Правила диференціювання:

Константа виноситься за знак похідної:

Похідна сума:

Похідна робота:

Похідна приватна:

Похідна складної функції:

Алгоритм знаходження похідної від складної функції:

  1. Визначаємо "внутрішню" функцію, знаходимо її похідну.
  2. Визначаємо "зовнішню" функцію, знаходимо її похідну.
  3. Помножуємо результати першого та другого пунктів.

Ну ось тема закінчена. Якщо ти читаєш ці рядки, то ти дуже крутий.

Тому що лише 5% людей здатні освоїти щось самостійно. І якщо ти дочитав до кінця, то ти потрапив у ці 5%!

Тепер найголовніше.

Ти розібрався з теорією на цю тему. І, повторю, це… це просто супер! Ти вже краще, ніж абсолютна більшість твоїх однолітків.

Проблема в тому, що цього не вистачить.

Для чого?

Для успішної здачі ЄДІ, для вступу до інституту на бюджет і, найголовніше, для життя.

Я не буду тебе ні в чому переконувати, просто скажу одну річ.

Люди, які отримали гарна освіта, заробляють набагато більше, ніж ті, хто його не отримав. Це – статистика.

Але й це – не головне.

Головне те, що вони БІЛЬШ ЩАСТЛИВІ (є такі дослідження). Можливо тому, що перед ними відкривається набагато більше можливостей, і життя стає яскравішим? Не знаю...

Але, думай сам...

Що потрібно, щоб бути, напевно, кращим за інших на ЄДІ і бути зрештою… щасливішим?

Набити руку, вирішуючи завдання за цією темою.

На іспиті в тебе не питатимуть теорію.

Тобі треба буде вирішувати завдання на час.

І, якщо ти не вирішував їх (Багато!), ти обов'язково десь безглуздо помилишся або просто не встигнеш.

Це як у спорті – потрібно багато разів повторити, щоб виграти напевно.

Знайди де хочеш збірку, обов'язково з рішеннями, докладним розбором і вирішуй, вирішуй, вирішуй!

Можна скористатися нашими завданнями (не обов'язково), і ми їх, звичайно, рекомендуємо.

Для того, щоб набити руку за допомогою наших завдань, потрібно допомогти продовжити життя підручнику YouClever, який ти зараз читаєш.

Як? Є два варіанта:

  1. Відкрий доступ до всіх прихованих завдань у цій статті
  2. Відкрий доступ до всіх прихованих завдань у всіх 99 статтях підручника. Купити підручник - 499 руб

Так, у нас у підручнику 99 таких статей та доступ для всіх завдань та всіх прихованих текстів у них можна відкрити одразу.

Доступ до всіх прихованих завдань надається на весь час існування сайту.

І насамкінець...

Якщо наші завдання тобі не подобаються, то знайди інші. Тільки не зупиняйся на теорії.

"Зрозумів" і "Умію вирішувати" - це зовсім різні навички. Тобі потрібні обидва.

Знайди завдання та вирішуй!

Що таке похідна?
Визначення та сенс похідної функції

Багато хто здивується несподіваному розташуванню цієї статті в моєму авторському курсі про похідну функцію однієї змінної та її додатки. Адже як було ще зі школи: стандартний підручник насамперед дає визначення похідної, її геометричний, механічний сенс. Далі учні знаходять похідні функцій за визначенням, і, власне, лише потім відточується техніка диференціювання за допомогою таблиці похідних.

Але на мій погляд, більш прагматичний наступний підхід: перш за все, доцільно ДОБРО ЗРОЗУМІТИ межа функції, і, особливо, нескінченно малі величини. Справа в тому що визначення похідної виходить з понятті межі, яке слабко розглянуте у шкільному курсі Саме тому значна частина молодих споживачів граніту знань погано вникають у суть похідної. Таким чином, якщо ви слабо орієнтуєтесь в диференціальному обчисленні або мудрий мозок за довгі рокиуспішно позбавився від цього багажу, будь ласка, почніть з меж функцій. Заодно освоїте/згадайте їхнє рішення.

Той самий практичний сенс підказує, що спочатку вигідно навчитися знаходити похідні, в тому числі похідні складних функцій. Теорія теорією, а диференціювати, як кажуть, хочеться завжди. У цьому зв'язку краще опрацювати перелічені базові уроки, а може й стати майстром диференціюваннянавіть не усвідомлюючи сутності своїх дій.

До матеріалів цієї сторінки рекомендую приступати після ознайомлення зі статтею Найпростіші завдання з похідною, де, зокрема, розглянуто завдання про дотичну до графіку функції. Але можна і почекати. Справа в тому, що багато додатків похідної не вимагають її розуміння, і не дивно, що теоретичний урок з'явився досить пізно - коли мені потрібно було пояснювати знаходження інтервалів зростання/зменшення та екстремумівфункції. Більше того, він досить довго перебував у темі Функції та графіки», Поки я все-таки не вирішив поставити його раніше.

