A másodfokú egyenletek nem egyenlők nullával. Másodfokú egyenletek

Éppen. Képletek és világos egyszerű szabályok szerint. Az első szakaszban

szükséges az adott egyenletet standard formára hozni, i.e. a kilátáshoz:

Ha az egyenlet ebben a formában már megadva van, akkor nem kell elvégeznie az első lépést. A legfontosabb a helyes

határozza meg az összes együtthatót a, bés c.

Képlet a másodfokú egyenlet gyökereinek megkeresésére.

A gyökjel alatti kifejezést ún diszkriminatív . Amint látja, az x megtalálásához mi

használat csak a, b és c. Azok. odds from másodfokú egyenlet. Csak óvatosan helyezze be

értékeket a, b és c ebbe a képletbe és számolj. Cserélje le az övék jelek!

például, az egyenletben:

a =1; b = 3; c = -4.

Cserélje be az értékeket, és írja be:

A példa majdnem megoldva:

Ez a válasz.

A leggyakoribb hibák az értékek összetévesztése a, bés val vel. Inkább helyettesítéssel

negatív értékeket a gyökérszámítási képletbe. Itt a részletes képlet ment

konkrét számokkal. Ha gond van a számítással, tedd meg!

Tegyük fel, hogy meg kell oldanunk a következő példát:

Itt a = -6; b = -5; c = -1

Mindent részletesen, gondosan festünk, anélkül, hogy bármit is kihagynánk, minden jellel és zárójellel:

A másodfokú egyenletek gyakran kissé eltérően néznek ki. Például így:

Most vegye figyelembe azokat a gyakorlati technikákat, amelyek drámaian csökkentik a hibák számát.

Első fogadás. Előtte ne légy lusta másodfokú egyenlet megoldása hozza szabványos formába.

Mit is jelent ez?

Tegyük fel, hogy bármilyen átalakítás után a következő egyenletet kapjuk:

Ne rohanjon megírni a gyökerek képletét! Szinte biztosan összekevered az esélyeket a, b és c.

Építsd fel helyesen a példát. Először x négyzet, majd négyzet nélkül, majd szabad tag. Mint ez:

Szabadulj meg a mínusztól. Hogyan? Az egész egyenletet meg kell szoroznunk -1-gyel. Kapunk:

És most nyugodtan felírhatja a gyökök képletét, kiszámíthatja a diszkriminánst és kiegészítheti a példát.

Döntse el egyedül. A 2-es és a -1-es gyökökhöz kell jutnia.

Második fogadás. Ellenőrizze a gyökereit! Által Vieta tétele.

A megadott másodfokú egyenletek megoldására, azaz. ha az együttható

x2+bx+c=0,

azutánx 1 x 2 =c

x1 +x2 =−b

Egy teljes másodfokú egyenlethez, amelyben a≠1:

x 2+bx+c=0,

osszuk el az egész egyenletet a:

ahol x 1és x 2 - az egyenlet gyökerei.

Fogadás harmadik. Ha az egyenletednek törtegyütthatói vannak, szabadulj meg a törtektől! Szorozni

egyenlet a közös nevezőre.

Következtetés. Gyakorlati tippek:

1. Megoldás előtt a másodfokú egyenletet a szabványos alakba hozzuk, felépítjük jobb.

2. Ha a négyzetben az x előtt negatív együttható van, akkor azt úgy szűrjük ki, hogy mindent megszorozunk

egyenletek -1.

3. Ha az együtthatók törtek, akkor a törteket úgy távolítjuk el, hogy a teljes egyenletet megszorozzuk a megfelelő

tényező.

4. Ha x négyzet tiszta, az együtthatója eggyel egyenlő, a megoldás könnyen ellenőrizhető

Képletek másodfokú egyenlet gyökére. A valódi, többszörös és összetett gyökerek eseteit vizsgáljuk. Négyzetes trinom tényezőezése. Geometriai értelmezés. Példák a gyökerek meghatározására és a faktorizációra.

Alapképletek

Tekintsük a másodfokú egyenletet:
(1) .
Másodfokú egyenlet gyökerei(1) a következő képletekkel határozzák meg:
; .
Ezeket a képleteket a következőképpen lehet kombinálni:
.
Ha a másodfokú egyenlet gyökei ismertek, akkor a másodfokú polinom a tényezők szorzataként ábrázolható (faktorált):
.

Továbbá feltételezzük, hogy ezek valós számok.
Fontolgat másodfokú egyenlet diszkriminánsa:
.
Ha a diszkrimináns pozitív, akkor az (1) másodfokú egyenletnek két különböző valós gyöke van:
; .
Ekkor a négyzetes trinomiális faktorizálása a következőképpen alakul:
.
Ha a diszkrimináns nulla, akkor az (1) másodfokú egyenletnek két többszörös (egyenlő) valós gyöke van:
.
Faktorizáció:
.
Ha a diszkrimináns negatív, akkor az (1) másodfokú egyenletnek két összetett konjugált gyöke van:
;
.
Itt van a képzeletbeli egység, ;
és a gyökerek valós és képzeletbeli részei:
; .
Azután

.

Grafikus értelmezés

Ha ábrázoljuk a függvényt
,
ami egy parabola, akkor a gráf tengellyel való metszéspontjai lesznek az egyenlet gyökei
.
Amikor , a gráf két pontban metszi az abszcissza tengelyt (tengelyt).
Amikor , a grafikon egy ponton érinti az x tengelyt.
Amikor , a grafikon nem keresztezi az x tengelyt.

Az alábbiakban példákat mutatunk be ilyen grafikonokra.

Hasznos képletek a másodfokú egyenlethez

(f.1) ;
(f.2) ;
(f.3) .

