Melyek a másodfokú egyenlet gyökerei. Másodfokú egyenletek megoldása

A másodfokú egyenlet problémáit is tanulmányozzuk iskolai tananyagés az egyetemeken. Ezek a * x ^ 2 + b * x + c \u003d 0 alakú egyenletek értendők, ahol x- változó, a,b,c – állandók; a<>0 . A probléma az egyenlet gyökereinek megtalálása.

A másodfokú egyenlet geometriai jelentése

A másodfokú egyenlettel ábrázolt függvény grafikonja parabola. A másodfokú egyenlet megoldásai (gyökei) a parabola és az x tengellyel való metszéspontok. Ebből következik, hogy három eset lehetséges:
1) a parabolának nincs metszéspontja az x tengellyel. Ez azt jelenti, hogy a felső síkban van ágakkal felfelé, vagy az alsó síkban lefelé ágakkal. Ilyen esetekben a másodfokú egyenletnek nincs valódi gyöke (két összetett gyöke van).

2) a parabolának van egy metszéspontja az Ox tengellyel. Az ilyen pontot a parabola csúcsának nevezzük, és a benne lévő másodfokú egyenlet elnyeri minimális vagy maximális értékét. Ebben az esetben a másodfokú egyenletnek egy valós gyöke (vagy két azonos gyöke) van.

3) Az utolsó eset a gyakorlatban érdekesebb - a parabolának két metszéspontja van az abszcissza tengellyel. Ez azt jelenti, hogy az egyenletnek két valódi gyöke van.

A változók hatványaihoz tartozó együtthatók elemzése alapján érdekes következtetések vonhatók le a parabola elhelyezéséről.

1) Ha az a együttható nullánál nagyobb, akkor a parabola felfelé, ha negatív, akkor a parabola ágai lefelé irányulnak.

2) Ha a b együttható nullánál nagyobb, akkor a parabola csúcsa a bal oldali félsíkban, ha negatív értéket vesz fel, akkor a jobb oldalon.

Másodfokú egyenlet megoldási képletének levezetése

Vigyük át az állandót a másodfokú egyenletből

egyenlőségjelre a kifejezést kapjuk

Mindkét oldalt megszorozzuk 4a-val

Ha teljes négyzetet szeretne kapni a bal oldalon, adjon hozzá b ^ 2-t mindkét részhez, és hajtsa végre az átalakítást

Innen találjuk

A diszkrimináns képlete és a másodfokú egyenlet gyökei

A diszkrimináns a gyökkifejezés értéke, ha pozitív, akkor az egyenletnek két valós gyöke van, a képlettel számolva Ha a diszkrimináns nulla, akkor a másodfokú egyenletnek egy megoldása van (két egybeeső gyök), ami könnyen megkapható a fenti képletből D=0 esetén. Ha a diszkrimináns negatív, akkor nincsenek valódi gyökök. Azonban a másodfokú egyenlet megoldásainak komplex síkban történő tanulmányozása és értékük kiszámítása a képlettel történik

Vieta tétele

Tekintsünk egy másodfokú egyenlet két gyökét, és ezek alapján alkossunk másodfokú egyenletet Maga a Vieta-tétel könnyen következik a jelölésből: ha megvan a formának másodfokú egyenlete. akkor gyökeinek összege egyenlő az ellenkező előjellel vett p együtthatóval, és az egyenlet gyökeinek szorzata egyenlő a q szabad taggal. A fenti képlet így fog kinézni. Ha a klasszikus egyenletben az a konstans nem nulla, akkor a teljes egyenletet el kell osztani vele, majd alkalmazni kell a Vieta-tételt.

A másodfokú egyenlet ütemezése faktorokon

Legyen kitűzve a feladat: a másodfokú egyenlet faktorokra bontása. Ennek végrehajtásához először megoldjuk az egyenletet (keressük meg a gyököket). Ezután a talált gyököket behelyettesítjük a másodfokú egyenlet kibővítési képletébe, ez a probléma megoldódik.

Feladatok másodfokú egyenlethez

1. feladat. Keresse meg a másodfokú egyenlet gyökereit!

x^2-26x+120=0 .

Megoldás: Írja fel az együtthatókat és helyettesítse be a diszkrimináns képletbe

gyökere adott értéket 14-nek egyenlő, számológéppel könnyű megtalálni, vagy gyakori használattal megjegyezni, azonban a kényelem kedvéért a cikk végén felsorolom azokat a számnégyzeteket, amelyek gyakran megtalálhatók az ilyen feladatokban .
A talált értéket a rendszer behelyettesíti a gyökképletbe

és megkapjuk

2. feladat. oldja meg az egyenletet

2x2+x-3=0.

Megoldás: Van egy teljes másodfokú egyenletünk, írjuk ki az együtthatókat és keressük meg a diszkriminánst


Által ismert képletek keresse meg a másodfokú egyenlet gyökereit

3. feladat. oldja meg az egyenletet

9x2 -12x+4=0.

Megoldás: Van egy teljes másodfokú egyenletünk. Határozza meg a diszkriminánst

Azt az esetet kaptuk, amikor a gyökerek egybeesnek. A gyökök értékeit a képlet alapján találjuk meg

4. feladat. oldja meg az egyenletet

x^2+x-6=0 .

Megoldás: Azokban az esetekben, ahol kicsi az együttható x-hez, célszerű a Vieta-tételt alkalmazni. Feltétele alapján két egyenletet kapunk

A második feltételből azt kapjuk, hogy a szorzatnak -6-nak kell lennie. Ez azt jelenti, hogy az egyik gyökér negatív. A következő lehetséges megoldáspárunk van(-3;2), (3;-2) . Az első feltételt figyelembe véve a második megoldáspárt elutasítjuk.
Az egyenlet gyökerei a következők

5. feladat Határozza meg egy téglalap oldalainak hosszát, ha kerülete 18 cm, területe 77 cm 2!

Megoldás: Egy téglalap kerületének fele egyenlő a szomszédos oldalak összegével. Jelöljük x-et - nagy oldala, akkor a 18-x a kisebbik oldala. Egy téglalap területe egyenlő a következő hosszúságok szorzatával:
x(18x)=77;
vagy
x 2 -18x + 77 \u003d 0.
Keresse meg az egyenlet diszkriminánsát!

Kiszámoljuk az egyenlet gyökereit

Ha x=11, azután 18x=7, fordítva is igaz (ha x=7, akkor 21-x=9).

6. feladat Tényezőzzük a másodfokú 10x 2 -11x+3=0 egyenletet!