Тому, шановні чайники, не поспішайте поглинати суть похідної як голодні звірі, бо насичення буде несмачним і неповним.

Поняття зростання, зменшення, максимуму, мінімуму функції

Багато навчальні посібникипідводять до поняття похідної за допомогою будь-яких практичних завдань, і я теж вигадав цікавий приклад. Уявіть, що ми маємо подорож до міста, до якого можна дістатися різними шляхами. Відразу відкинемо криві петляючі доріжки, і будемо розглядати лише прямі магістралі. Проте прямолінійні напрямки теж бувають різними: до міста можна дістатися рівним автобаном. Або по горбистій шосе - вгору-вниз, вгору-вниз. Інша дорога йде лише в гору, а ще одна – весь час нахил. Екстремали виберуть маршрут через ущелину з крутим урвищем та стрімким підйомом.

Але якими б не були ваші уподобання, бажано знати місцевість або щонайменше розташовувати її топографічною картою. А якщо такої інформації немає? Адже можна вибрати, наприклад, рівний шлях, та в результаті натрапити на гірськолижний спуск із веселими фінами. Не факт, що навігатор та навіть супутниковий знімок дадуть достовірні дані. Тому непогано було б формалізувати рельєф шляху засобами математики.

Розглянемо деяку дорогу (вид збоку):

Про всяк випадок нагадую елементарний факт: подорож відбувається зліва направо. Для простоти вважаємо, що функція безперервнана аналізованому ділянці.

Які особливості даного графіка?

На інтервалах функція зростає, тобто кожне наступне її значення більшепопереднього. Грубо кажучи, графік іде знизу вгору(забираємось на гірку). А на інтервалі функція зменшується– кожне наступне значення меншепопереднього, і наш графік йде зверху вниз(спускаємось схилом).

Також звернемо увагу на спеціальні точки. У точці ми досягаємо максимуму, тобто існуєтака ділянка шляху, на якому значення буде найбільшим (високим). У точці ж досягається мінімум, і існуєтака її околиця, у якій значення найменше (низьке).

Суворішу термінологію та визначення розглянемо на уроці про екстремуми функції, а поки що вивчимо ще одну важливу особливість: на проміжках функція зростає, але зростає вона з різною швидкістю . І перше, що впадає у вічі – на інтервалі графік злітає вгору набагато крутішеніж на інтервалі. Чи не можна виміряти крутість дороги за допомогою математичного інструментарію?

Швидкість зміни функції

Ідея полягає в наступному: візьмемо певне значення (читається "дельта ікс"), яке назвемо збільшенням аргументу, і почнемо його «приміряти» до різним точкамнашого шляху:

1) Подивимося на саму ліву точку: минаючи відстань, ми піднімаємося схилом на висоту (зелена лінія). Величина називається збільшенням функції, й у разі це приріст позитивно (різниця значень по осі – більше нуля). Складемо відношення, яке і буде мірилом крутості нашої дороги. Очевидно, що це цілком конкретне число, і, оскільки обидва прирости позитивні, то .

Увага! Позначення є ЄДИНИМсимволом, тобто не можна відривати дельту від ікса і розглядати ці літери окремо. Зрозуміло, коментар стосується символу збільшення функції.

Досліджуємо природу отриманого дробу змістовніше. Нехай спочатку ми знаходимося на висоті 20 метрів (у лівій чорній точці). Подолавши відстань метрів (ліва червона лінія), ми опинимося на висоті 60 метрів. Тоді збільшення функції складе метрів (зелена лінія) та: . Таким чином, на кожному метріцієї ділянки дороги висота збільшується в середньомуна 4 метри…не забули альпіністське спорядження? =) Інакше кажучи, побудоване ставлення характеризує СЕРЕДНЮ ШВИДКІСТЬ ЗМІНИ (у разі – зростання) функції.

Примітка : числові значення аналізованого прикладу відповідають пропорціям креслення лише приблизно.

2) Тепер пройдемо ту ж саму відстань від правої чорної точки. Тут підйом більш пологий, тому прирощення (малинова лінія) відносно невелике, і ставлення порівняно з попереднім випадком буде дуже скромним. Умовно кажучи, метрів та швидкість зростання функціїскладає. Тобто, тут на кожен метр колії доводиться в середньомупівметра підйому.

3) Невелика пригода на схилі гори. Подивимося верхню чорну точку, розташовану на осі ординат. Припустимо, що це позначка 50 метрів. Знову долаємо відстань, внаслідок чого опиняємося нижче – на рівні 30 метрів. Оскільки здійснено рух зверху вниз(в «протихід» напрямку осі), то підсумкове збільшення функції (висоти) буде негативним: метрів (коричневий відрізок на кресленні). І в даному випадку мова вже йде про швидкості зменшенняфункції: , тобто за кожен метр шляху цієї ділянки висота зменшується в середньомуна 2 метри. Бережіть одяг на п'ятій точці.

