त्रिकोणमिति उदाहरण। त्रिकोणमितीय समीकरण

बहुतों को हल करते समय गणित की समस्याओं, विशेष रूप से वे जो कक्षा 10 से पहले होते हैं, किए गए कार्यों का क्रम जो लक्ष्य की ओर ले जाएगा, स्पष्ट रूप से परिभाषित है। ऐसी समस्याओं में शामिल हैं, उदाहरण के लिए, रैखिक और द्विघात समीकरण, रैखिक और वर्ग असमानताएं, भिन्नात्मक समीकरणऔर समीकरण जो द्विघात को कम करते हैं। उल्लिखित कार्यों में से प्रत्येक के सफल समाधान का सिद्धांत इस प्रकार है: यह स्थापित करना आवश्यक है कि किस प्रकार का कार्य हल किया जा रहा है, क्रियाओं के आवश्यक अनुक्रम को याद रखें जो वांछित परिणाम की ओर ले जाएगा, अर्थात। उत्तर दें और इन चरणों का पालन करें।

जाहिर है, किसी विशेष समस्या को हल करने में सफलता या विफलता मुख्य रूप से इस बात पर निर्भर करती है कि हल किए जा रहे समीकरण का प्रकार कितना सही है, इसके समाधान के सभी चरणों का क्रम कितना सही है। बेशक, प्रदर्शन करने के लिए कौशल होना आवश्यक है समान परिवर्तनऔर कंप्यूटिंग।

एक अलग स्थिति होती है त्रिकोणमितीय समीकरण।इस तथ्य को स्थापित करना कठिन नहीं है कि समीकरण त्रिकोणमितीय है। क्रियाओं का क्रम निर्धारित करते समय कठिनाइयाँ उत्पन्न होती हैं जो सही उत्तर की ओर ले जाती हैं।

द्वारा उपस्थितिसमीकरण कभी-कभी इसके प्रकार को निर्धारित करना मुश्किल होता है। और समीकरण के प्रकार को जाने बिना, कई दर्जन त्रिकोणमितीय सूत्रों में से सही को चुनना लगभग असंभव है।

त्रिकोणमितीय समीकरण को हल करने के लिए, हमें प्रयास करना चाहिए:

1. समीकरण में शामिल सभी कार्यों को "समान कोण" पर लाएं;
2. समीकरण को "समान कार्यों" में लाएं;
3. समीकरण के बाईं ओर का गुणनखंड करें, आदि।

विचार करना त्रिकोणमितीय समीकरणों को हल करने के लिए बुनियादी तरीके।

I. सरलतम त्रिकोणमितीय समीकरणों में कमी

समाधान योजना

स्टेप 1।त्रिकोणमितीय फलन को ज्ञात घटकों के रूप में व्यक्त कीजिए।

चरण 2सूत्रों का उपयोग करके फ़ंक्शन तर्क खोजें:

कॉस एक्स = ए; x = ±arccos a + 2πn, n Z।

पाप एक्स = ए; x \u003d (-1) n चापएक + n, n Z में।

तन एक्स = ए; एक्स \u003d आर्कटग ए + πn, एन Є जेड।

सीटीजी एक्स = ए; एक्स \u003d आर्कसीटीजी ए + πn, एन Є जेड।

चरण 3एक अज्ञात चर खोजें।

उदाहरण।

2 cos(3x - /4) = -√2।

फेसला।

1) cos(3x - /4) = -√2/2.

2) 3x - /4 = ± (π - π/4) + 2πn, n Z;

3x - π/4 = ±3π/4 + 2πn, n Z.

3) 3x = ±3π/4 + π/4 + 2πn, n Z;

x = ±3π/12 + π/12 + 2πn/3, n Z;

एक्स = ±π/4 + π/12 + 2πn/3, एन Є जेड।

उत्तर: ±π/4 + π/12 + 2πn/3, n Z.

द्वितीय. परिवर्तनीय प्रतिस्थापन

समाधान योजना

स्टेप 1।त्रिकोणमितीय फलनों में से किसी एक के संबंध में समीकरण को बीजीय रूप में लाएं।

चरण 2परिणामी फलन को चर t द्वारा निरूपित करें (यदि आवश्यक हो, t पर प्रतिबंध लागू करें)।

चरण 3रिकॉर्ड करें और हल करें बीजीय समीकरण.

चरण 4एक रिवर्स प्रतिस्थापन करें।

चरण 5सबसे सरल त्रिकोणमितीय समीकरण को हल करें।

उदाहरण।

2cos 2 (x/2) - 5sin (x/2) - 5 = 0.

फेसला।

1) 2(1 - पाप 2 (x/2)) - 5sin (x/2) - 5 = 0;

2sin 2(x/2) + 5sin(x/2) + 3 = 0.

2) माना sin (x/2) = t, जहाँ |t| 1.

3) 2t 2 + 5t + 3 = 0;

टी = 1 या ई = -3/2 शर्त को पूरा नहीं करता |t| 1.

4) पाप (x/2) = 1.