Megoldás: Számítsa ki az egyenlet gyökereit, ehhez megtaláljuk a diszkriminánst

A talált értéket behelyettesítjük a gyökképletbe, és kiszámítjuk

Alkalmazzuk a másodfokú egyenlet gyökekkel való bővítésének képletét

A zárójeleket kibontva megkapjuk az azonosságot.

Másodfokú egyenlet paraméterrel

Példa 1. A paraméter mely értékeire de , az (a-3) x 2 + (3-a) x-1 / 4 \u003d 0 egyenletnek egy gyöke van?

Megoldás: Az a=3 érték közvetlen helyettesítésével azt látjuk, hogy nincs megoldása. Továbbá azt a tényt fogjuk használni, hogy nulla diszkrimináns esetén az egyenletnek a 2 multiplicitás egyik gyöke van. Írjuk ki a diszkriminánst

leegyszerűsítjük és egyenlővé tesszük a nullával

Az a paraméterre vonatkozóan egy másodfokú egyenletet kaptunk, melynek megoldása a Vieta-tétel segítségével könnyen megszerezhető. A gyökök összege 7, szorzatuk 12. Egyszerű felsorolással megállapítjuk, hogy a 3.4 számok lesznek az egyenlet gyökerei. Mivel a számítások elején már elvettük az a=3 megoldást, az egyetlen helyes megoldás a következő lesz: a=4.Így a = 4 esetén az egyenletnek egy gyöke van.

Példa 2. A paraméter mely értékeire de , az egyenlet a(a+3)x^2+(2a+6)x-3a-9=0 egynél több gyökér van?

Megoldás: Tekintsük először a szinguláris pontokat, ezek az a=0 és a=-3 értékek lesznek. Ha a=0, az egyenlet 6x-9=0 alakra egyszerűsödik; x=3/2 és egy gyökér lesz. A= -3 esetén a 0=0 azonosságot kapjuk.
Számítsa ki a diszkriminánst!

és keresse meg a értékeit, amelyekre ez pozitív

Az első feltételből a>3-at kapunk. A másodikhoz megtaláljuk a diszkriminánst és az egyenlet gyökereit


Határozzuk meg azokat az intervallumokat, ahol a függvény pozitív értékeket vesz fel. Az a=0 pontot behelyettesítve azt kapjuk 3>0 . Tehát a (-3; 1/3) intervallumon kívül a függvény negatív. Ne felejtsd el a pontot a=0 amit ki kell zárni, mivel az eredeti egyenletnek egy gyöke van.
Ennek eredményeként két olyan intervallumot kapunk, amely kielégíti a probléma feltételét

A gyakorlatban sok hasonló feladat lesz, próbálja meg maga megbirkózni a feladatokkal, és ne felejtse el figyelembe venni az egymást kölcsönösen kizáró feltételeket. Tanulmányozza jól a másodfokú egyenletek megoldására szolgáló képleteket, gyakran van rájuk szükség a számításokban különféle problémákban és tudományokban.

BAN BEN modern társadalom a négyzetes változót tartalmazó egyenletekkel történő műveletek végrehajtásának képessége számos tevékenységi területen hasznos lehet, és széles körben alkalmazzák a gyakorlatban a tudományos ill. technikai fejlesztések. Ezt a tengeri és folyami hajók, repülőgépek és rakéták tervezése bizonyítja. Az ilyen számítások segítségével meghatározzák a különféle testek, köztük az űrobjektumok mozgásának pályáit. A másodfokú egyenletek megoldására szolgáló példák nemcsak a gazdasági előrejelzésekben, az épületek tervezésében és kivitelezésében, hanem a leghétköznapibb körülmények között is használatosak. Szükség lehet rájuk gyalogtúrák, sportolásnál, boltokban vásárláskor és más nagyon gyakori helyzetekben.

Bontsuk fel a kifejezést komponenstényezőkre

Az egyenlet mértékét a változó fokszámának maximális értéke határozza meg, amelyet az adott kifejezés tartalmaz. Ha egyenlő 2-vel, akkor egy ilyen egyenletet másodfokú egyenletnek nevezünk.

Ha a formulák nyelvén beszélünk, akkor ezek a kifejezések, akárhogy is néznek ki, mindig formába hozhatók, amikor a kifejezés bal oldala három tagból áll. Köztük: ax 2 (vagyis változó négyzetben az együtthatójával), bx (együtthatós négyzet nélküli ismeretlen) és c (szabad komponens, azaz közönséges szám). Mindez a jobb oldalon 0. Abban az esetben, ha egy ilyen polinomnak az ax 2 kivételével nincs benne egyik alkotótagja, azt hiányos másodfokú egyenletnek nevezzük. Elsőként olyan problémák megoldására érdemes példákat venni, amelyekben a változók értékét nem nehéz megtalálni.

Ha a kifejezés úgy néz ki, hogy a kifejezés jobb oldalán két tag van, pontosabban az ax 2 és a bx, akkor az x-et a legegyszerűbb a változó zárójelbe helyezésével találni. Most az egyenletünk így fog kinézni: x(ax+b). Továbbá nyilvánvalóvá válik, hogy vagy x=0, vagy a probléma a következő kifejezésből való változó keresésére redukálódik: ax+b=0. Ezt a szorzás egyik tulajdonsága diktálja. A szabály azt mondja, hogy két tényező szorzata csak akkor eredményez 0-t, ha az egyik tényező nulla.

Példa

x=0 vagy 8x - 3 = 0

Ennek eredményeként az egyenlet két gyökét kapjuk: 0 és 0,375.

Az ilyen egyenletek leírhatják azoknak a testeknek a gravitáció hatására történő mozgását, amelyek egy bizonyos ponttól indultak el, amelyet origónak vettünk. Itt matematikai jelölés a következő alakot ölti: y = v 0 t + gt 2 /2. A szükséges értékek behelyettesítésével, a jobb oldal 0-val való egyenlővé tételével és az esetleges ismeretlenek megtalálásával megtudhatja a test felemelkedésétől a leesésig eltelt időt, valamint sok más mennyiséget is. De erről később beszélünk.

Kifejezés faktorálása

A fent leírt szabály lehetővé teszi ezen problémák és még sok más megoldását nehéz esetek. Tekintsünk példákat az ilyen típusú másodfokú egyenletek megoldására.

X2 - 33x + 200 = 0

Ez négyzetes trinomikus teljes. Először is átalakítjuk a kifejezést, és faktorokra bontjuk. Ebből kettő van: (x-8) és (x-25) = 0. Ennek eredményeként két gyökünk van: 8 és 25.