Тепер поставимо питання: яке значення «вимірювального еталона» найкраще використовувати? Цілком зрозуміло, 10 метрів – це дуже грубо. На них запросто вміститься добра дюжина купин. Та що там купини, внизу може бути глибока ущелина, а за кілька метрів – інша його сторона з подальшим стрімким підйомом. Таким чином, при десятиметровому ми не отримаємо зрозумілої характеристики подібних ділянок за допомогою відношення.

З проведеного міркування слідує висновок - чим менше значення тим точніше ми опишемо рельєф дороги. Більше того, справедливі такі факти:

Для будь-якоїточки підйомів можна підібрати значення (нехай і дуже мале), що вміщується у межах тієї чи іншої підйому. А це означає, що відповідне збільшення висоти буде гарантовано позитивним, і нерівність коректно вкаже зростання функції в кожній точці цих інтервалів.

– Аналогічно, для будь-якоїточки схилу існує значення , яке повністю вміститься на цьому схилі. Отже, відповідне збільшення висоти однозначно негативно, і нерівність коректно покаже зменшення функції в кожній точці даного інтервалу.

– Особливо цікавий випадок, коли швидкість зміни функції дорівнює нулю: . По-перше, нульове збільшення висоти () – ознака рівного шляху. А по-друге, є інші цікаві ситуації, приклади яких ви бачите на малюнку. Уявіть, що доля завела нас на саму вершину пагорба з орлами, що ширяють, або дно яру з жабами, що квакають. Якщо зробити невеликий крок у будь-який бік, то зміна висоти буде дуже мало, і можна сказати, що швидкість зміни функції практично нульова. У точках спостерігається така картина.

Таким чином, ми підібралися до дивовижної можливості ідеально охарактеризувати швидкість зміни функції. Адже математичний аналіздозволяє спрямувати збільшення аргументу до нуля: , тобто зробити його нескінченно малим.

За підсумком виникає ще одне закономірне питання: чи можна для дороги та її графіка знайти іншу функцію, яка повідомляла б нампро всі рівні ділянки, підйоми, спуски, вершини, низини, а також про швидкість зростання/зменшення в кожній точці шляху?

Що таке похідна? Визначення похідної.
Геометричний сенс похідної та диференціала

Будь ласка, прочитайте вдумливо і не надто швидко – матеріал простий та доступний кожному! Нічого страшного, якщо подекуди щось здасться не дуже зрозумілим, до статті завжди можна повернутися пізніше. Скажу більше, теорію корисно проштудувати кілька разів, щоб якісно усвідомити всі моменти (рада особливо актуальна для студентів-«технарів», у яких вища математикавідіграє значну роль у навчальному процесі).

Звичайно, і в самому визначенні похідної в точці замінимо на:

До чого ми дійшли? А дійшли ми до того, що для функції згідно із законом ставиться у відповідність інша функція, яка називається похідною функцією(або просто похідної).

Похідна характеризує швидкість змінифункції. Яким чином? Думка йде червоною ниткою від початку статті. Розглянемо деяку точку області визначенняфункції. Нехай функція диференційована у цій точці. Тоді:

1) Якщо , то функція зростає у точці . І, очевидно, існує інтервал(Нехай навіть дуже малий), що містить точку , На якому функція зростає, і її графік йде «знизу вгору».

2) Якщо , то функція зменшується в точці . І є інтервал, що містить точку , у якому функція зменшується (графік йде «згори донизу»).

3) Якщо , то нескінченно близькоПри точці функція зберігає свою швидкість постійної. Так буває, як зазначалося, у функції-константи та у критичних точках функції, зокрема у точках мінімуму та максимуму.

Небагато семантики. Що в широкому значенніозначає дієслово «диференціювати»? Диференціювати – це означає виділити будь-яку ознаку. Диференціюючи функцію, ми «виділяємо» швидкість її зміни у вигляді похідної функції. А що, до речі, розуміється під словом похідна? Функція відбуласявід функції.

Терміни дуже вдало тлумачить механічний сенс похідної :
Розглянемо закон зміни координати тіла, що залежить від часу, та функцію швидкості руху даного тіла. Функція характеризує швидкість зміни координати тіла, тому є першою похідною функції за часом: . Якби в природі не існувало поняття «рух тіла», то не існувало б і похідногопоняття "швидкість тіла".

Прискорення тіла – це швидкість зміни швидкості, тому: . Якби в природі не існувало вихідних понять «рух тіла» та «швидкість руху тіла», то не існувало б і похідногопоняття «прискорення тіла».

Loading...Loading...