5) x/2 = /2 + 2πn, n Z;

एक्स = + 4πn, एन Є जेड।

उत्तर: x = + 4πn, n Z।

III. समीकरण क्रम कमी विधि

समाधान योजना

स्टेप 1।बदलने के दिया गया समीकरणइसके लिए कमी सूत्रों का उपयोग करके रैखिक:

पाप 2 x \u003d 1/2 (1 - क्योंकि 2x);

cos 2 x = 1/2 (1 + cos 2x);

tan 2 x = (1 - cos 2x) / (1 + cos 2x)।

चरण 2 I और II विधियों का उपयोग करके परिणामी समीकरण को हल करें।

उदाहरण।

cos2x + cos2x = 5/4।

फेसला।

1) cos 2x + 1/2 (1 + cos 2x) = 5/4।

2) cos 2x + 1/2 + 1/2 cos 2x = 5/4;

3/2 cos 2x = 3/4;

2x = ±π/3 + 2πn, n Z;

x = ±π/6 + n, n Z.

उत्तर: x = ±π/6 + n, n Z.

चतुर्थ। सजातीय समीकरण

समाधान योजना

स्टेप 1।इस समीकरण को रूप में लाओ

a) a sin x + b cos x = 0 (पहली डिग्री का समांगी समीकरण)

या देखने के लिए

b) a sin 2 x + b sin x cos x + c cos 2 x = 0 (दूसरी डिग्री का सजातीय समीकरण)।

चरण 2समीकरण के दोनों पक्षों को द्वारा विभाजित करें

ए) कॉस एक्स ≠ 0;

बी) cos 2 x 0;

और tg x के लिए समीकरण प्राप्त करें:

ए) ए टीजी एक्स + बी = 0;

बी) ए टीजी 2 एक्स + बी आर्कटीजी एक्स + सी = 0।

चरण 3ज्ञात विधियों का उपयोग करके समीकरण को हल करें।

उदाहरण।

5sin 2 x + 3sin x cos x - 4 = 0.

फेसला।

1) 5sin 2 x + 3sin x cos x - 4(sin 2 x + cos 2 x) = 0;

5sin 2 x + 3sin x cos x - 4sin² x - 4cos 2 x = 0;

पाप 2 x + 3पाप x cos x -4cos 2 x \u003d 0 / cos 2 x 0.

2) टीजी 2 एक्स + 3 टीजी एक्स - 4 = 0।

3) माना tg x = t, तब

टी 2 + 3टी - 4 = 0;

टी = 1 या टी = -4, तो

टीजी एक्स = 1 या टीजी एक्स = -4।

पहले समीकरण से x = /4 + πn, n Z; दूसरे समीकरण से x = -arctg 4 + k, k Z.

उत्तर: x = /4 + n, n Z; x \u003d -arctg 4 + k, k Z.

V. त्रिकोणमितीय सूत्रों का उपयोग करके समीकरण को बदलने की विधि

समाधान योजना

स्टेप 1।सभी प्रकार का उपयोग करना त्रिकोणमितीय सूत्र, इस समीकरण को I, II, III, IV विधियों द्वारा हल किए गए समीकरण में लाएं।

चरण 2ज्ञात विधियों का उपयोग करके परिणामी समीकरण को हल करें।

उदाहरण।

sinx + sin2x + sin3x = 0.

फेसला।

1) (पाप x + पाप 3x) + पाप 2x = 0;

2sin 2x cos x + sin 2x = 0.

2) पाप 2x (2cos x + 1) = 0;

sin 2x = 0 या 2cos x + 1 = 0;

पहले समीकरण से 2x = π/2 + πn, n Z; दूसरे समीकरण से x = -1/2।

हमारे पास x = π/4 + πn/2, n Z; दूसरे समीकरण से x = ±(π - π/3) + 2πk, k Z।

नतीजतन, x \u003d / 4 + n / 2, n Z; एक्स = ±2π/3 + 2πk, के जेड।

उत्तर: x \u003d / 4 + n / 2, n Z; एक्स = ±2π/3 + 2πk, के जेड।

त्रिकोणमितीय समीकरणों को हल करने की क्षमता और कौशल बहुत हैं महत्वपूर्ण, उनके विकास के लिए छात्र और शिक्षक दोनों की ओर से काफी प्रयास की आवश्यकता होती है।

त्रिकोणमितीय समीकरणों के समाधान के साथ स्टीरियोमेट्री, भौतिकी आदि की कई समस्याएं जुड़ी हुई हैं। इस तरह की समस्याओं को हल करने की प्रक्रिया में, जैसे कि त्रिकोणमिति के तत्वों का अध्ययन करते समय प्राप्त किए गए कई ज्ञान और कौशल शामिल हैं।

त्रिकोणमितीय समीकरणसामान्य रूप से गणित पढ़ाने और व्यक्तित्व विकास की प्रक्रिया में एक महत्वपूर्ण स्थान रखता है।

क्या आपका कोई प्रश्न है? त्रिकोणमितीय समीकरणों को हल करना नहीं जानते?
ट्यूटर की मदद लेने के लिए - रजिस्टर करें।
पहला सबक मुफ्त है!