Másodfokú egyenlet gyökeinek képletének levezetése

Transzformációkat hajtunk végre és alkalmazzuk az (f.1) és (f.3) képleteket:




,
ahol
; .

Tehát megkaptuk a másodfokú polinom képletét a következő formában:
.
Ebből látható, hogy az egyenlet

órakor előadták
és .
Vagyis és a másodfokú egyenlet gyökerei
.

Példák másodfokú egyenlet gyökeinek meghatározására

1. példa


(1.1) .

Döntés


.
Az (1.1) egyenletünkkel összehasonlítva megtaláljuk az együtthatók értékeit:
.
A diszkrimináns megtalálása:
.
Mivel a diszkrimináns pozitív, az egyenletnek két valós gyökere van:
;
;
.

Innen megkapjuk a négyzetes trinom tényezőre bontását:

.

Az y = függvény grafikonja 2 x 2 + 7 x + 3 két pontban metszi az x tengelyt.

Ábrázoljuk a függvényt
.
Ennek a függvénynek a grafikonja egy parabola. Két pontban metszi az x tengelyt (tengelyt):
és .
Ezek a pontok az eredeti (1.1) egyenlet gyökerei.

Válasz

;
;
.

2. példa

Keresse meg a másodfokú egyenlet gyökereit:
(2.1) .

Döntés

A másodfokú egyenletet általános formában írjuk fel:
.
Az eredeti (2.1) egyenlettel összehasonlítva megtaláljuk az együtthatók értékeit:
.
A diszkrimináns megtalálása:
.
Mivel a diszkrimináns nulla, az egyenletnek két többszörös (egyenlő) gyöke van:
;
.

Ekkor a trinomiális faktorizálása a következőképpen alakul:
.

Az y = x függvény grafikonja 2-4 x + 4 egy ponton érinti az x tengelyt.

Ábrázoljuk a függvényt
.
Ennek a függvénynek a grafikonja egy parabola. Egy ponton érinti az x tengelyt (tengelyt):
.
Ez a pont az eredeti (2.1) egyenlet gyöke. Mivel ez a gyökér kétszeres tényező:
,
akkor az ilyen gyökeret többszörösnek nevezzük. Vagyis úgy gondolják, hogy két egyenlő gyökér van:
.

Válasz

;
.

3. példa

Keresse meg a másodfokú egyenlet gyökereit:
(3.1) .

Döntés

A másodfokú egyenletet általános formában írjuk fel:
(1) .
Írjuk át az eredeti (3.1) egyenletet:
.
Az (1)-el összehasonlítva megtaláljuk az együtthatók értékeit:
.
A diszkrimináns megtalálása:
.
A diszkrimináns negatív, . Ezért nincsenek valódi gyökerek.

Összetett gyökereket találhat:
;
;
.

Azután


.

A függvény grafikonja nem keresztezi az x tengelyt. Nincsenek igazi gyökerek.

Ábrázoljuk a függvényt
.
Ennek a függvénynek a grafikonja egy parabola. Nem keresztezi az abszcisszát (tengelyt). Ezért nincsenek valódi gyökerek.

Válasz

Nincsenek igazi gyökerek. Összetett gyökerek:
;
;
.

Másodfokú egyenlet – könnyen megoldható! *Továbbá a "KU" szövegben. Barátaim, úgy tűnik, hogy a matematikában ez könnyebb lehet, mint egy ilyen egyenlet megoldása. De valami azt súgta nekem, hogy sok embernek problémája van vele. Úgy döntöttem, megnézem, hány megjelenítést ad a Yandex kérésenként havonta. Íme, mi történt, nézze meg:


Mit jelent? Ez azt jelenti, hogy havonta körülbelül 70 ezren keresik ezt az információt, és most nyár van, és mi lesz a tanév során - kétszer annyi kérés lesz. Ez nem meglepő, hiszen azok a fiúk és lányok, akik már régen végeztek a vizsgára, keresik ezeket az információkat, és az iskolások is igyekeznek felfrissíteni az emlékezetüket.

Annak ellenére, hogy sok olyan oldal van, amely megmondja, hogyan kell megoldani ezt az egyenletet, úgy döntöttem, hogy én is hozzájárulok és közzéteszem az anyagot. Először is szeretném, ha látogatók érkeznének webhelyemre erre a kérésre; másodszor, más cikkekben, amikor a „KU” beszéd megjelenik, linket adok ehhez a cikkhez; harmadszor, kicsit többet mesélek a megoldásáról, mint amennyit más oldalakon szoktak mondani. Kezdjük el! A cikk tartalma:

A másodfokú egyenlet a következő alakú egyenlet:

ahol az a együtthatók,btetszőleges számokkal pedig a≠0-val.

Az iskolai tanfolyamon az anyagot a következő formában adják meg - az egyenletek három osztályra való felosztása feltételesen történik:

1. Legyen két gyökere.

2. * Csak egy gyökere van.

3. Nincsenek gyökerei. Itt érdemes megjegyezni, hogy nincsenek valódi gyökereik

Hogyan számítják ki a gyökereket? Éppen!

Kiszámoljuk a diszkriminánst. E „szörnyű” szó alatt egy nagyon egyszerű képlet rejlik:

A gyökérképletek a következők:

* Ezeket a képleteket fejből kell tudni.

Azonnal leírhatod és megoldhatod:

Példa:


1. Ha D > 0, akkor az egyenletnek két gyöke van.

2. Ha D = 0, akkor az egyenletnek egy gyöke van.

3. Ha D< 0, то уравнение не имеет действительных корней.

Nézzük az egyenletet:


Ilyenkor, amikor a diszkrimináns nulla, az iskolai kurzus azt mondja, hogy egy gyöket kapunk, itt kilencnek felel meg. Így van, így van, de...