A 9. osztályos másodfokú egyenletek megoldására vonatkozó példák lehetővé teszik, hogy ez a módszer nemcsak másodrendű, hanem akár harmad- és negyedrendű kifejezésekben is változót találjon.

Például: 2x 3 + 2x 2 - 18x - 18 = 0. Ha a jobb oldalt változóval faktorokba vesszük, ezek közül három van, azaz (x + 1), (x-3) és (x +) 3).

Ennek eredményeként nyilvánvalóvá válik, hogy adott egyenlet három gyöke van: -3; -egy; 3.

A négyzetgyök kivonása

A hiányos másodrendű egyenlet másik esete a betűk nyelvén írt kifejezés úgy, hogy a jobb oldal az ax 2 és c komponensekből épül fel. Itt, hogy megkapjuk a változó értékét, a szabad termet átvisszük ide jobb oldal, majd ezt követően az egyenlőség mindkét részéből, Négyzetgyök. Meg kell jegyezni, hogy ebben az esetben az egyenletnek általában két gyöke van. Kivételt képeznek a c kifejezést egyáltalán nem tartalmazó egyenlőségek, ahol a változó nullával egyenlő, valamint a kifejezések olyan változatai, amikor a jobb oldal negatívnak bizonyul. Ez utóbbi esetben egyáltalán nincs megoldás, mivel a fenti műveletek nem hajthatók végre gyökérrel. Példákat kell venni az ilyen típusú másodfokú egyenletek megoldására.

Ebben az esetben az egyenlet gyökerei a -4 és a 4 számok lesznek.

A földterület kiszámítása

Az effajta számítások szükségessége már az ókorban megjelent, mert a matematika fejlődése nagyrészt ezekben rejlik távoli idők Ennek oka az volt, hogy a telkek területét és kerületét a legnagyobb pontossággal kellett meghatározni.

Ilyen jellegű feladatok alapján összeállított másodfokú egyenletek megoldására is érdemes példákat venni.

Tehát mondjuk van téglalap alakú terület földterület, amelynek hossza 16 méterrel hosszabb, mint a szélessége. Meg kell keresni a telek hosszát, szélességét és kerületét, ha ismert, hogy a területe 612 m 2.

Ha rátérünk az üzletre, először elkészítjük a szükséges egyenletet. Jelöljük a szakasz szélességét x-el, akkor a hossza (x + 16) lesz. A leírtakból következik, hogy a területet az x (x + 16) kifejezés határozza meg, ami a feladatunk feltétele szerint 612. Ez azt jelenti, hogy x (x + 16) \u003d 612.

A teljes másodfokú egyenletek megoldása, és ez a kifejezés éppen erről szól, nem végezhető el ugyanúgy. Miért? Bár ennek bal oldala továbbra is két tényezőt tartalmaz, ezek szorzata egyáltalán nem egyenlő 0-val, ezért itt más módszereket alkalmazunk.

Megkülönböztető

Először is elvégezzük a szükséges átalakításokat, majd kinézet ez a kifejezés így fog kinézni: x 2 + 16x - 612 = 0. Ez azt jelenti, hogy a korábban megadott szabványnak megfelelő formában kaptunk egy kifejezést, ahol a=1, b=16, c=-612.

Ez egy példa lehet másodfokú egyenletek megoldására a diszkrimináns segítségével. Itt szükséges számításokat séma szerint gyártjuk: D = b 2 - 4ac. Ez a segédérték nemcsak a kívánt értékek megtalálását teszi lehetővé a másodrendű egyenletben, hanem meghatározza a számot opciók. D>0 esetben kettő van belőlük; D=0 esetén egy gyök van. Abban az esetben, ha D<0, никаких шансов для решения у уравнения вообще не имеется.

A gyökerekről és képletükről

Esetünkben a diszkrimináns: 256 - 4(-612) = 2704. Ez azt jelzi, hogy a problémánkra van válasz. Ha tudja, a másodfokú egyenletek megoldását az alábbi képlettel kell folytatni. Lehetővé teszi a gyökerek kiszámítását.

Ez azt jelenti, hogy a bemutatott esetben: x 1 =18, x 2 =-34. A második lehetőség ebben a dilemmában nem jelenthet megoldást, mert a telek mérete nem mérhető negatív értékekben, ami azt jelenti, hogy x (vagyis a telek szélessége) 18 m. Innen számítjuk ki a hosszt: 18+16=34, a kerület pedig 2(34+ 18) = 104 (m 2).

Példák és feladatok

Folytatjuk a másodfokú egyenletek tanulmányozását. Az alábbiakban példákat és ezek közül néhány részletes megoldását mutatjuk be.

1) 15x2 + 20x + 5 = 12x2 + 27x + 1

Vigyünk át mindent az egyenlőség bal oldalára, hajtsunk végre egy transzformációt, azaz megkapjuk az egyenlet alakját, amit általában standardnak neveznek, és egyenlővé tesszük a nullával.

15x 2 + 20x + 5 - 12x 2 - 27x - 1 = 0

A hasonlók hozzáadása után meghatározzuk a diszkriminánst: D \u003d 49 - 48 \u003d 1. Tehát az egyenletünknek két gyöke lesz. A fenti képlet szerint számítjuk ki őket, ami azt jelenti, hogy az első 4/3, a második 1 lesz.

2) Most másfajta rejtvényeket fogunk feltárni.

Nézzük meg, hogy vannak-e itt egyáltalán x 2 - 4x + 5 = 1 gyökök? A kimerítő válasz érdekében a polinomot a megfelelő ismert alakra hozzuk, és kiszámítjuk a diszkriminánst. Ebben a példában nem szükséges a másodfokú egyenletet megoldani, mert a feladat lényege egyáltalán nem ebben rejlik. Ebben az esetben D \u003d 16 - 20 \u003d -4, ami azt jelenti, hogy tényleg nincsenek gyökerek.

Vieta tétele

A másodfokú egyenleteket célszerű a fenti képletekkel és a diszkriminánssal megoldani, ha az utóbbi értékéből kivonjuk a négyzetgyököt. De ez nem mindig történik meg. Ebben az esetben azonban sokféleképpen lehet megkapni a változók értékét. Példa: másodfokú egyenletek megoldása Vieta tételével. Nevét egy férfiról kapta, aki a 16. századi Franciaországban élt, és matematikai tehetségének és udvari kapcsolatainak köszönhetően ragyogó karriert futott be. Portréja a cikkben látható.