साइट, सामग्री की पूर्ण या आंशिक प्रतिलिपि के साथ, स्रोत के लिए एक लिंक आवश्यक है।

आपकी निजता हमारे लिए महत्वपूर्ण है। इस कारण से, हमने एक गोपनीयता नीति विकसित की है जो बताती है कि हम आपकी जानकारी का उपयोग और भंडारण कैसे करते हैं। कृपया हमारी गोपनीयता नीति पढ़ें और यदि आपके कोई प्रश्न हैं तो हमें बताएं।

व्यक्तिगत जानकारी का संग्रह और उपयोग

व्यक्तिगत जानकारी उस डेटा को संदर्भित करती है जिसका उपयोग किसी विशिष्ट व्यक्ति की पहचान करने या उससे संपर्क करने के लिए किया जा सकता है।

जब आप हमसे संपर्क करते हैं तो आपसे किसी भी समय अपनी व्यक्तिगत जानकारी प्रदान करने के लिए कहा जा सकता है।

निम्नलिखित कुछ उदाहरण हैं कि हम किस प्रकार की व्यक्तिगत जानकारी एकत्र कर सकते हैं और हम ऐसी जानकारी का उपयोग कैसे कर सकते हैं।

हम कौन सी व्यक्तिगत जानकारी एकत्र करते हैं:

  • जब आप साइट पर आवेदन जमा करते हैं, तो हम आपका नाम, फोन नंबर, पता सहित विभिन्न जानकारी एकत्र कर सकते हैं ईमेलआदि।

हम आपकी व्यक्तिगत जानकारी का उपयोग कैसे करते हैं:

  • हमारे द्वारा एकत्रित व्यक्तिगत जानकारीहमें आपसे संपर्क करने और आपको इसके बारे में सूचित करने की अनुमति देता है अद्वितीय ऑफ़र, प्रचार और अन्य कार्यक्रम और आगामी कार्यक्रम।
  • समय-समय पर, हम आपको महत्वपूर्ण नोटिस और संचार भेजने के लिए आपकी व्यक्तिगत जानकारी का उपयोग कर सकते हैं।
  • हम व्यक्तिगत जानकारी का उपयोग आंतरिक उद्देश्यों के लिए भी कर सकते हैं, जैसे कि ऑडिट करना, डेटा विश्लेषण और विभिन्न शोध करना ताकि हम प्रदान की जाने वाली सेवाओं में सुधार कर सकें और आपको हमारी सेवाओं के बारे में सिफारिशें प्रदान कर सकें।
  • यदि आप एक पुरस्कार ड्रा, प्रतियोगिता या इसी तरह के प्रोत्साहन में प्रवेश करते हैं, तो हम आपके द्वारा प्रदान की जाने वाली जानकारी का उपयोग ऐसे कार्यक्रमों को संचालित करने के लिए कर सकते हैं।

तीसरे पक्ष के लिए प्रकटीकरण

हम आपसे प्राप्त जानकारी को तीसरे पक्ष को नहीं बताते हैं।

अपवाद:

  • यदि आवश्यक हो - कानून के अनुसार, न्यायिक आदेश, कानूनी कार्यवाही में, और / या सार्वजनिक अनुरोधों या अनुरोधों के आधार पर सरकारी एजेंसियोंरूसी संघ के क्षेत्र में - अपनी व्यक्तिगत जानकारी का खुलासा करें। हम आपके बारे में जानकारी का खुलासा भी कर सकते हैं यदि हम यह निर्धारित करते हैं कि सुरक्षा, कानून प्रवर्तन, या अन्य सार्वजनिक हित के कारणों के लिए ऐसा प्रकटीकरण आवश्यक या उपयुक्त है।
  • पुनर्गठन, विलय या बिक्री की स्थिति में, हम अपने द्वारा एकत्रित की गई व्यक्तिगत जानकारी को संबंधित तृतीय पक्ष उत्तराधिकारी को स्थानांतरित कर सकते हैं।

व्यक्तिगत जानकारी की सुरक्षा

हम आपकी व्यक्तिगत जानकारी को हानि, चोरी और दुरुपयोग से बचाने के साथ-साथ अनधिकृत पहुंच, प्रकटीकरण, परिवर्तन और विनाश से बचाने के लिए - प्रशासनिक, तकनीकी और भौतिक सहित - सावधानी बरतते हैं।

कंपनी स्तर पर आपकी गोपनीयता बनाए रखना

यह सुनिश्चित करने के लिए कि आपकी व्यक्तिगत जानकारी सुरक्षित है, हम अपने कर्मचारियों को गोपनीयता और सुरक्षा प्रथाओं के बारे में बताते हैं और गोपनीयता प्रथाओं को सख्ती से लागू करते हैं।

विषय पर पाठ और प्रस्तुति: "सरलतम त्रिकोणमितीय समीकरणों का समाधान"

अतिरिक्त सामग्री
प्रिय उपयोगकर्ताओं, अपनी टिप्पणियाँ, प्रतिक्रिया, सुझाव देना न भूलें! सभी सामग्रियों की जाँच एक एंटीवायरस प्रोग्राम द्वारा की जाती है।

1C . से ग्रेड 10 के लिए ऑनलाइन स्टोर "इंटीग्रल" में मैनुअल और सिमुलेटर
हम ज्यामिति में समस्याओं को हल करते हैं। अंतरिक्ष में निर्माण के लिए इंटरएक्टिव कार्य
सॉफ्टवेयर वातावरण "1C: गणितीय निर्माता 6.1"

हम क्या अध्ययन करेंगे:
1. त्रिकोणमितीय समीकरण क्या हैं?

3. त्रिकोणमितीय समीकरणों को हल करने की दो मुख्य विधियाँ।
4. सजातीय त्रिकोणमितीय समीकरण।
5. उदाहरण।

त्रिकोणमितीय समीकरण क्या होते हैं?