Ez az ábrázolás némileg téves. Valójában két gyökere van. Igen, igen, ne lepődj meg, kiderül, hogy két egyenlő gyök, és hogy matematikailag pontosak legyünk, akkor két gyöket kell írni a válaszba:

x 1 = 3 x 2 = 3

De ez így van - egy kis kitérő. Az iskolában leírhatod és elmondhatod, hogy csak egy gyökér van.

Most a következő példa:


Mint tudjuk, a negatív szám gyökét nem vonjuk ki, így ebben az esetben nincs megoldás.

Ez az egész döntési folyamat.

Másodfokú függvény.

Így néz ki a megoldás geometriailag. Ennek megértése rendkívül fontos (a jövőben az egyik cikkben részletesen elemezzük a másodfokú egyenlőtlenség megoldását).

Ez az űrlap függvénye:

ahol x és y változók

a, b, c olyan számok, ahol a ≠ 0

A grafikon egy parabola:

Vagyis kiderül, hogy egy olyan másodfokú egyenlet megoldásával, ahol "y" egyenlő nullával, megtaláljuk a parabola és az x tengellyel való metszéspontjait. Ebből kettő lehet (a diszkrimináns pozitív), egy (a diszkrimináns nulla) vagy egy sem (a diszkrimináns negatív). Bővebben a másodfokú függvényről Megnézheti Inna Feldman cikke.

Vegye figyelembe a példákat:

1. példa: Döntse el 2x 2 +8 x–192=0

a=2 b=8 c= -192

D = b 2 –4ac = 8 2 –4∙2∙(–192) = 64+1536 = 1600

Válasz: x 1 = 8 x 2 = -12

* Azonnal eloszthatja az egyenlet bal és jobb oldalát 2-vel, vagyis egyszerűsítheti. A számítások egyszerűbbek lesznek.

2. példa: Döntsd el x2–22 x+121 = 0

a=1 b=-22 c=121

D = b 2 –4ac =(–22) 2 –4∙1∙121 = 484–484 = 0

Azt kaptuk, hogy x 1 \u003d 11 és x 2 \u003d 11

A válaszban megengedett az x = 11 beírása.

Válasz: x = 11

3. példa: Döntsd el x 2 –8x+72 = 0

a=1 b= -8 c=72

D = b 2 –4ac =(–8) 2 –4∙1∙72 = 64–288 = –224

A diszkrimináns negatív, valós számokban nincs megoldás.

Válasz: nincs megoldás

A diszkrimináns negatív. Van megoldás!

Itt az egyenlet megoldásáról lesz szó abban az esetben, ha negatív diszkriminánst kapunk. Tudsz valamit a komplex számokról? Nem részletezem itt, hogy miért és hol keletkeztek, és mi a konkrét szerepük és szükségességük a matematikában, ez egy nagy külön cikk témája.

A komplex szám fogalma.

Egy kis elmélet.

A z komplex szám alakja

z = a + bi

ahol a és b valós számok, ott az i az úgynevezett imaginárius egység.

a+bi EGY SZÁM, nem kiegészítés.

A képzeletbeli egység egyenlő mínusz egy gyökével:

Most nézzük meg az egyenletet:


Szerezzen két konjugált gyökeret.

Hiányos másodfokú egyenlet.

Tekintsünk speciális eseteket, amikor a "b" vagy "c" együttható nulla (vagy mindkettő nulla). Könnyen, megkülönböztetés nélkül megoldhatók.

1. eset. b = 0 együttható.

Az egyenlet a következő alakot ölti:

Alakítsuk át:

Példa:

4x 2 -16 = 0 => 4x 2 =16 => x 2 = 4 => x 1 = 2 x 2 = -2

2. eset. Együttható c = 0.

Az egyenlet a következő alakot ölti:

Átalakítás, faktorizálás:

*A szorzat akkor egyenlő nullával, ha legalább az egyik tényező nulla.

Példa:

9x2 –45x = 0 => 9x (x-5) =0 => x = 0 vagy x-5 =0

x 1 = 0 x 2 = 5

3. eset: b = 0 és c = 0 együtthatók.

Itt jól látható, hogy az egyenlet megoldása mindig x = 0 lesz.

Az együtthatók hasznos tulajdonságai és mintái.

Vannak olyan tulajdonságok, amelyek lehetővé teszik a nagy együtthatójú egyenletek megoldását.

ax 2 + bx+ c=0 egyenlőség

a + b+ c = 0, azután

— ha az egyenlet együtthatóira ax 2 + bx+ c=0 egyenlőség

a+ =-velb, azután

Ezek a tulajdonságok segítenek megoldani egy bizonyos típusú egyenletet.

1. példa: 5001 x 2 –4995 x – 6=0

Az együtthatók összege 5001+( 4995)+( 6) = 0, tehát

2. példa: 2501 x 2 +2507 x+6=0

Egyenlőség a+ =-velb, eszközök

Az együtthatók szabályszerűségei.

1. Ha az ax 2 + bx + c \u003d 0 egyenletben a "b" együttható (a 2 +1), és a "c" együttható számszerűen egyenlő az "a" együtthatóval, akkor a gyökei:

ax 2 + (a 2 +1) ∙ x + a \u003d 0 \u003d\u003e x 1 \u003d -a x 2 \u003d -1 / a.

Példa. Tekintsük a 6x 2 +37x+6 = 0 egyenletet.

x 1 \u003d -6 x 2 \u003d -1/6.

2. Ha az ax 2 - bx + c \u003d 0 egyenletben a "b" együttható (a 2 +1), és a "c" együttható számszerűen egyenlő az "a" együtthatóval, akkor a gyökei:

ax 2 - (a 2 + 1) ∙ x + a \u003d 0 \u003d\u003e x 1 \u003d a x 2 \u003d 1 / a.

Példa. Tekintsük a 15x 2 –226x +15 = 0 egyenletet.

x 1 = 15 x 2 = 1/15.