A minta, amelyet a híres francia észrevett, a következő volt. Bebizonyította, hogy az egyenlet gyökeinek összege -p=b/a, szorzatuk pedig q=c/a.

Most nézzük a konkrét feladatokat.

3x2 + 21x - 54 = 0

Az egyszerűség kedvéért alakítsuk át a kifejezést:

x 2 + 7x - 18 = 0

A Vieta-tételt használva ez a következőt kapja: a gyökök összege -7, a szorzatuk pedig -18. Innen azt kapjuk, hogy az egyenlet gyökerei a -9 és 2 számok. Ellenőrzés után megbizonyosodunk arról, hogy a változók ezen értékei valóban beleférnek-e a kifejezésbe.

Parabola grafikonja és egyenlete

A másodfokú függvény fogalmai és másodfokú egyenletek szorosan csatlakoztatva. Erre már volt példa korábban. Most nézzünk meg néhány matematikai rejtvényt kicsit részletesebben. Bármely leírt típusú egyenlet vizuálisan ábrázolható. Az ilyen, gráf formájában megrajzolt függőséget parabolának nevezzük. Különböző típusai az alábbi ábrán láthatók.

Minden parabolának van csúcsa, vagyis egy pontja, ahonnan az ágai kijönnek. Ha a>0, akkor magasra mennek a végtelenbe, és amikor a<0, они рисуются вниз. Простейшим примером подобной зависимости является функция y = x 2 . В данном случае в уравнении x 2 =0 неизвестное может принимать только одно значение, то есть х=0, а значит существует только один корень. Это неудивительно, ведь здесь D=0, потому что a=1, b=0, c=0. Выходит формула корней (точнее одного корня) квадратного уравнения запишется так: x = -b/2a.

A függvények vizuális megjelenítése segít bármilyen egyenlet megoldásában, beleértve a másodfokúakat is. Ezt a módszert grafikusnak nevezik. Az x változó értéke pedig az abszcissza koordinátája azokban a pontokban, ahol a gráfvonal metszi a 0x-et. A csúcs koordinátáit az imént adott x 0 = -b / 2a képlettel találhatjuk meg. És a kapott értéket behelyettesítve a függvény eredeti egyenletébe, megtudhatjuk, hogy y 0, azaz az y tengelyhez tartozó parabola csúcs második koordinátája.

A parabola ágainak metszéspontja az abszcissza tengellyel

Sok példa van a másodfokú egyenletek megoldására, de vannak általános minták is. Tekintsük őket. Nyilvánvaló, hogy a gráf 0x tengellyel való metszéspontja a>0 esetén csak akkor lehetséges, ha y 0 negatív értékeket vesz fel. És a<0 координата у 0 должна быть положительна. Для указанных вариантов D>0. Különben D<0. А когда D=0, вершина параболы расположена непосредственно на оси 0х.

A parabola grafikonjából a gyököket is meghatározhatja. Ennek a fordítottja is igaz. Vagyis ha nem könnyű egy másodfokú függvény vizuális ábrázolását kapni, akkor a kifejezés jobb oldalát egyenlővé teheti 0-val, és megoldhatja a kapott egyenletet. A 0x tengellyel való metszéspontok ismeretében pedig könnyebb az ábrázolás.

A történelemből

A négyzetes változót tartalmazó egyenletek segítségével a régi időkben nemcsak matematikai számításokat végeztek, hanem meghatározták a geometriai alakzatok területét. A régieknek szükségük volt ilyen számításokra a fizika és csillagászat terén tett grandiózus felfedezésekhez, valamint az asztrológiai előrejelzésekhez.

A modern tudósok szerint Babilon lakói az elsők között oldották meg a másodfokú egyenleteket. Négy évszázaddal korunk eljövetele előtt történt. Természetesen számításaik alapvetően eltértek a jelenleg elfogadottaktól, és sokkal primitívebbnek bizonyultak. Például a mezopotámiai matematikusoknak fogalmuk sem volt a negatív számok létezéséről. Nem ismerték azokat a finomságokat sem, amelyeket korunk diákjai ismertek.

Talán még Babilon tudósainál is korábban fogta az indiai bölcs, Baudhayama a másodfokú egyenletek megoldását. Ez körülbelül nyolc évszázaddal Krisztus korszakának eljövetele előtt történt. Igaz, a másodrendű egyenletek, a megoldási módszerek, amelyeket ő adott, a legegyszerűbbek voltak. Rajta kívül a kínai matematikusok is érdeklődtek a hasonló kérdések iránt régen. Európában a másodfokú egyenleteket csak a 13. század elején kezdték megoldani, később azonban olyan nagy tudósok is alkalmazták őket munkáik során, mint Newton, Descartes és sokan mások.

A másodfokú egyenleteket 8. osztályban tanulmányozzák, tehát nincs itt semmi bonyolult. Ezek megoldásának képessége elengedhetetlen.

A másodfokú egyenlet az ax 2 + bx + c = 0 alakú egyenlet, ahol az a , b és c együtthatók tetszőleges számok, és a ≠ 0.

A konkrét megoldási módszerek tanulmányozása előtt megjegyezzük, hogy minden másodfokú egyenlet három osztályba osztható:

  1. Nincsenek gyökerei;
  2. Pontosan egy gyökerük van;
  3. Két különböző gyökerük van.

Ez egy fontos különbség a másodfokú és a lineáris egyenletek között, ahol a gyök mindig létezik és egyedi. Hogyan határozható meg, hogy hány gyöke van egy egyenletnek? Van ebben egy csodálatos dolog - diszkriminatív.

Megkülönböztető

Legyen adott az ax 2 + bx + c = 0 másodfokú egyenlet, ekkor a diszkrimináns egyszerűen a D = b 2 − 4ac szám.

Ezt a képletet fejből kell tudni. Az, hogy honnan származik, most nem fontos. Egy másik fontos dolog: a diszkrimináns előjelével meghatározhatja, hogy hány gyöke van egy másodfokú egyenletnek. Ugyanis:

  1. Ha D< 0, корней нет;
  2. Ha D = 0, akkor pontosan egy gyök van;
  3. Ha D > 0, akkor két gyök lesz.

Kérjük, vegye figyelembe: a diszkrimináns a gyökerek számát jelöli, és egyáltalán nem a jeleiket, ahogyan azt valamiért sokan gondolják. Vessen egy pillantást a példákra, és mindent meg fog érteni:

Egy feladat. Hány gyöke van a másodfokú egyenleteknek:

  1. x 2 - 8x + 12 = 0;
  2. 5x2 + 3x + 7 = 0;
  3. x 2 − 6x + 9 = 0.