दोस्तों, हम पहले ही आर्क्साइन, आर्ककोसाइन, आर्कटेंजेंट और आर्ककोटैंजेंट का अध्ययन कर चुके हैं। आइए अब सामान्य रूप से त्रिकोणमितीय समीकरणों को देखें।

त्रिकोणमितीय समीकरण - वे समीकरण जिनमें त्रिकोणमितीय फलन के चिह्न के अंतर्गत चर समाहित होता है।

हम सबसे सरल त्रिकोणमितीय समीकरणों को हल करने के रूप को दोहराते हैं:

1) यदि |a|≤ 1, तो समीकरण cos(x) = a का एक हल है:

एक्स = ± आर्ककोस (ए) + 2πk

2) यदि |a|≤ 1, तो समीकरण sin(x) = a का एक हल है:

3) अगर |ए| > 1, तो समीकरण sin(x) = a और cos(x) = a का कोई हल नहीं है 4) समीकरण tg(x)=a का एक हल है: x=arctg(a)+ k

5) समीकरण ctg(x)=a का एक हल है: x=arcctg(a)+ πk

सभी सूत्रों के लिए, k एक पूर्णांक है

सबसे सरल त्रिकोणमितीय समीकरणों का रूप है: Т(kx+m)=a, T- कोई भी त्रिकोणमितीय फलन।

उदाहरण।

समीकरण हल करें: a) sin(3x)= √3/2

फेसला:

ए) आइए 3x=t निरूपित करें, फिर हम अपने समीकरण को इस रूप में फिर से लिखेंगे:

इस समीकरण का हल होगा: t=((-1)^n)arcsin(√3/2)+ πn।

मूल्यों की तालिका से हमें मिलता है: t=((-1)^n)×π/3+ πn।

आइए अपने चर पर वापस जाएं: 3x =((-1)^n)×π/3+ πn,

फिर x= ((-1)^n)×π/9+ πn/3

उत्तर: x= ((-1)^n)×π/9+ n/3, जहां n एक पूर्णांक है। (-1)^n - n के घात से एक घटा।

त्रिकोणमितीय समीकरणों के अधिक उदाहरण।

समीकरणों को हल करें: a) cos(x/5)=1 b)tg(3x- π/3)= 3

फेसला:

ए) इस बार हम सीधे समीकरण की जड़ों की गणना पर जाएंगे:

एक्स/5= ± आर्ककोस(1) + 2πk। तब x/5= k => x=5πk

उत्तर: x=5πk, जहाँ k एक पूर्णांक है।

बी) हम फॉर्म में लिखते हैं: 3x- π/3=arctg(√3)+ πk। हम जानते हैं कि: arctg(√3)= /3

3x- π/3= /3+ k => 3x=2π/3 + πk => x=2π/9 + πk/3

उत्तर: x=2π/9 + πk/3, जहां k एक पूर्णांक है।

समीकरण हल करें: cos(4x)= 2/2. और खंड पर सभी जड़ों का पता लगाएं।

फेसला:

हम तय करेंगे सामान्य दृष्टि सेहमारा समीकरण: 4x= ± आर्ककोस(√2/2) + 2πk

4x= ± /4 + 2πk;

एक्स = ± /16+ k/2;

अब देखते हैं कि हमारे सेगमेंट में क्या जड़ें जमाती हैं। k के लिए k=0, x= π/16 के लिए, हम दिए गए खंड में हैं।
k=1, x= π/16+ π/2=9π/16 के साथ, उन्होंने फिर से मारा।
k=2, x= π/16+ π=17π/16 के लिए, लेकिन यहां हमने हिट नहीं किया, जिसका अर्थ है कि हम बड़े k के लिए भी हिट नहीं करेंगे।

उत्तर: x= /16, x= 9π/16

दो मुख्य समाधान विधियां।

हमने सबसे सरल त्रिकोणमितीय समीकरणों पर विचार किया है, लेकिन अधिक जटिल हैं। उन्हें हल करने के लिए, एक नए चर को पेश करने की विधि और गुणन विधि का उपयोग किया जाता है। आइए उदाहरण देखें।

आइए समीकरण को हल करें:

फेसला:
अपने समीकरण को हल करने के लिए, हम एक नए चर को प्रस्तुत करने की विधि का उपयोग करते हैं, जिसे निरूपित किया जाता है: t=tg(x)।

प्रतिस्थापन के परिणामस्वरूप, हम प्राप्त करते हैं: t 2 + 2t -1 = 0

आइए जड़ों को खोजें द्विघात समीकरण: टी=-1 और टी=1/3

फिर tg(x)=-1 और tg(x)=1/3, हमें सबसे सरल त्रिकोणमितीय समीकरण मिला, आइए इसके मूल ज्ञात करें।

X=arctg(-1) +πk= -π/4+πk; x=arctg(1/3) + k.

उत्तर: x= -π/4+πk; x=arctg(1/3) + k.

समीकरण हल करने का एक उदाहरण

समीकरण हल करें: 2sin 2 (x) + 3 cos(x) = 0

फेसला:

आइए पहचान का उपयोग करें: sin 2 (x) + cos 2 (x)=1

हमारा समीकरण बन जाता है: 2-2cos 2 (x) + 3 cos (x) = 0

2 cos 2 (x) - 3 cos(x) -2 = 0

आइए प्रतिस्थापन का परिचय दें t=cos(x): 2t 2 -3t - 2 = 0

हमारे द्विघात समीकरण का हल मूल हैं: t=2 तथा t=-1/2

फिर cos(x)=2 और cos(x)=-1/2.

