Cara menurunkan bilangan dari logaritma. Logaritma aturan aksi dengan logaritma

Logaritma suatu bilangan N dengan alasan sebuah disebut eksponen X , yang perlu Anda tingkatkan sebuah untuk mendapatkan nomornya N

Dengan ketentuan
,
,

Ini mengikuti dari definisi logaritma bahwa
, yaitu
- persamaan ini adalah identitas logaritma dasar.

Logaritma ke basis 10 disebut logaritma desimal. Alih-alih
menulis
.

logaritma dasar e disebut alami dan dilambangkan
.

Sifat dasar logaritma.

    Logaritma kesatuan dalam basis apa pun nol

    Logaritma hasil kali sama dengan jumlah logaritma faktor-faktornya.

3) Logaritma hasil bagi sama dengan selisih logaritma


Faktor
disebut modulus transisi dari logaritma di basis sebuah ke logaritma di pangkalan b .

Dengan menggunakan properti 2-5, seringkali dimungkinkan untuk mereduksi logaritma dari ekspresi kompleks menjadi hasil operasi aritmatika sederhana pada logaritma.

Sebagai contoh,

Transformasi logaritma seperti ini disebut logaritma. Transformasi kebalikan dari logaritma disebut potensiasi.

Bab 2. Elemen matematika yang lebih tinggi.

1. Batas

batas fungsi
adalah bilangan terbatas A jika, ketika berjuang xx 0 untuk setiap yang telah ditentukan
, ada nomor
itu segera
, kemudian
.

Fungsi yang memiliki limit berbeda dengan jumlah yang sangat kecil:
, di mana - b.m.w., yaitu
.

Contoh. Pertimbangkan fungsinya
.

Saat berusaha
, fungsi kamu menjadi nol:

1.1. Teorema dasar tentang limit.

    Batas nilai konstan sama dengan nilai konstan ini

.

    Limit jumlah (selisih) sejumlah fungsi berhingga sama dengan jumlah (selisih) limit fungsi-fungsi tersebut.

    Limit hasil kali sejumlah fungsi terhingga sama dengan hasil kali limit fungsi-fungsi tersebut.

    Limit hasil bagi dua fungsi sama dengan hasil bagi limit fungsi-fungsi tersebut jika limit penyebutnya tidak sama dengan nol.

Batas Luar Biasa

,
, di mana

1.2. Contoh Perhitungan Batas

Namun, tidak semua batasan dihitung dengan mudah. Lebih sering, perhitungan batas direduksi menjadi pengungkapan ketidakpastian tipe: atau .

.

2. Turunan dari suatu fungsi

Biarkan kita memiliki fungsi
, kontinu pada segmen
.

Argumen mendapat beberapa dorongan
. Maka fungsinya akan bertambah
.

Nilai argumen sesuai dengan nilai fungsi
.

Nilai argumen
sesuai dengan nilai fungsi.

Karena itu, .

Mari kita cari limit dari relasi ini di
. Jika limit ini ada, maka disebut turunan dari fungsi yang diberikan.

Definisi 3 turunan dari fungsi yang diberikan
dengan argumen disebut limit rasio kenaikan fungsi terhadap kenaikan argumen, ketika kenaikan argumen secara sewenang-wenang cenderung nol.

turunan fungsi
dapat dilambangkan sebagai berikut:

; ; ; .

Definisi 4Operasi mencari turunan suatu fungsi disebut diferensiasi.

2.1. Arti mekanis dari turunan.

Pertimbangkan gerakan bujursangkar dari beberapa benda kaku atau titik material.

Biarkan suatu saat nanti titik bergerak
berada di kejauhan dari posisi awal
.

Setelah beberapa waktu
dia pindah jauh
. Sikap =- kecepatan rata-rata poin materi
. Mari kita cari batas rasio ini, dengan mempertimbangkan bahwa
.

Akibatnya, penentuan kecepatan sesaat dari suatu titik material direduksi untuk menemukan turunan dari jalur terhadap waktu.

2.2. Nilai geometris turunan

Misalkan kita memiliki beberapa fungsi yang didefinisikan secara grafis
.

Beras. 1. Arti geometris dari turunan

Jika sebuah
, maka intinya
, akan bergerak sepanjang kurva, mendekati titik
.

Karena itu
, yaitu nilai turunan yang diberikan nilai argumen secara numerik sama dengan garis singgung sudut yang dibentuk oleh garis singgung pada suatu titik tertentu dengan arah sumbu positif
.