3. Ha az egyenletben ax 2 + bx - c = 0 "b" együttható egyenlő (a 2 – 1), és a „c” együttható számszerűen egyenlő az "a" együtthatóval, akkor a gyökerei egyenlők

ax 2 + (a 2 -1) ∙ x - a \u003d 0 \u003d\u003e x 1 \u003d - a x 2 \u003d 1 / a.

Példa. Tekintsük a 17x 2 + 288x - 17 = 0 egyenletet.

x 1 \u003d - 17 x 2 = 1/17.

4. Ha az ax 2 - bx - c \u003d 0 egyenletben a "b" együttható egyenlő (a 2 - 1), és a c együttható számszerűen egyenlő az "a" együtthatóval, akkor a gyökei:

ax 2 - (a 2 -1) ∙ x - a \u003d 0 \u003d\u003e x 1 \u003d a x 2 \u003d - 1 / a.

Példa. Tekintsük a 10x2 - 99x -10 = 0 egyenletet.

x 1 \u003d 10 x 2 \u003d - 1/10

Vieta tétele.

Vieta tétele a híres francia matematikusról, Francois Vietáról kapta a nevét. Vieta tételével kifejezhető egy tetszőleges KU gyökeinek összege és szorzata együtthatóival.

45 = 1∙45 45 = 3∙15 45 = 5∙9.

Összegezve, a 14-es szám csak 5-öt és 9-et ad. Ezek a gyökerek. Egy bizonyos készség birtokában a bemutatott tétel segítségével számos másodfokú egyenletet azonnal szóban megoldhat.

Vieta tétele ráadásul. kényelmes, mert a másodfokú egyenlet szokásos módon (a diszkriminánson keresztül) történő megoldása után a kapott gyökök ellenőrizhetők. Azt javaslom, hogy ezt mindig csináld.

ÁTVITELI MÓDSZER

Ezzel a módszerrel az "a" együtthatót megszorozzák a szabad taggal, mintha "átviszik" rá, ezért ún. átviteli mód. Ezt a módszert akkor alkalmazzuk, ha egy egyenlet gyökereit könnyű megtalálni Vieta tételével, és ami a legfontosabb, ha a diszkrimináns egy pontos négyzet.

Ha egy a± b+c≠ 0, akkor az átviteli technikát használják, például:

2x 2 – 11x+ 5 = 0 (1) => x 2 – 11x+ 10 = 0 (2)

A (2) egyenletben szereplő Vieta-tétel szerint könnyű meghatározni, hogy x 1 \u003d 10 x 2 \u003d 1

Az egyenlet kapott gyökeit el kell osztani 2-vel (mivel a kettőt x 2-ből „dobták”), azt kapjuk

x 1 \u003d 5 x 2 = 0,5.

Mi az indoklás? Nézze meg, mi történik.

Az (1) és (2) egyenlet diszkriminatív elemei a következők:

Ha megnézi az egyenletek gyökereit, akkor csak különböző nevezőket kapunk, és az eredmény pontosan az x 2 együtthatótól függ:


A második (módosított) gyökerek 2-szer nagyobbak.

Ezért az eredményt elosztjuk 2-vel.

*Ha hármat dobunk, akkor az eredményt elosztjuk 3-mal, és így tovább.

Válasz: x 1 = 5 x 2 = 0,5

négyzetméter ur-ie és a vizsga.

A fontosságáról röviden elmondom - gyorsan és gondolkodás nélkül KELL DÖNTENI, fejből kell tudni a gyökerek és a megkülönböztető képleteit. A USE feladatok részét képező feladatok közül sok egy másodfokú egyenlet megoldásához vezet (beleértve a geometriaiakat is).

Mit érdemes megjegyezni!

1. Az egyenlet alakja lehet "implicit". Például a következő bejegyzés lehetséges:

15+ 9x 2 - 45x = 0 vagy 15x + 42 + 9x 2 - 45x = 0 vagy 15 -5x + 10x 2 = 0.

Normál formába kell vinnie (hogy ne keveredjen össze a megoldás során).

2. Ne feledje, hogy x egy ismeretlen érték, és bármely más betűvel jelölhető - t, q, p, h és mások.

Ez a téma elsőre bonyolultnak tűnhet a sok nem túl egyszerű képlet miatt. Nemcsak maguknak a másodfokú egyenleteknek vannak hosszú bejegyzései, hanem a gyökerek is megtalálhatók a diszkriminánson keresztül. Összesen három új képlet van. Nem könnyű megjegyezni. Ez csak az ilyen egyenletek gyakori megoldása után lehetséges. Ezután az összes képlet magától emlékezni fog.

A másodfokú egyenlet általános képe

Itt az explicit jelölésüket javasoljuk, amikor először a legnagyobb fokozatot írják le, majd - csökkenő sorrendben. Gyakran vannak olyan helyzetek, amikor a kifejezések eltérnek egymástól. Ekkor érdemes átírni az egyenletet a változó mértéke szerinti csökkenő sorrendbe.

Vezessük be a jelölést. Ezeket az alábbi táblázat mutatja be.

Ha elfogadjuk ezeket a jelöléseket, akkor minden másodfokú egyenlet a következő jelölésre redukálódik.

Ráadásul az együttható a ≠ 0. Jelöljük ezt a képletet egyes számmal.

Amikor az egyenlet adott, nem világos, hogy hány gyök lesz a válaszban. Mert a három lehetőség egyike mindig lehetséges:

  • a megoldásnak két gyökere lesz;
  • a válasz egy szám lesz;
  • Az egyenletnek egyáltalán nincs gyökere.

És bár a döntés nem jár a végére, nehéz megérteni, hogy egy adott esetben melyik opció esik ki.