क्योंकि कोसाइन एक से अधिक मान नहीं ले सकता, तो cos(x)=2 का कोई मूल नहीं है।

cos(x)=-1/2 के लिए: x= ± arccos(-1/2) + 2πk; एक्स = ±2π/3 + 2πk

उत्तर: x= ±2π/3 + 2πk

सजातीय त्रिकोणमितीय समीकरण।

परिभाषा: a sin(x)+b cos(x) के रूप के समीकरण को प्रथम घात का समघात त्रिकोणमितीय समीकरण कहा जाता है।

फॉर्म के समीकरण

दूसरी डिग्री के सजातीय त्रिकोणमितीय समीकरण।

पहली डिग्री के समरूप त्रिकोणमितीय समीकरण को हल करने के लिए, हम इसे cos(x) से विभाजित करते हैं: आप कोज्या से विभाजित नहीं कर सकते यदि यह है शून्य, आइए सुनिश्चित करें कि यह नहीं है:
चलो cos(x)=0, फिर asin(x)+0=0 => sin(x)=0, लेकिन साइन और कोसाइन एक ही समय में शून्य के बराबर नहीं हैं, हमें एक विरोधाभास मिला है, इसलिए हम सुरक्षित रूप से विभाजित कर सकते हैं शून्य से।

प्रश्न हल करें:
उदाहरण: cos 2 (x) + sin(x) cos(x) = 0

फेसला:

सामान्य गुणनखंड निकालें: cos(x)(c0s(x) + sin (x)) = 0

फिर हमें दो समीकरणों को हल करने की आवश्यकता है:

cos(x)=0 और cos(x)+sin(x)=0

Cos(x)=0 के लिए x= π/2 + πk;

समीकरण पर विचार करें cos(x)+sin(x)=0 हमारे समीकरण को cos(x) से विभाजित करें:

1+tg(x)=0 => tg(x)=-1 => x=arctg(-1) +πk= -π/4+πk

उत्तर: x= π/2 + πk और x= -π/4+πk

दूसरी डिग्री के समरूप त्रिकोणमितीय समीकरणों को कैसे हल करें?
दोस्तों इन नियमों का हमेशा पालन करें!

1. देखें कि गुणांक a किसके बराबर है, यदि a \u003d 0 तो हमारा समीकरण रूप लेगा cos (x) (bsin (x) + ccos (x)), जिसका एक उदाहरण पिछले पर है फिसल पट्टी

2. यदि a≠0, तो आपको समीकरण के दोनों भागों को वर्ग कोज्या से विभाजित करने की आवश्यकता है, हम प्राप्त करते हैं:


हम चर t=tg(x) का परिवर्तन करते हैं, हमें समीकरण मिलता है:

उदाहरण हल करें #:3

प्रश्न हल करें:
फेसला:

समीकरण के दोनों पक्षों को कोज्या वर्ग से विभाजित करें:

हम चर t=tg(x) में परिवर्तन करते हैं: t 2 + 2 t - 3 = 0

द्विघात समीकरण के मूल ज्ञात कीजिए: t=-3 तथा t=1

तब: tg(x)=-3 => x=arctg(-3) + k=-arctg(3) + πk

टीजी(एक्स)=1 => एक्स= π/4+ k

उत्तर: x=-arctg(3) + k और x= π/4+ k

उदाहरण हल करें #:4

प्रश्न हल करें:

फेसला:
आइए अपनी अभिव्यक्ति को रूपांतरित करें:


हम ऐसे समीकरणों को हल कर सकते हैं: x= - /4 + 2πk और x=5π/4 + 2πk

उत्तर: x= - /4 + 2πk और x=5π/4 + 2πk

उदाहरण हल करें #:5

प्रश्न हल करें:

फेसला:
आइए अपनी अभिव्यक्ति को रूपांतरित करें:


हम प्रतिस्थापन का परिचय देते हैं tg(2x)=t:2 2 - 5t + 2 = 0

हमारे द्विघात समीकरण का हल मूल होगा: t=-2 और t=1/2

तब हम प्राप्त करते हैं: tg(2x)=-2 और tg(2x)=1/2
2x=-arctg(2)+ k => x=-arctg(2)/2 + k/2

2x= आर्कटग(1/2) + πk => x=arctg(1/2)/2+ πk/2

उत्तर: x=-arctg(2)/2 + k/2 और x=arctg(1/2)/2+ k/2

स्वतंत्र समाधान के लिए कार्य।

1) समीकरण हल करें

A) sin(7x)= 1/2 b) cos(3x)= √3/2 c) cos(-x) = -1 d) tg(4x) = √3 e) ctg(0.5x) = -1.7

2) समीकरण हल करें: sin(3x)= 3/2. और खंड [π/2; ].