2.3. Tabel rumus diferensiasi dasar.

Fungsi daya

Fungsi eksponensial

fungsi logaritma

fungsi trigonometri

Fungsi trigonometri terbalik

2.4. Aturan diferensiasi.

Turunan dari

Turunan dari jumlah (selisih) fungsi


Turunan dari produk dua fungsi


Turunan dari hasil bagi dua fungsi


2.5. Turunan dari fungsi kompleks.

Biarkan fungsinya
sedemikian rupa sehingga dapat direpresentasikan sebagai

dan
, dimana variabel adalah argumen perantara, maka

Turunan dari fungsi kompleks sama dengan produk turunan dari fungsi yang diberikan sehubungan dengan argumen antara dengan turunan dari argumen antara sehubungan dengan x.

Contoh 1.

Contoh2.

3. Diferensial fungsi.

Biarkanlah terjadi begitu
, terdiferensialkan pada selang tertentu
biarkan saja pada fungsi ini memiliki turunan

,

maka Anda bisa menulis

(1),

di mana - kuantitas yang sangat kecil,

karena di

Mengalikan semua suku persamaan (1) dengan
kita punya:

Di mana
- b.m.v. urutan yang lebih tinggi.

Nilai
disebut diferensial fungsi
dan dilambangkan

.

3.1. Nilai geometrik diferensial.

Biarkan fungsinya
.

Gbr.2. Arti geometris dari diferensial.

.

Jelas, diferensial fungsi
sama dengan kenaikan ordinat garis singgung pada titik tertentu.

3.2. Derivatif dan diferensial dari berbagai pesanan.

Jika ada
, kemudian
disebut turunan pertama.

Turunan dari turunan pertama disebut turunan orde kedua dan ditulis
.

Turunan dari fungsi orde ke-n
disebut turunan dari orde (n-1) dan ditulis:

.

Diferensial dari diferensial suatu fungsi disebut diferensial kedua atau diferensial orde kedua.

.

.

3.3 Memecahkan masalah biologi menggunakan diferensiasi.

Tugas 1. Penelitian telah menunjukkan bahwa pertumbuhan koloni mikroorganisme mematuhi hukum
, di mana N – jumlah mikroorganisme (dalam ribuan), t - waktu (hari).

b) Akankah populasi koloni bertambah atau berkurang selama periode ini?

Menjawab. Koloni akan tumbuh dalam ukuran.

Tugas 2. Air di danau diuji secara berkala untuk mengontrol kandungan bakteri patogen. Melalui t hari setelah pengujian, konsentrasi bakteri ditentukan oleh rasio

.

Kapan konsentrasi minimum bakteri masuk ke dalam danau dan memungkinkan untuk berenang di dalamnya?

Solusi Sebuah fungsi mencapai max atau min ketika turunannya adalah nol.

,

Mari kita tentukan max atau min dalam 6 hari. Untuk melakukan ini, kami mengambil turunan kedua.


Jawaban: Setelah 6 hari akan ada konsentrasi minimum bakteri.

Privasi Anda penting bagi kami. Untuk alasan ini, kami telah mengembangkan Kebijakan Privasi yang menjelaskan bagaimana kami menggunakan dan menyimpan informasi Anda. Harap baca kebijakan privasi kami dan beri tahu kami jika Anda memiliki pertanyaan.

Pengumpulan dan penggunaan informasi pribadi

Informasi pribadi mengacu pada data yang dapat digunakan untuk mengidentifikasi orang tertentu atau menghubunginya.

Anda mungkin diminta untuk memberikan informasi pribadi Anda kapan saja saat Anda menghubungi kami.

Berikut ini adalah beberapa contoh jenis informasi pribadi yang kami kumpulkan dan bagaimana kami dapat menggunakan informasi tersebut.

Informasi pribadi apa yang kami kumpulkan:

  • Saat Anda mengajukan aplikasi di situs, kami dapat mengumpulkan berbagai informasi, termasuk nama, nomor telepon, alamat Anda Surel dll.