A másodfokú egyenletek rekordjainak típusai

A feladatoknak különböző bejegyzései lehetnek. Nem mindig úgy néznek ki, mint a másodfokú egyenlet általános képlete. Néha hiányozni fog néhány kifejezés. A fentebb leírtak a teljes egyenlet. Ha eltávolítja belőle a második vagy harmadik kifejezést, akkor valami mást kap. Ezeket a rekordokat másodfokú egyenleteknek is nevezik, csak hiányosak.

Ezenkívül csak azok a kifejezések tűnhetnek el, amelyekre a „b” és „c” együtthatók. Az "a" szám semmilyen körülmények között nem lehet egyenlő nullával. Mert ebben az esetben a képlet lineáris egyenletté alakul. Az egyenletek hiányos alakjának képletei a következők lesznek:

Tehát csak két típusa van, a teljeseken kívül vannak hiányos másodfokú egyenletek is. Legyen az első képlet kettes, a második pedig három.

A diszkrimináns és a gyökök számának az értékétől való függése

Ezt a számot ismerni kell az egyenlet gyökereinek kiszámításához. Mindig ki lehet számítani, függetlenül attól, hogy milyen képletű a másodfokú egyenlet. A diszkrimináns kiszámításához az alább írt egyenlőséget kell használni, amely négyes számmal rendelkezik.

Miután behelyettesítette az együtthatók értékét ebbe a képletbe, különböző előjelű számokat kaphat. Ha a válasz igen, akkor az egyenletre adott válasz két különböző gyökből áll. Negatív szám esetén a másodfokú egyenlet gyökei hiányoznak. Ha egyenlő nullával, a válasz egy lesz.

Hogyan oldható meg a teljes másodfokú egyenlet?

Valójában ennek a kérdésnek a vizsgálata már megkezdődött. Mert először meg kell találni a diszkriminánst. Miután tisztáztuk, hogy a másodfokú egyenletnek vannak gyökei, és a számuk ismert, a változók képleteit kell használni. Ha két gyökér van, akkor ilyen képletet kell alkalmaznia.

Mivel a „±” jelet tartalmazza, két érték lesz. A négyzetgyök jel alatti kifejezés a diszkrimináns. Ezért a képlet más módon is átírható.

Forma öt. Ugyanabból a rekordból látható, hogy ha a diszkrimináns nulla, akkor mindkét gyök ugyanazt az értéket veszi fel.

Ha a másodfokú egyenletek megoldását még nem dolgozták ki, akkor jobb, ha felírja az összes együttható értékét a diszkrimináns és változó képletek alkalmazása előtt. Később ez a pillanat nem okoz nehézségeket. De a legelején zavar van.

Hogyan oldható meg egy nem teljes másodfokú egyenlet?

Itt minden sokkal egyszerűbb. Még nincs szükség további képletekre. És nem lesz szükséged azokra, amelyeket már megírtak a megkülönböztetőnek és az ismeretlennek.

Először nézzük meg a kettes számú hiányos egyenletet. Ebben az egyenlőségben az ismeretlen értéket ki kell venni a zárójelből, és megoldani a lineáris egyenletet, amely a zárójelben marad. A válasznak két gyökere lesz. Az első szükségszerűen egyenlő nullával, mert van egy tényező, amely magából a változóból áll. A másodikat egy lineáris egyenlet megoldásával kapjuk.

A hármas számú hiányos egyenletet úgy oldjuk meg, hogy a számot az egyenlet bal oldaláról jobbra helyezzük át. Ezután el kell osztania az ismeretlen előtti együtthatóval. Csak a négyzetgyök kinyerése marad hátra, és ne felejtse el kétszer leírni ellentétes előjelekkel.

Az alábbiakban felsorolunk néhány műveletet, amelyek segítenek megtanulni, hogyan kell megoldani mindenféle másodfokú egyenletté alakuló egyenlőséget. Segítenek a tanulónak elkerülni a figyelmetlenségből fakadó hibákat. Ezek a hiányosságok a rossz osztályzatok okai a kiterjedt "Negyedik egyenletek (8. osztály)" témakör tanulmányozása során. Ezt követően ezeket a műveleteket nem kell folyamatosan végrehajtani. Mert lesz egy stabil szokás.

  • Először meg kell írni az egyenletet szabványos formában. Vagyis először a változó legnagyobb fokával rendelkező tagot, majd - fokszám és utolsó nélkül - csak egy számot.
  • Ha egy mínusz jelenik meg az "a" együttható előtt, akkor ez megnehezítheti a kezdő másodfokú egyenletek tanulmányozását. Jobb megszabadulni tőle. Ebből a célból minden egyenlőséget meg kell szorozni "-1"-gyel. Ez azt jelenti, hogy minden kifejezés előjelét az ellenkezőjére váltja.
  • Ugyanígy ajánlott megszabadulni a frakcióktól. Egyszerűen szorozza meg az egyenletet a megfelelő tényezővel, hogy a nevezők kialuljanak.

Példák

A következő másodfokú egyenleteket kell megoldani:

x 2 - 7x \u003d 0;

15 - 2x - x 2 \u003d 0;

x 2 + 8 + 3x = 0;

12x + x 2 + 36 = 0;

(x+1) 2 + x + 1 = (x+1) (x+2).

Az első egyenlet: x 2 - 7x \u003d 0. Hiányos, ezért a kettes számú képletnél leírtak szerint van megoldva.

A zárójelezés után kiderül: x (x - 7) \u003d 0.

Az első gyök a következő értéket veszi fel: x 1 \u003d 0. A második a lineáris egyenletből lesz megtalálható: x - 7 \u003d 0. Könnyen belátható, hogy x 2 \u003d 7.

Második egyenlet: 5x2 + 30 = 0. Ismét hiányos. Csak a harmadik képletnél leírtak szerint van megoldva.