3) समीकरण हल करें: सीटीजी 2 (एक्स) + 2 सीटीजी (एक्स) + 1 = 0

4) समीकरण को हल करें: 3 sin 2 (x) + 3sin (x) cos(x) = 0

5) समीकरण को हल करें: 3sin 2 (3x) + 10 sin(3x)cos(3x) + 3 cos 2 (3x) =0

6) समीकरण को हल करें: cos 2 (2x) -1 - cos(x) =√3/2 -sin 2 (2x)

यह कोई रहस्य नहीं है कि लगभग किसी भी समस्या को हल करने की प्रक्रिया में सफलता या विफलता मुख्य रूप से प्रकार की परिभाषा की शुद्धता पर निर्भर करती है। दिया गया समीकरण, साथ ही इसके समाधान के सभी चरणों के अनुक्रम के सही पुनरुत्पादन पर। हालांकि, त्रिकोणमितीय समीकरणों के मामले में, इस तथ्य को निर्धारित करना बिल्कुल भी मुश्किल नहीं है कि समीकरण त्रिकोणमितीय है। लेकिन क्रियाओं के क्रम को निर्धारित करने की प्रक्रिया में जो हमें सही उत्तर की ओर ले जाए, हमें कुछ कठिनाइयों का सामना करना पड़ सकता है। आइए जानें कि शुरू से ही त्रिकोणमितीय समीकरणों को सही तरीके से कैसे हल किया जाए।

त्रिकोणमितीय समीकरणों को हल करना

त्रिकोणमितीय समीकरण को हल करने के लिए, आपको निम्नलिखित बिंदुओं को करने का प्रयास करने की आवश्यकता है:

  • हम अपने समीकरण में शामिल सभी कार्यों को "समान कोण" पर लाते हैं;
  • दिए गए समीकरण को "समान कार्यों" में लाना आवश्यक है;
  • हम दिए गए समीकरण के बाईं ओर को कारकों या अन्य आवश्यक घटकों में विघटित करते हैं।

तरीकों

विधि 1. ऐसे समीकरणों को दो चरणों में हल करना आवश्यक है। सबसे पहले, हम समीकरण को उसका सरलतम (सरलीकृत) रूप प्राप्त करने के लिए रूपांतरित करते हैं। समीकरण: Cosx = a, Sinx = a और इसी तरह के समीकरणों को सरलतम त्रिकोणमितीय समीकरण कहा जाता है। दूसरा चरण परिणामी सरल समीकरण को हल करना है। यह ध्यान दिया जाना चाहिए कि सबसे सरल समीकरण को बीजगणितीय विधि द्वारा हल किया जा सकता है, जो हमें स्कूल बीजगणित पाठ्यक्रम से अच्छी तरह से पता है। इसे प्रतिस्थापन और परिवर्तनशील प्रतिस्थापन विधि भी कहा जाता है। रिडक्शन फ़ार्मुलों की मदद से, आपको पहले कनवर्ट करना होगा, फिर एक प्रतिस्थापन करना होगा और फिर जड़ों को ढूंढना होगा।

इसके बाद, आपको हमारे समीकरण को संभावित कारकों में विघटित करने की आवश्यकता है, इसके लिए आपको सभी पदों को बाईं ओर ले जाने की आवश्यकता है और फिर आप कारकों में विघटित हो सकते हैं। अब आपको इस समीकरण को एक सजातीय समीकरण में लाने की आवश्यकता है, जिसमें सभी पद समान डिग्री के बराबर हों, और कोसाइन और साइन का कोण समान हो।

त्रिकोणमितीय समीकरणों को हल करने से पहले, आपको इसके पदों को बाईं ओर स्थानांतरित करना होगा, उन्हें दाईं ओर से ले जाना होगा, और फिर हम सभी सामान्य भाजक को कोष्ठक में निकाल देंगे। हम अपने कोष्ठक और गुणनखंडों को शून्य के बराबर करते हैं। हमारे समान कोष्ठक एक कम डिग्री सजातीय समीकरण हैं जिन्हें sin(cos) द्वारा उच्चतम शक्ति में विभाजित किया जाना है। अब हम तन के संबंध में प्राप्त बीजीय समीकरण को हल करते हैं।

विधि 2. एक अन्य विधि जिसके द्वारा आप त्रिकोणमितीय समीकरण को हल कर सकते हैं वह है आधा कोण में संक्रमण। उदाहरण के लिए, हम समीकरण को हल करते हैं: 3sinx-5cosx=7।

हमें आधे कोण पर जाने की जरूरत है, हमारे मामले में यह है: 6sin(x/2)*cos(x/2)- 5cos²(x/2)+5sin²(x/2) = 7sin²(x/2)+7cos² (x / 2)। और उसके बाद, हम सभी शर्तों को एक भाग में घटाते हैं (सुविधा के लिए, सही चुनना बेहतर है) और समीकरण को हल करने के लिए आगे बढ़ें।

यदि आवश्यक हो, तो आप एक सहायक कोण दर्ज कर सकते हैं। यह तब किया जाता है जब आपको पूर्णांक मान sin (a) या cos (a) को बदलने की आवश्यकता होती है और चिन्ह "a" केवल एक सहायक कोण के रूप में कार्य करता है।

योग करने के लिए उत्पाद

योग उत्पाद का उपयोग करके त्रिकोणमितीय समीकरणों को कैसे हल करें? इस तरह के समीकरणों को हल करने के लिए उत्पाद-से-योग रूपांतरण के रूप में जाना जाने वाला तरीका भी इस्तेमाल किया जा सकता है। इस मामले में, समीकरण के अनुरूप सूत्रों का उपयोग करना आवश्यक है।