Bagaimana kami menggunakan informasi pribadi Anda:

  • Dikumpulkan oleh kami informasi pribadi memungkinkan kami untuk menghubungi Anda dan memberi tahu Anda tentang penawaran unik, promosi dan acara lainnya dan acara mendatang.
  • Dari waktu ke waktu, kami dapat menggunakan informasi pribadi Anda untuk mengirimkan pemberitahuan dan pesan penting kepada Anda.
  • Kami juga dapat menggunakan informasi pribadi untuk tujuan internal, seperti melakukan audit, analisis data, dan berbagai penelitian untuk meningkatkan layanan yang kami berikan dan memberi Anda rekomendasi terkait layanan kami.
  • Jika Anda mengikuti undian berhadiah, kontes, atau insentif serupa, kami dapat menggunakan informasi yang Anda berikan untuk mengelola program tersebut.

Pengungkapan kepada pihak ketiga

Kami tidak mengungkapkan informasi yang diterima dari Anda kepada pihak ketiga.

Pengecualian:

  • Jika perlu - sesuai dengan hukum, perintah pengadilan, dalam proses hukum, dan / atau berdasarkan permintaan publik atau permintaan dari agensi pemerintahan di wilayah Federasi Rusia - ungkapkan informasi pribadi Anda. Kami juga dapat mengungkapkan informasi tentang Anda jika kami menentukan bahwa pengungkapan tersebut diperlukan atau sesuai untuk alasan keamanan, penegakan hukum, atau kepentingan publik lainnya.
  • Jika terjadi reorganisasi, merger, atau penjualan, kami dapat mentransfer informasi pribadi yang kami kumpulkan kepada penerus pihak ketiga yang relevan.

Perlindungan informasi pribadi

Kami mengambil tindakan pencegahan - termasuk administratif, teknis, dan fisik - untuk melindungi informasi pribadi Anda dari kehilangan, pencurian, dan penyalahgunaan, serta dari akses, pengungkapan, perubahan, dan penghancuran yang tidak sah.

Menjaga privasi Anda di tingkat perusahaan

Untuk memastikan bahwa informasi pribadi Anda aman, kami mengomunikasikan praktik privasi dan keamanan kepada karyawan kami dan secara ketat menegakkan praktik privasi.

Logaritma dari b (b > 0) ke basis a (a > 0, a 1) adalah eksponen yang Anda perlukan untuk menaikkan angka a untuk mendapatkan b.

Logaritma basis 10 dari b dapat ditulis sebagai: log (b), dan logaritma ke basis e (logaritma natural) - ln(b).

Sering digunakan saat memecahkan masalah dengan logaritma:

Sifat-sifat logaritma

Ada empat utama sifat-sifat logaritma.

Misalkan a > 0, a 1, x > 0 dan y > 0.

Properti 1. Logaritma produk

Logaritma hasil kali sama dengan jumlah logaritma:

log a (x y) = log a x + log a y

Properti 2. Logaritma hasil bagi

Logaritma hasil bagi sama dengan selisih logaritma:

log a (x / y) = log a x – log a y

Properti 3. Logaritma derajat

logaritma derajat sama dengan produk derajat dan logaritma:

Jika basis logaritma dalam eksponen, maka rumus lain berlaku:

Properti 4. Logaritma dari akar

Sifat ini dapat diperoleh dari sifat logaritma derajat, karena akar derajat ke-n sama dengan pangkat 1/n:

Rumus untuk berpindah dari logaritma di satu basis ke logaritma di basis lain

Rumus ini juga sering digunakan dalam menyelesaikan berbagai tugas ke logaritma:

Kasus spesial:

Perbandingan logaritma (pertidaksamaan)

Misalkan kita memiliki 2 fungsi f(x) dan g(x) di bawah logaritma dengan basis yang sama dan ada tanda pertidaksamaan di antara mereka:

Untuk membandingkannya, pertama-tama Anda harus melihat basis logaritma a:

  • Jika a > 0, maka f(x) > g(x) > 0
  • Jika 0< a < 1, то 0 < f(x) < g(x)

Bagaimana memecahkan masalah dengan logaritma: contoh

Tugas dengan logaritma termasuk dalam USE dalam matematika untuk kelas 11 dalam tugas 5 dan tugas 7, Anda dapat menemukan tugas dengan solusi di situs web kami di bagian yang sesuai. Juga, tugas dengan logaritma ditemukan di bank tugas dalam matematika. Anda dapat menemukan semua contoh dengan mencari di situs.

Apa itu logaritma?