Miután a 30-at átvittük az egyenlet jobb oldalára: 5x 2 = 30. Most el kell osztani 5-tel. Kiderül: x 2 = 6. A válaszok számok lesznek: x 1 = √6, x 2 = - √ 6.

Harmadik egyenlet: 15 - 2x - x 2 \u003d 0. Itt és lent a másodfokú egyenletek megoldása úgy kezdődik, hogy átírjuk őket egy szabványos formába: - x 2 - 2x + 15 \u003d 0. Most itt az ideje, hogy a másodikat használjuk hasznos tipp, és mindent szorozzon meg mínusz eggyel. Kiderül, hogy x 2 + 2x - 15 \u003d 0. A negyedik képlet szerint ki kell számítani a diszkriminánst: D \u003d 2 2 - 4 * (- 15) \u003d 4 + 60 \u003d 64. pozitív szám. A fent elmondottakból kiderül, hogy az egyenletnek két gyökere van. Ezeket az ötödik képlet szerint kell kiszámítani. Eszerint kiderül, hogy x \u003d (-2 ± √64) / 2 \u003d (-2 ± 8) / 2. Ezután x 1 \u003d 3, x 2 \u003d - 5.

A negyedik x 2 + 8 + 3x \u003d 0 egyenletet a következőre alakítjuk: x 2 + 3x + 8 \u003d 0. A diszkriminánsa egyenlő ezzel az értékkel: -23. Mivel ez a szám negatív, a feladat válasza a következő bejegyzés lesz: "Nincsenek gyökerek."

Az ötödik 12x + x 2 + 36 = 0 egyenletet a következőképpen kell átírni: x 2 + 12x + 36 = 0. A diszkrimináns képletének alkalmazása után a nulla számot kapjuk. Ez azt jelenti, hogy egy gyökere lesz, nevezetesen: x \u003d -12 / (2 * 1) \u003d -6.

A hatodik egyenlet (x + 1) 2 + x + 1 = (x + 1) (x + 2) transzformációkat igényel, amelyek abból állnak, hogy hasonló kifejezéseket kell hozni a zárójelek kinyitása előtt. Az első helyett egy ilyen kifejezés lesz: x 2 + 2x + 1. Az egyenlőség után ez a bejegyzés jelenik meg: x 2 + 3x + 2. A hasonló tagok megszámlálása után az egyenlet a következő formában jelenik meg: x 2 - x \u003d 0. Hiányos lett. Hasonlót már egy kicsit magasabbnak tekintettek. Ennek gyökerei a 0 és az 1 számok lesznek.

A modern társadalomban a négyzetes változót tartalmazó egyenletekkel való operáció képessége számos tevékenységi területen hasznos lehet, és a gyakorlatban széles körben alkalmazzák a tudományos és műszaki fejlesztésekben. Ezt a tengeri és folyami hajók, repülőgépek és rakéták tervezése bizonyítja. Az ilyen számítások segítségével meghatározzák a különféle testek, köztük az űrobjektumok mozgásának pályáit. A másodfokú egyenletek megoldására szolgáló példák nemcsak a gazdasági előrejelzésekben, az épületek tervezésében és kivitelezésében, hanem a leghétköznapibb körülmények között is használatosak. Szükség lehet rájuk kempingezéskor, sportrendezvényeken, üzletekben vásárláskor és más nagyon gyakori helyzetekben.

Bontsuk fel a kifejezést komponenstényezőkre

Az egyenlet mértékét a változó fokszámának maximális értéke határozza meg, amelyet az adott kifejezés tartalmaz. Ha egyenlő 2-vel, akkor egy ilyen egyenletet másodfokú egyenletnek nevezünk.

Ha a formulák nyelvén beszélünk, akkor ezek a kifejezések, akárhogy is néznek ki, mindig formába hozhatók, amikor a kifejezés bal oldala három tagból áll. Köztük: ax 2 (vagyis változó négyzetben az együtthatójával), bx (együtthatós négyzet nélküli ismeretlen) és c (szabad komponens, azaz közönséges szám). Mindez a jobb oldalon egyenlő 0-val. Abban az esetben, ha egy ilyen polinomnak az ax 2 kivételével nincs benne egyik alkotótagja, hiányos másodfokú egyenletnek nevezzük. Elsőként olyan problémák megoldására érdemes példákat venni, amelyekben a változók értékét nem nehéz megtalálni.

Ha a kifejezés úgy néz ki, hogy a kifejezés jobb oldalán két tag van, pontosabban az ax 2 és a bx, akkor az x-et a legegyszerűbb a változó zárójelbe helyezésével találni. Most az egyenletünk így fog kinézni: x(ax+b). Továbbá nyilvánvalóvá válik, hogy vagy x=0, vagy a probléma a következő kifejezésből való változó keresésére redukálódik: ax+b=0. Ezt a szorzás egyik tulajdonsága diktálja. A szabály szerint két tényező szorzata csak akkor 0, ha az egyik nulla.

Példa

x=0 vagy 8x - 3 = 0

Ennek eredményeként az egyenlet két gyökét kapjuk: 0 és 0,375.

Az ilyen egyenletek leírhatják azoknak a testeknek a gravitáció hatására történő mozgását, amelyek egy bizonyos ponttól indultak el, amelyet origónak vettünk. Itt a matematikai jelölés a következő alakot ölti: y = v 0 t + gt 2 /2. A szükséges értékek behelyettesítésével, a jobb oldal 0-val való egyenlővé tételével és az esetleges ismeretlenek megtalálásával megtudhatja a test felemelkedésétől a leesésig eltelt időt, valamint sok más mennyiséget is. De erről később beszélünk.

Kifejezés faktorálása

A fent leírt szabály lehetővé teszi ezeknek a problémáknak a megoldását bonyolultabb esetekben is. Tekintsünk példákat az ilyen típusú másodfokú egyenletek megoldására.