उदाहरण के लिए, हमारे पास एक समीकरण है: 2sinx * sin3x= cos4x

हमें बाईं ओर को योग में परिवर्तित करके इस समस्या को हल करने की आवश्यकता है, अर्थात्:

cos 4x –cos8x=cos4x ,

एक्स = पी/16 + पीके/8।

यदि उपरोक्त विधियां उपयुक्त नहीं हैं, और आप अभी भी नहीं जानते हैं कि सबसे सरल त्रिकोणमितीय समीकरणों को कैसे हल किया जाए, तो आप एक अन्य विधि का उपयोग कर सकते हैं - सार्वभौमिक प्रतिस्थापन। इसके साथ, आप अभिव्यक्ति को बदल सकते हैं और प्रतिस्थापन कर सकते हैं। उदाहरण के लिए: Cos(x/2)=u. अब हम दिए गए पैरामीटर u के साथ समीकरण को हल कर सकते हैं। और वांछित परिणाम प्राप्त करने के बाद, इस मूल्य को विपरीत में अनुवाद करना न भूलें।

कई "अनुभवी" छात्रों को सलाह दी जाती है कि वे समीकरणों को हल करने के लिए ऑनलाइन लोगों की ओर रुख करें। त्रिकोणमितीय समीकरण को ऑनलाइन कैसे हल करें, आप पूछें। के लिए ऑनलाइन समाधानसमस्याओं के लिए, आप प्रासंगिक विषयों के मंचों की ओर रुख कर सकते हैं, जहां वे सलाह के साथ या समस्या को हल करने में आपकी सहायता कर सकते हैं। लेकिन सबसे अच्छी बात यह है कि खुद को मैनेज करने की कोशिश करें।

त्रिकोणमितीय समीकरणों को हल करने में कौशल और क्षमताएं बहुत महत्वपूर्ण और उपयोगी हैं। उनके विकास के लिए आपसे बहुत प्रयास की आवश्यकता होगी। भौतिकी, स्टीरियोमेट्री आदि में कई समस्याएं ऐसे समीकरणों के समाधान से जुड़ी हैं। और ऐसी समस्याओं को हल करने की प्रक्रिया का तात्पर्य उन कौशलों और ज्ञान की उपस्थिति से है जो त्रिकोणमिति के तत्वों का अध्ययन करते समय प्राप्त किए जा सकते हैं।

त्रिकोणमितीय सूत्र सीखें

एक समीकरण को हल करने की प्रक्रिया में, आपको त्रिकोणमिति से किसी भी सूत्र का उपयोग करने की आवश्यकता का सामना करना पड़ सकता है। बेशक, आप इसे अपनी पाठ्यपुस्तकों और चीट शीट्स में खोजना शुरू कर सकते हैं। और यदि इन सूत्रों को आपके दिमाग में डाल दिया जाए, तो आप न केवल अपनी नसों को बचाएंगे, बल्कि आवश्यक जानकारी की खोज में समय बर्बाद किए बिना अपने काम को भी आसान बना देंगे। इस प्रकार, आपके पास समस्या को हल करने के लिए सबसे तर्कसंगत तरीके से सोचने का अवसर होगा।


मुख्य त्रिकोणमितीय कार्यों के बीच अनुपात - साइन, कोसाइन, स्पर्शरेखा और कोटेंजेंट - दिए गए हैं त्रिकोणमितीय सूत्र. और चूँकि त्रिकोणमितीय फलनों के बीच काफी संबंध हैं, यह त्रिकोणमितीय सूत्रों की प्रचुरता की व्याख्या भी करता है। कुछ सूत्र एक ही कोण के त्रिकोणमितीय कार्यों को जोड़ते हैं, अन्य - एक से अधिक कोण के कार्य, अन्य - आपको डिग्री कम करने की अनुमति देते हैं, चौथा - आधे कोण के स्पर्शरेखा के माध्यम से सभी कार्यों को व्यक्त करने के लिए, आदि।

इस लेख में, हम सभी मूल त्रिकोणमितीय सूत्रों को क्रम में सूचीबद्ध करते हैं, जो त्रिकोणमिति की अधिकांश समस्याओं को हल करने के लिए पर्याप्त हैं। याद रखने और उपयोग में आसानी के लिए, हम उन्हें उनके उद्देश्य के अनुसार समूहित करेंगे, और उन्हें तालिकाओं में दर्ज करेंगे।

पृष्ठ नेविगेशन।

मूल त्रिकोणमितीय पहचान

मुख्य त्रिकोणमितीय पहचान एक कोण के साइन, कोसाइन, स्पर्शरेखा और कोटैंजेंट के बीच संबंध सेट करें। वे साइन, कोसाइन, टेंगेंट और कोटेंजेंट की परिभाषा के साथ-साथ यूनिट सर्कल की अवधारणा का पालन करते हैं। वे आपको एक त्रिकोणमितीय फलन को किसी अन्य के माध्यम से व्यक्त करने की अनुमति देते हैं।

इन त्रिकोणमिति सूत्रों, उनकी व्युत्पत्ति और अनुप्रयोग उदाहरणों के विस्तृत विवरण के लिए, लेख देखें।