Felírjuk az első egyenlet együtthatóit, és megkeressük a diszkriminánst:
a = 1, b = -8, c = 12;
D = (-8) 2 - 4 1 12 = 64 - 48 = 16

Tehát a diszkrimináns pozitív, tehát az egyenletnek két különböző gyökere van. Ugyanígy elemezzük a második egyenletet:
a = 5; b = 3; c = 7;
D \u003d 3 2 - 4 5 7 \u003d 9 - 140 \u003d -131.

A diszkrimináns negatív, nincsenek gyökerei. Az utolsó egyenlet marad:
a = 1; b = -6; c = 9;
D = (−6) 2 − 4 1 9 = 36 − 36 = 0.

A diszkrimináns egyenlő nullával - a gyökér egy lesz.

Vegye figyelembe, hogy minden egyenlethez együtthatókat írtunk ki. Igen, hosszú, igen, fárasztó – de nem fogod összekeverni az esélyeket, és nem követsz el hülye hibákat. Válassz magadnak: sebesség vagy minőség.

Mellesleg, ha „megtölti a kezét”, egy idő után már nem kell kiírnia az összes együtthatót. Ilyen műveleteket hajt végre a fejében. A legtöbb ember ezt valahol 50-70 megoldott egyenlet után kezdi el – általában nem annyira.

Másodfokú egyenlet gyökerei

Most térjünk át a megoldásra. Ha a diszkrimináns D > 0, akkor a gyökök a következő képletekkel kereshetők:

A másodfokú egyenlet gyökeinek alapképlete

Ha D = 0, bármelyik képletet használhatja - ugyanazt a számot kapja, amely lesz a válasz. Végül, ha D< 0, корней нет — ничего считать не надо.

  1. x 2 - 2x - 3 = 0;
  2. 15 - 2x - x2 = 0;
  3. x2 + 12x + 36 = 0.

Első egyenlet:
x 2 - 2x - 3 = 0 ⇒ a = 1; b = -2; c = -3;
D = (−2) 2 − 4 1 (−3) = 16.

D > 0 ⇒ az egyenletnek két gyöke van. Keressük meg őket:

Második egyenlet:
15 − 2x − x 2 = 0 ⇒ a = −1; b = -2; c = 15;
D = (−2) 2 − 4 (−1) 15 = 64.

D > 0 ⇒ az egyenletnek ismét két gyöke van. Keressük meg őket

\[\begin(align) & ((x)_(1))=\frac(2+\sqrt(64))(2\cdot \left(-1 \right))=-5; \\ & ((x)_(2))=\frac(2-\sqrt(64))(2\cdot \left(-1 \right))=3. \\ \end(igazítás)\]

Végül a harmadik egyenlet:
x 2 + 12x + 36 = 0 ⇒ a = 1; b = 12; c = 36;
D = 12 2 − 4 1 36 = 0.

D = 0 ⇒ az egyenletnek egy gyöke van. Bármilyen képlet használható. Például az első:

Amint a példákból látható, minden nagyon egyszerű. Ha ismeri a képleteket és tud számolni, akkor nem lesz probléma. Leggyakrabban akkor fordulnak elő hibák, amikor negatív együtthatókat helyettesítenek be a képletbe. Itt ismét a fent leírt technika segít: nézze meg a képletet szó szerint, fesse le minden lépést - és gyorsan megszabaduljon a hibáktól.

Hiányos másodfokú egyenletek

Előfordul, hogy a másodfokú egyenlet némileg eltér a definícióban megadottól. Például:

  1. x2 + 9x = 0;
  2. x2 − 16 = 0.

Könnyen belátható, hogy az egyik kifejezés hiányzik ezekből az egyenletekből. Az ilyen másodfokú egyenleteket még könnyebb megoldani, mint a szabványosakat: még a diszkriminánst sem kell kiszámítani. Tehát vezessünk be egy új koncepciót:

Az ax 2 + bx + c = 0 egyenletet nem teljes másodfokú egyenletnek nevezzük, ha b = 0 vagy c = 0, azaz. az x változó vagy a szabad elem együtthatója nullával egyenlő.

Természetesen nagyon nehéz eset lehetséges, ha mindkét együttható nulla: b \u003d c \u003d 0. Ebben az esetben az egyenlet ax 2 \u003d 0 alakot ölt. Nyilvánvalóan egy ilyen egyenletnek egyetlen egyenlete van. gyökér: x \u003d 0.

Nézzünk más eseteket. Legyen b \u003d 0, akkor egy ax 2 + c \u003d 0 formájú hiányos másodfokú egyenletet kapunk. Alakítsuk át kissé:

Mivel az aritmetikai négyzetgyök csak nem negatív számból létezik, az utolsó egyenlőségnek csak akkor van értelme, ha (-c / a ) ≥ 0. Következtetés:

  1. Ha egy ax 2 + c = 0 formájú nem teljes másodfokú egyenlet kielégíti a (−c / a ) ≥ 0 egyenlőtlenséget, akkor két gyöke lesz. A képlet fent van megadva;
  2. Ha (-c / a )< 0, корней нет.

Amint látja, a diszkriminánsra nem volt szükség – a hiányos másodfokú egyenletekben egyáltalán nincsenek bonyolult számítások. Valójában nem is szükséges emlékezni a (−c / a ) ≥ 0 egyenlőtlenségre. Elég, ha kifejezzük x 2 értékét, és megnézzük, mi van az egyenlőségjel másik oldalán. Ha van pozitív szám, akkor két gyöke lesz. Ha negatív, akkor egyáltalán nem lesznek gyökerei.

Most foglalkozzunk az ax 2 + bx = 0 alakú egyenletekkel, amelyekben a szabad elem egyenlő nullával. Itt minden egyszerű: mindig két gyökér lesz. Elegendő a polinomot faktorozni:

A közös tényezőt kivesszük a zárójelből

A szorzat akkor egyenlő nullával, ha legalább az egyik tényező nulla. Innen erednek a gyökerek. Végezetül elemezünk néhány egyenletet:

Egy feladat. Másodfokú egyenletek megoldása:

  1. x2 − 7x = 0;
  2. 5x2 + 30 = 0;
  3. 4x2 − 9 = 0.

x 2 − 7x = 0 ⇒ x (x - 7) = 0 ⇒ x 1 = 0; x2 = −(−7)/1 = 7.