X2 - 33x + 200 = 0

Ez a négyzetes trinom kész. Először is átalakítjuk a kifejezést, és faktorokra bontjuk. Ebből kettő van: (x-8) és (x-25) = 0. Ennek eredményeként két gyökünk van: 8 és 25.

A 9. osztályos másodfokú egyenletek megoldására vonatkozó példák lehetővé teszik, hogy ez a módszer nemcsak másodrendű, hanem akár harmad- és negyedrendű kifejezésekben is változót találjon.

Például: 2x 3 + 2x 2 - 18x - 18 = 0. Ha a jobb oldalt változóval faktorokba vesszük, ezek közül három van, azaz (x + 1), (x-3) és (x +) 3).

Ennek eredményeként nyilvánvalóvá válik, hogy ennek az egyenletnek három gyökere van: -3; -egy; 3.

A négyzetgyök kivonása

A hiányos másodrendű egyenlet másik esete a betűk nyelvén írt kifejezés úgy, hogy a jobb oldal az ax 2 és c komponensekből épül fel. Itt a változó értékének megszerzéséhez a szabad tagot átvisszük a jobb oldalra, majd ezt követően az egyenlőség mindkét oldaláról kinyerjük a négyzetgyököt. Meg kell jegyezni, hogy ebben az esetben az egyenletnek általában két gyöke van. Kivételt képeznek a c kifejezést egyáltalán nem tartalmazó egyenlőségek, ahol a változó nullával egyenlő, valamint a kifejezések olyan változatai, amikor a jobb oldal negatívnak bizonyul. Ez utóbbi esetben egyáltalán nincs megoldás, mivel a fenti műveletek nem hajthatók végre gyökérrel. Példákat kell venni az ilyen típusú másodfokú egyenletek megoldására.

Ebben az esetben az egyenlet gyökerei a -4 és a 4 számok lesznek.

A földterület kiszámítása

Az effajta számítások szükségessége már az ókorban felmerült, mert a matematika fejlődése azokban a távoli időkben nagyrészt annak volt köszönhető, hogy a földterületek területét és kerületét a legnagyobb pontossággal kellett meghatározni.

Ilyen jellegű feladatok alapján összeállított másodfokú egyenletek megoldására is érdemes példákat venni.

Tehát tegyük fel, hogy van egy téglalap alakú földdarab, amelynek hossza 16 méterrel több, mint a szélessége. Meg kell keresni a telek hosszát, szélességét és kerületét, ha ismert, hogy a területe 612 m 2.

Ha rátérünk az üzletre, először elkészítjük a szükséges egyenletet. Jelöljük a szakasz szélességét x-el, akkor a hossza (x + 16) lesz. A leírtakból következik, hogy a területet az x (x + 16) kifejezés határozza meg, ami a feladatunk feltétele szerint 612. Ez azt jelenti, hogy x (x + 16) \u003d 612.

A teljes másodfokú egyenletek megoldása, és ez a kifejezés éppen erről szól, nem végezhető el ugyanúgy. Miért? Bár ennek bal oldala még mindig két tényezőt tartalmaz, ezek szorzata egyáltalán nem 0, ezért itt más módszereket alkalmazunk.

Megkülönböztető

Először is elvégezzük a szükséges átalakításokat, majd ennek a kifejezésnek a megjelenése így fog kinézni: x 2 + 16x - 612 = 0. Ez azt jelenti, hogy a korábban megadott szabványnak megfelelő formájú kifejezést kaptunk, ahol a=1, b=16, c=-612.

Ez egy példa lehet másodfokú egyenletek megoldására a diszkrimináns segítségével. Itt a szükséges számításokat a séma szerint végezzük: D = b 2 - 4ac. Ez a segédérték nemcsak a kívánt értékek megtalálását teszi lehetővé a másodrendű egyenletben, hanem meghatározza a lehetséges opciók számát. D>0 esetben kettő van belőlük; D=0 esetén egy gyök van. Abban az esetben, ha D<0, никаких шансов для решения у уравнения вообще не имеется.

A gyökerekről és képletükről

Esetünkben a diszkrimináns: 256 - 4(-612) = 2704. Ez azt jelzi, hogy a problémánkra van válasz. Ha tudja, a másodfokú egyenletek megoldását az alábbi képlettel kell folytatni. Lehetővé teszi a gyökerek kiszámítását.

Ez azt jelenti, hogy a bemutatott esetben: x 1 =18, x 2 =-34. A második lehetőség ebben a dilemmában nem jelenthet megoldást, mert a telek mérete nem mérhető negatív értékekben, ami azt jelenti, hogy x (vagyis a telek szélessége) 18 m. Innen számítjuk ki a hosszt: 18+16=34, a kerület pedig 2(34+ 18) = 104 (m 2).

Példák és feladatok

Folytatjuk a másodfokú egyenletek tanulmányozását. Az alábbiakban példákat és ezek közül néhány részletes megoldását mutatjuk be.

1) 15x2 + 20x + 5 = 12x2 + 27x + 1

Vigyünk át mindent az egyenlőség bal oldalára, hajtsunk végre egy transzformációt, azaz megkapjuk az egyenlet alakját, amit általában standardnak neveznek, és egyenlővé tesszük a nullával.

15x 2 + 20x + 5 - 12x 2 - 27x - 1 = 0

A hasonlók hozzáadása után meghatározzuk a diszkriminánst: D \u003d 49 - 48 \u003d 1. Tehát az egyenletünknek két gyöke lesz. A fenti képlet szerint számítjuk ki őket, ami azt jelenti, hogy az első 4/3, a második 1 lesz.

2) Most másfajta rejtvényeket fogunk feltárni.