कास्ट सूत्र




कास्ट सूत्रसाइन, कोसाइन, टेंगेंट और कोटेंजेंट के गुणों से अनुसरण करें, यानी, वे त्रिकोणमितीय कार्यों की आवधिकता की संपत्ति, समरूपता की संपत्ति, और किसी दिए गए कोण द्वारा शिफ्ट की संपत्ति को भी दर्शाते हैं। ये त्रिकोणमितीय सूत्र आपको मनमाने कोणों के साथ काम करने से शून्य से 90 डिग्री तक के कोणों के साथ काम करने की अनुमति देते हैं।

इन सूत्रों का औचित्य, स्मरक नियमउनके याद रखने और उनके आवेदन के उदाहरणों का अध्ययन लेख में किया जा सकता है।

जोड़ सूत्र

त्रिकोणमितीय जोड़ सूत्रदिखाएँ कि इन कोणों के त्रिकोणमितीय कार्यों के संदर्भ में दो कोणों के योग या अंतर के त्रिकोणमितीय कार्य कैसे व्यक्त किए जाते हैं। ये सूत्र निम्नलिखित त्रिकोणमितीय सूत्रों की व्युत्पत्ति के आधार के रूप में कार्य करते हैं।

डबल, ट्रिपल, आदि के लिए सूत्र। कोना



डबल, ट्रिपल, आदि के लिए सूत्र। कोण (इन्हें बहुकोण सूत्र भी कहा जाता है) यह दर्शाता है कि कैसे दोहरे, तिहरे, आदि के त्रिकोणमितीय फलन कार्य करते हैं। कोण () को एक कोण के त्रिकोणमितीय फलनों के रूप में व्यक्त किया जाता है। उनकी व्युत्पत्ति योग सूत्रों पर आधारित है।

डबल, ट्रिपल आदि के लिए लेख सूत्रों में अधिक विस्तृत जानकारी एकत्र की जाती है। कोण ।

आधा कोण सूत्र

आधा कोण सूत्रदिखाएँ कि एक पूर्णांक कोण के कोज्या के रूप में एक आधे कोण के त्रिकोणमितीय कार्य कैसे व्यक्त किए जाते हैं। ये त्रिकोणमितीय सूत्र दोहरे कोण वाले सूत्रों का अनुसरण करते हैं।

उनके निष्कर्ष और आवेदन के उदाहरण लेख में पाए जा सकते हैं।

कमी सूत्र


डिग्री घटाने के लिए त्रिकोणमितीय सूत्रत्रिकोणमितीय कार्यों की प्राकृतिक शक्तियों से पहली डिग्री में साइन और कोसाइन में संक्रमण की सुविधा के लिए डिज़ाइन किए गए हैं, लेकिन कई कोण हैं। दूसरे शब्दों में, वे त्रिकोणमितीय कार्यों की शक्तियों को पहले तक कम करने की अनुमति देते हैं।

त्रिकोणमितीय कार्यों के योग और अंतर के लिए सूत्र


मुख्य उद्देश्य त्रिकोणमितीय कार्यों के लिए योग और अंतर सूत्रकार्यों के उत्पाद में संक्रमण शामिल है, जो त्रिकोणमितीय अभिव्यक्तियों को सरल करते समय बहुत उपयोगी होता है। त्रिकोणमितीय समीकरणों को हल करने में इन सूत्रों का व्यापक रूप से उपयोग किया जाता है, क्योंकि वे साइन और कोसाइन के योग और अंतर को फैक्टरिंग करने की अनुमति देते हैं।

कोज्या द्वारा ज्या, कोज्या और ज्या के गुणनफल के सूत्र


त्रिकोणमितीय कार्यों के गुणनफल से योग या अंतर में संक्रमण, कोज्या द्वारा ज्या, कोज्या और ज्या के गुणनफल के सूत्रों के माध्यम से किया जाता है।

  • बश्माकोव एम.आई.बीजगणित और विश्लेषण की शुरुआत: प्रोक। 10-11 कोशिकाओं के लिए। औसत विद्यालय - तीसरा संस्करण। - एम .: ज्ञानोदय, 1993. - 351 पी .: बीमार। - आईएसबीएन 5-09-004617-4।
  • बीजगणितऔर विश्लेषण की शुरुआत: प्रोक। 10-11 कोशिकाओं के लिए। सामान्य शिक्षा संस्थान / ए। एन। कोलमोगोरोव, ए। एम। अब्रामोव, यू। पी। डुडनित्सिन और अन्य; ईडी। ए.एन. कोलमोगोरोवा.- 14वां संस्करण.- एम.: एनलाइटेनमेंट, 2004.- 384 पी.: बीमार.- आईएसबीएन 5-09-013651-3।
  • गुसेव वी.ए., मोर्दकोविच ए.जी.गणित (तकनीकी स्कूलों के आवेदकों के लिए एक मैनुअल): प्रोक। भत्ता।- एम।; उच्चतर स्कूल, 1984.-351 पी।, बीमार।
  • चतुर छात्रों द्वारा कॉपीराइट

    सर्वाधिकार सुरक्षित।
    कॉपीराइट कानून द्वारा संरक्षित। www.website का कोई हिस्सा नहीं, जिसमें शामिल हैं आंतरिक सामग्रीऔर बाहरी डिजाइनकॉपीराइट धारक की पूर्व लिखित अनुमति के बिना किसी भी रूप में पुन: प्रस्तुत या उपयोग नहीं किया जा सकता है।

    लोड हो रहा है...लोड हो रहा है...