5x2 + 30 = 0 ⇒ 5x2 = -30 ⇒ x2 = -6. Nincsenek gyökerek, mert a négyzet nem lehet egyenlő negatív számmal.

4x 2 − 9 = 0 ⇒ 4x 2 = 9 ⇒ x 2 = 9/4 ⇒ x 1 = 3/2 = 1,5; x 2 \u003d -1,5.

Másodfokú egyenletek. Megkülönböztető. Megoldás, példák.

Figyelem!
Vannak további
anyag az 555. külön szakaszban.
Azoknak, akik erősen "nem nagyon..."
És azoknak, akik "nagyon...")

A másodfokú egyenletek típusai

Mi az a másodfokú egyenlet? Hogy néz ki? Termben másodfokú egyenlet kulcsszó az "négyzet". Ez azt jelenti, hogy az egyenletben szükségszerűen kell lennie egy x négyzetnek. Ezen kívül az egyenletben lehet (vagy nem!) Csak x (első fokig) és csak egy szám (ingyenes tag).És nem lehetnek x-ek kettőnél nagyobb fokkal.

Matematikai értelemben a másodfokú egyenlet a következő alakú egyenlet:

Itt a, b és c- néhány szám. b és c- abszolút bármilyen, de de- minden, csak nem nulla. Például:

Itt de =1; b = 3; c = -4

Itt de =2; b = -0,5; c = 2,2

Itt de =-3; b = 6; c = -18

Nos, érted az ötletet...

Ezekben a másodfokú egyenletekben a bal oldalon ott van teljes készlet tagjai. x együttható négyzete de, x az első hatványhoz együtthatóval bÉs szabad tagja

Az ilyen másodfokú egyenleteket nevezzük teljes.

És ha b= 0, mit kapunk? Nekünk van X első fokon eltűnik. Ez a nullával való szorzásból következik be.) Kiderül például:

5x2 -25 = 0,

2x2 -6x=0,

-x 2 +4x=0

Stb. És ha mindkét együttható bÉs c egyenlő nullával, akkor még egyszerűbb:

2x 2 \u003d 0,

-0,3x 2 = 0

Az ilyen egyenleteket, ahol valami hiányzik, nevezik hiányos másodfokú egyenletek. Ami teljesen logikus.) Vegye figyelembe, hogy az x négyzet minden egyenletben jelen van.

Egyébként miért de nem lehet nulla? És te helyettesíted helyette de nulla.) Az X a négyzetben eltűnik! Az egyenlet lineáris lesz. És ez másképp van megcsinálva...

Ez a másodfokú egyenletek fő típusa. Teljes és hiányos.

Másodfokú egyenletek megoldása.

Teljes másodfokú egyenletek megoldása.

A másodfokú egyenletek könnyen megoldhatók. Képletekkel és világosan egyszerű szabályok. Az első szakaszban szüksége van adott egyenlet vezet standard nézet, azaz a kilátáshoz:

Ha az egyenletet ebben a formában már megadtuk, akkor nem kell elvégeznie az első lépést.) A lényeg az, hogy helyesen határozzuk meg az összes együtthatót, de, bÉs c.

A másodfokú egyenlet gyökereinek megkeresésére szolgáló képlet így néz ki:

A gyökjel alatti kifejezést ún diszkriminatív. De róla alább bővebben. Amint látja, az x megtalálásához használjuk csak a, b és c. Azok. együtthatók a másodfokú egyenletből. Csak óvatosan cserélje ki az értékeket a, b és c ebbe a képletbe és számolj. Helyettes a jeleiddel! Például az egyenletben:

de =1; b = 3; c= -4. Itt írjuk:

A példa majdnem megoldva:

Ez a válasz.

Minden nagyon egyszerű. És mit gondolsz, nem tévedhetsz? Hát igen, hogyan...

A leggyakoribb hibák az értékek összetévesztése a, b és c. Vagy inkább nem a jeleikkel (hol van itt összetéveszteni?), hanem a helyettesítéssel negatív értékeket a gyökerek kiszámításának képletébe. Itt a képlet részletes nyilvántartása adott számokkal menthető. Ha problémák vannak a számításokkal, akkor csináld!

Tegyük fel, hogy meg kell oldanunk a következő példát:

Itt a = -6; b = -5; c = -1

Tegyük fel, hogy tudja, hogy az első alkalommal ritkán kap választ.

Nos, ne légy lusta. 30 másodpercet vesz igénybe egy extra sor beírása és a hibák száma erősen csökkenni fog. Tehát részletesen írjuk, minden zárójellel és jellel:

Hihetetlenül nehéznek tűnik ilyen gondosan festeni. De csak úgy tűnik. Próbáld ki. Nos, vagy válassz. Melyik a jobb, gyors vagy jobb? Ráadásul boldoggá teszlek. Egy idő után már nem kell mindent olyan gondosan festeni. Csak úgy fog kiderülni. Különösen, ha gyakorlati technikákat alkalmaz, amelyeket alább ismertetünk. Ez a gonosz példa egy csomó mínuszokkal könnyen és hiba nélkül megoldható!

De gyakran a másodfokú egyenletek kissé eltérően néznek ki. Például így:

Tudtad?) Igen! Ez hiányos másodfokú egyenletek.

Nem teljes másodfokú egyenletek megoldása.

Az általános képlettel is megoldhatók. Csak helyesen kell kitalálnia, hogy mi egyenlő itt a, b és c.

Megvalósult? Az első példában a = 1; b = -4; de c? Egyáltalán nem létezik! Hát igen, ez így van. A matematikában ez azt jelenti c = 0 ! Ez minden. Helyettesítsd be a nullát a képletbe helyette c,és minden sikerülni fog nekünk. Hasonló a helyzet a második példával is. Csak nulla nincs itt tól től, de b !

De a nem teljes másodfokú egyenletek sokkal könnyebben megoldhatók. Mindenféle képlet nélkül. Fontolja meg az elsőt hiányos egyenlet. Mit lehet tenni a bal oldalon? Az X-et kiveheti a zárójelből! Vegyük ki.

És mi van belőle? És az, hogy a szorzat akkor és csak akkor egyenlő nullával, ha bármelyik tényező nulla! Nem hiszed? Nos, akkor találj ki két nem nulla számot, amiket ha megszorozunk, akkor nullát adunk!
Nem működik? Valami...
Ezért bátran írhatjuk: x 1 = 0, x 2 = 4.