Nézzük meg, hogy vannak-e itt egyáltalán x 2 - 4x + 5 = 1 gyökök? A kimerítő válasz érdekében a polinomot a megfelelő ismert alakra hozzuk, és kiszámítjuk a diszkriminánst. Ebben a példában nem szükséges a másodfokú egyenletet megoldani, mert a feladat lényege egyáltalán nem ebben rejlik. Ebben az esetben D \u003d 16 - 20 \u003d -4, ami azt jelenti, hogy tényleg nincsenek gyökerek.

Vieta tétele

A másodfokú egyenleteket célszerű a fenti képletekkel és a diszkriminánssal megoldani, ha az utóbbi értékéből kivonjuk a négyzetgyököt. De ez nem mindig történik meg. Ebben az esetben azonban sokféleképpen lehet megkapni a változók értékét. Példa: másodfokú egyenletek megoldása Vieta tételével. Nevét egy férfiról kapta, aki a 16. századi Franciaországban élt, és matematikai tehetségének és udvari kapcsolatainak köszönhetően ragyogó karriert futott be. Portréja a cikkben látható.

A minta, amelyet a híres francia észrevett, a következő volt. Bebizonyította, hogy az egyenlet gyökeinek összege -p=b/a, szorzatuk pedig q=c/a.

Most nézzük a konkrét feladatokat.

3x2 + 21x - 54 = 0

Az egyszerűség kedvéért alakítsuk át a kifejezést:

x 2 + 7x - 18 = 0

A Vieta-tételt használva ez a következőt kapja: a gyökök összege -7, a szorzatuk pedig -18. Innen azt kapjuk, hogy az egyenlet gyökerei a -9 és 2 számok. Ellenőrzés után megbizonyosodunk arról, hogy a változók ezen értékei valóban beleférnek-e a kifejezésbe.

Parabola grafikonja és egyenlete

A másodfokú függvény és a másodfokú egyenletek fogalma szorosan összefügg. Erre már volt példa korábban. Most nézzünk meg néhány matematikai rejtvényt kicsit részletesebben. Bármely leírt típusú egyenlet vizuálisan ábrázolható. Az ilyen, gráf formájában megrajzolt függőséget parabolának nevezzük. Különböző típusai az alábbi ábrán láthatók.

Minden parabolának van csúcsa, vagyis egy pontja, ahonnan az ágai kijönnek. Ha a>0, akkor magasra mennek a végtelenbe, és amikor a<0, они рисуются вниз. Простейшим примером подобной зависимости является функция y = x 2 . В данном случае в уравнении x 2 =0 неизвестное может принимать только одно значение, то есть х=0, а значит существует только один корень. Это неудивительно, ведь здесь D=0, потому что a=1, b=0, c=0. Выходит формула корней (точнее одного корня) квадратного уравнения запишется так: x = -b/2a.

A függvények vizuális megjelenítése segít bármilyen egyenlet megoldásában, beleértve a másodfokúakat is. Ezt a módszert grafikusnak nevezik. Az x változó értéke pedig az abszcissza koordinátája azokban a pontokban, ahol a gráfvonal metszi a 0x-et. A csúcs koordinátáit az imént adott x 0 = -b / 2a képlettel találhatjuk meg. És a kapott értéket behelyettesítve a függvény eredeti egyenletébe, megtudhatjuk, hogy y 0, azaz az y tengelyhez tartozó parabola csúcs második koordinátája.

A parabola ágainak metszéspontja az abszcissza tengellyel

Sok példa van a másodfokú egyenletek megoldására, de vannak általános minták is. Tekintsük őket. Nyilvánvaló, hogy a gráf 0x tengellyel való metszéspontja a>0 esetén csak akkor lehetséges, ha y 0 negatív értékeket vesz fel. És a<0 координата у 0 должна быть положительна. Для указанных вариантов D>0. Különben D<0. А когда D=0, вершина параболы расположена непосредственно на оси 0х.

A parabola grafikonjából a gyököket is meghatározhatja. Ennek a fordítottja is igaz. Vagyis ha nem könnyű egy másodfokú függvény vizuális ábrázolását kapni, akkor a kifejezés jobb oldalát egyenlővé teheti 0-val, és megoldhatja a kapott egyenletet. A 0x tengellyel való metszéspontok ismeretében pedig könnyebb az ábrázolás.

A történelemből

A négyzetes változót tartalmazó egyenletek segítségével a régi időkben nemcsak matematikai számításokat végeztek, hanem meghatározták a geometriai alakzatok területét. A régieknek szükségük volt ilyen számításokra a fizika és csillagászat terén tett grandiózus felfedezésekhez, valamint az asztrológiai előrejelzésekhez.

A modern tudósok szerint Babilon lakói az elsők között oldották meg a másodfokú egyenleteket. Négy évszázaddal korunk eljövetele előtt történt. Természetesen számításaik alapvetően eltértek a jelenleg elfogadottaktól, és sokkal primitívebbnek bizonyultak. Például a mezopotámiai matematikusoknak fogalmuk sem volt a negatív számok létezéséről. Nem ismerték azokat a finomságokat sem, amelyeket korunk diákjai ismertek.

Talán még Babilon tudósainál is korábban fogta az indiai bölcs, Baudhayama a másodfokú egyenletek megoldását. Ez körülbelül nyolc évszázaddal Krisztus korszakának eljövetele előtt történt. Igaz, a másodrendű egyenletek, a megoldási módszerek, amelyeket ő adott, a legegyszerűbbek voltak. Rajta kívül a kínai matematikusok is érdeklődtek a hasonló kérdések iránt régen. Európában a másodfokú egyenleteket csak a 13. század elején kezdték megoldani, később azonban olyan nagy tudósok is alkalmazták őket munkáik során, mint Newton, Descartes és sokan mások.

Betöltés...Betöltés...