Minden. Ezek lesznek az egyenletünk gyökerei. Mindkettő passzol. Ha bármelyiket behelyettesítjük az eredeti egyenletbe, akkor a helyes azonosságot 0 = 0 kapjuk. Mint látható, a megoldás sokkal egyszerűbb, mint az általános képlet. Megjegyzem egyébként, hogy melyik X lesz az első, és melyik a második - ez teljesen közömbös. Könnyű sorrendben írni x 1- amelyik kevesebb x 2- ami több.

A második egyenlet is könnyen megoldható. 9-et mozgunk a jobb oldalra. Kapunk:

Marad a gyökér kivonása 9-ből, és ennyi. Kap:

két gyökér is . x 1 = -3, x 2 = 3.

Így oldható meg az összes hiányos másodfokú egyenlet. Vagy úgy, hogy kiveszi x-et a zárójelből, vagy egyszerű átvitel számok jobbra, majd a gyökérkivonás.
Rendkívül nehéz összekeverni ezeket a módszereket. Egyszerűen azért, mert az első esetben ki kell húzni a gyökeret az X-ből, ami valahogy érthetetlen, a második esetben pedig nincs mit kivenni a zárójelekből ...

Megkülönböztető. Diszkrimináns képlet.

Varázsszó diszkriminatív ! Ritka középiskolás diák nem hallotta ezt a szót! A „dönts a megkülönböztetőn keresztül” kifejezés megnyugtató és megnyugtató. Mert nem kell várni a diszkrimináló trükkjére! Kezelése egyszerű és problémamentes.) A leginkább arra emlékeztetlek általános képlet megoldásokért Bármi másodfokú egyenletek:

A gyökjel alatti kifejezést diszkriminánsnak nevezzük. A diszkriminánst általában betűvel jelöljük D. Diszkrimináns képlet:

D = b 2-4ac

És mi olyan különleges ebben a kifejezésben? Miért érdemel különleges nevet? Mit a diszkrimináns jelentése? Végül -b, vagy 2a ebben a képletben nem neveznek konkrétan ... Betűket és betűket.

A lényeg ez. Másodfokú egyenlet megoldásakor ezzel a képlettel lehetséges csak három eset.

1. A diszkrimináns pozitív. Ez azt jelenti, hogy kivonhatja belőle a gyökeret. Az egy másik kérdés, hogy a gyökeret jól vagy rosszul kinyerték-e ki. Az a fontos, hogy elvileg mit nyernek ki. Ekkor a másodfokú egyenletnek két gyöke van. Két különböző megoldás.

2. A diszkrimináns nulla. Akkor van egy megoldás. Mivel a nulla összeadása vagy kivonása a számlálóban nem változtat semmit. Szigorúan véve ez nem egyetlen gyökér, hanem két egyforma. De egyszerűsített változatban szokás beszélni egy megoldás.

3. A diszkrimináns negatív. A negatív szám nem veszi fel a négyzetgyököt. Hát rendben. Ez azt jelenti, hogy nincsenek megoldások.

Hogy őszinte legyek, at egyszerű megoldás másodfokú egyenletek esetén a diszkrimináns fogalma nem különösebben szükséges. A képletben behelyettesítjük az együtthatók értékeit, és figyelembe vesszük. Ott minden kiderül magától, és két gyökér, meg egy, és nem egy. Több megoldásnál azonban nehéz feladatok, anélkül, hogy tudná jelentés és diszkrimináns képlet nem elég. Különösen - a paraméterekkel rendelkező egyenletekben. Az ilyen egyenletek műrepülés a GIA és az egységes államvizsgához!)

Így, hogyan kell megoldani a másodfokú egyenleteket az emlékezett diszkrimináns révén. Vagy tanult, ami szintén nem rossz.) Tudod, hogyan kell helyesen azonosítani a, b és c. Tudod hogyan gondosan cserélje be őket a gyökérképletbe és gondosan számolja meg az eredményt. Megértetted, hogy itt a kulcsszó: gondosan?

Most vegye figyelembe azokat a gyakorlati technikákat, amelyek drámaian csökkentik a hibák számát. Pont azokat, amelyek a figyelmetlenségből fakadnak... Amiért aztán fájdalmas és sértő...

Első fogadás . Ne légy lusta, mielőtt megold egy másodfokú egyenletet, hogy szabványos formába hozza. Mit is jelent ez?
Tegyük fel, hogy bármilyen átalakítás után a következő egyenletet kapjuk:

Ne rohanjon megírni a gyökerek képletét! Szinte biztosan összekevered az esélyeket a, b és c.Építsd fel helyesen a példát. Először x négyzet, majd négyzet nélkül, majd szabad tag. Mint ez:

És még egyszer: ne rohanjon! Az x négyzet előtti mínusz nagyon felzaklathat. Elfelejteni könnyű... Szabadulj meg a mínusztól. Hogyan? Igen, ahogy az előző téma is tanította! Az egész egyenletet meg kell szoroznunk -1-gyel. Kapunk:

És most nyugodtan felírhatja a gyökök képletét, kiszámíthatja a diszkriminánst és kiegészítheti a példát. Döntse el egyedül. A 2-es és a -1-es gyökökhöz kell jutnia.

Második fogadás. Ellenőrizze a gyökereit! Vieta tétele szerint. Ne aggódj, mindent elmagyarázok! Ellenőrzés utolsó dolog az egyenlet. Azok. az, amivel felírtuk a gyökképletet. Ha (mint ebben a példában) az együttható a = 1, ellenőrizze a gyökereket könnyen. Elég megsokszorozni őket. Szabad termet kellene kapnod, pl. esetünkben -2. Figyelj, ne 2, hanem -2! ingyenes tag a jeleddel . Ha nem sikerült, az azt jelenti, hogy már elrontották valahol. Keressen hibát.

Ha sikerült, össze kell hajtania a gyökereket. Utolsó és utolsó ellenőrzés. Arány kellene b tól től szemben jel. Esetünkben -1+2 = +1. Egy együttható b, amely az x előtt van, egyenlő -1-gyel. Szóval minden korrekt!
Kár, hogy csak olyan példáknál ilyen egyszerű, ahol x négyzet tiszta, együtthatóval a = 1. De legalább ellenőrizze az ilyen egyenleteket! Minden kevesebb hiba akarat.

Fogadás harmadik . Ha az egyenletednek törtegyütthatói vannak, szabadulj meg a törtektől! Szorozzuk meg az egyenletet a közös nevezővel a „Hogyan oldjunk meg egyenleteket? Identitástranszformációk” című leckében leírtak szerint. Ha törtekkel dolgozik, a hibák valamilyen oknál fogva mászni ...

Amúgy megígértem egy gonosz példát egy rakás mínuszos leegyszerűsítés végett. Kérem! Itt van.

Annak érdekében, hogy ne keveredjünk össze a mínuszokban, megszorozzuk az egyenletet -1-gyel. Kapunk:

Ez minden! Dönteni szórakoztató!

Tehát ismételjük a témát.

Gyakorlati tippek:

1. Megoldás előtt a másodfokú egyenletet a szabványos alakba hozzuk, felépítjük jobb.

2. Ha a négyzetben az x előtt van negatív együttható, akkor azt úgy szűrjük ki, hogy a teljes egyenletet -1-gyel megszorozzuk.

3. Ha az együtthatók törtek, akkor a törteket úgy távolítjuk el, hogy a teljes egyenletet megszorozzuk a megfelelő tényezővel.

4. Ha x négyzet tiszta, akkor az együttható egyenlő eggyel, a megoldás könnyen ellenőrizhető Vieta tételével. Csináld!

Most dönthetsz.)

Egyenletek megoldása:

8x 2 - 6x + 1 = 0

x 2 + 3x + 8 = 0

x 2 - 4x + 4 = 0

(x+1) 2 + x + 1 = (x+1) (x+2)

Válaszok (rendetlenségben):

x 1 = 0
x 2 = 5

x 1,2 =2

x 1 = 2
x 2 \u003d -0,5

x - tetszőleges szám

x 1 = -3
x 2 = 3

nincsenek megoldások

x 1 = 0,25
x 2 \u003d 0,5

Minden passzol? Bírság! A másodfokú egyenletek nem a tiéd fejfájás. Az első három kiderült, de a többi nem? Akkor a probléma nem a másodfokú egyenletekben van. A probléma az egyenletek azonos transzformációiban van. Nézd meg a linket, hasznos.

Nem egészen működik? Vagy egyáltalán nem működik? Akkor segítségedre lesz az 555. szakasz, ahol ezek a példák csontok szerint vannak rendezve. Megjelenítés fő- hibák a megoldásban. Természetesen a használatról is szó van azonos átalakulások különböző egyenletek megoldásában. Sokat segít!

Ha tetszik ez az oldal...

Egyébként van még néhány érdekes oldalam az Ön számára.)

Gyakorolhatja a példák megoldását, és megtudhatja a szintet. Tesztelés azonnali ellenőrzéssel. Tanulás – érdeklődéssel!)

függvényekkel, származékokkal ismerkedhet meg.

”, azaz elsőfokú egyenletek. Ebben a leckében megvizsgáljuk mi az a másodfokú egyenletés hogyan kell megoldani.

Mi az a másodfokú egyenlet

Fontos!

Az egyenlet mértékét az ismeretlen legmagasabb foka határozza meg.

Ha az ismeretlen maximális mértéke „2”, akkor van egy másodfokú egyenlete.

Példák másodfokú egyenletekre

  • 5x2 - 14x + 17 = 0
  • −x 2 + x +
    1
    3
    = 0
  • x2 + 0,25x = 0
  • x 2 − 8 = 0

Fontos! A másodfokú egyenlet általános formája így néz ki:

A x 2 + b x + c = 0

"a", "b" és "c" - adott számok.
  • "a" - az első vagy vezető együttható;
  • "b" - a második együttható;
  • "c" egy ingyenes tag.

Az "a", "b" és "c" megtalálásához össze kell hasonlítania az egyenletet az "ax 2 + bx + c \u003d 0" másodfokú egyenlet általános formájával.

Gyakoroljuk az "a", "b" és "c" együtthatók meghatározását másodfokú egyenletekben.

5x2 - 14x + 17 = 0 −7x 2 − 13x + 8 = 0 −x 2 + x +
Az egyenlet Esély
  • a=5
  • b = −14
  • c = 17
  • a = −7
  • b = −13
  • c = 8
1
3
= 0
  • a = -1
  • b = 1
  • c =
    1
    3
x2 + 0,25x = 0
  • a = 1
  • b = 0,25
  • c = 0
x 2 − 8 = 0
  • a = 1
  • b = 0
  • c = −8

Hogyan lehet másodfokú egyenleteket megoldani

nem úgy mint lineáris egyenletek másodfokú egyenletek megoldására egy speciális képlet a gyökerek megtalálásához.

Emlékezik!

Másodfokú egyenlet megoldásához a következőkre lesz szüksége:

  • hozza a másodfokú egyenletet Általános nézet"ax 2 + bx + c = 0". Vagyis csak a "0" maradjon a jobb oldalon;
  • használja a képletet a gyökerekhez:

Használjunk egy példát annak kiderítésére, hogyan alkalmazzuk a képletet egy másodfokú egyenlet gyökereinek megkeresésére. Oldjuk meg a másodfokú egyenletet.

X 2 - 3x - 4 = 0


Az "x 2 - 3x - 4 = 0" egyenletet már az "ax 2 + bx + c = 0" általános alakra redukáltuk, és nem igényel további egyszerűsítéseket. A megoldáshoz csak jelentkeznünk kell képlet a másodfokú egyenlet gyökereinek megtalálásához.

Határozzuk meg ennek az egyenletnek az "a", "b" és "c" együtthatóit.


x 1;2 =
x 1;2 =
x 1;2 =
x 1;2 =

Segítségével bármilyen másodfokú egyenlet megoldható.

Az "x 1; 2 \u003d" képletben a gyökérkifejezés gyakran lecserélődik
"b 2 − 4ac" a "D" betűre, és megkülönböztetőnek nevezik. A diszkrimináns fogalmát részletesebben a „Mi a diszkrimináns” című leckében tárgyaljuk.

Vegyünk egy másik példát a másodfokú egyenletre.

x 2 + 9 + x = 7x

Ebben a formában meglehetősen nehéz meghatározni az "a", "b" és "c" együtthatókat. Először hozzuk az egyenletet az "ax 2 + bx + c \u003d 0" általános alakba.

X 2 + 9 + x = 7x
x 2 + 9 + x − 7x = 0
x2 + 9 - 6x = 0
x 2 − 6x + 9 = 0

Most már használhatja a képletet a gyökerekhez.

X 1; 2 =
x 1;2 =
x 1;2 =
x 1;2 =
x=

6
2

x=3
Válasz: x = 3

Vannak esetek, amikor a másodfokú egyenletekben nincs gyök. Ez a helyzet akkor fordul elő, ha a gyökér alatti képletben negatív szám jelenik meg.

Betöltés...Betöltés...