Logaritma selalu dianggap sebagai topik yang sulit dalam kursus matematika sekolah. Ada banyak definisi yang berbeda dari logaritma, tetapi untuk beberapa alasan kebanyakan buku teks menggunakan yang paling kompleks dan disayangkan dari mereka.

Kami akan mendefinisikan logaritma secara sederhana dan jelas. Mari kita buat tabel untuk ini:

Jadi, kita memiliki kekuatan dua.

Logaritma - properti, rumus, cara menyelesaikannya

Jika Anda mengambil nomor dari garis bawah, maka Anda dapat dengan mudah menemukan kekuatan yang Anda miliki untuk meningkatkan dua untuk mendapatkan nomor ini. Misalnya, untuk mendapatkan 16, Anda perlu menaikkan dua pangkat empat. Dan untuk mendapatkan 64, Anda perlu menaikkan dua pangkat enam. Hal ini dapat dilihat dari tabel.

Dan sekarang - sebenarnya, definisi logaritma:

basis a dari argumen x adalah pangkat dimana bilangan a harus dinaikkan untuk mendapatkan bilangan x.

Notasi: log a x \u003d b, di mana a adalah basis, x adalah argumen, b sebenarnya adalah apa yang sama dengan logaritma.

Misalnya, 2 3 = 8 log 2 8 = 3 (logaritma basis 2 dari 8 adalah tiga karena 2 3 = 8). Mungkin juga log 2 64 = 6, karena 2 6 = 64.

Operasi mencari logaritma suatu bilangan ke basis tertentu disebut. Jadi mari kita tambahkan baris baru ke tabel kita:

2 1 2 2 2 3 2 4 2 5 2 6
2 4 8 16 32 64
log 2 2 = 1 log 2 4 = 2 log 2 8 = 3 log 2 16 = 4 log 2 32 = 5 log 2 64 = 6

Sayangnya, tidak semua logaritma dianggap begitu mudah. Misalnya, coba cari log 2 5. Angka 5 tidak ada di tabel, tetapi logika menentukan bahwa logaritma akan terletak di suatu tempat di segmen tersebut. Karena 2 2< 5 < 2 3 , а чем больше степень двойки, тем больше получится число.

Angka-angka seperti itu disebut irasional: angka-angka setelah titik desimal dapat ditulis tanpa batas, dan tidak pernah berulang. Jika logaritma ternyata irasional, lebih baik dibiarkan seperti ini: log 2 5, log 3 8, log 5 100.

Penting untuk dipahami bahwa logaritma adalah ekspresi dengan dua variabel (basis dan argumen). Pada awalnya, banyak orang bingung di mana dasarnya dan di mana argumennya. Menghindari kesalahpahaman yang disayangkan langsung saja lihat gambarnya :

Sebelum kita tidak lebih dari definisi logaritma. Ingat: logaritma adalah kekuatan, di mana Anda perlu menaikkan basis untuk mendapatkan argumen. Ini adalah pangkalan yang dinaikkan menjadi kekuatan - dalam gambar itu disorot dengan warna merah. Ternyata alasnya selalu di bawah! Saya memberi tahu aturan yang luar biasa ini kepada murid-murid saya pada pelajaran pertama - dan tidak ada kebingungan.

Cara menghitung logaritma

Kami menemukan definisinya - masih mempelajari cara menghitung logaritma, mis. singkirkan tanda "log". Untuk memulainya, kami mencatat bahwa dua fakta penting mengikuti dari definisi:

  1. Argumen dan basis harus selalu lebih besar dari nol. Ini mengikuti dari definisi derajat oleh eksponen rasional, yang definisi logaritma dikurangi.
  2. Basis harus berbeda dari kesatuan, karena satu unit untuk kekuatan apa pun masih merupakan satu unit. Karena itu, pertanyaan “kepada apa seseorang harus dibangkitkan untuk mendapatkan dua” tidak ada artinya. Tidak ada gelar seperti itu!

Pembatasan seperti itu disebut rentang yang valid(ODZ). Ternyata ODZ logaritmanya seperti ini: log a x = b x > 0, a > 0, a 1.

Perhatikan bahwa tidak ada batasan pada angka b (nilai logaritma) tidak dikenakan. Misalnya, logaritma mungkin negatif: log 2 0,5 = 1, karena 0,5 = 2 1 .

Namun, sekarang kami hanya mempertimbangkan ekspresi numerik, di mana tidak diperlukan untuk mengetahui ODZ dari logaritma. Semua batasan telah diperhitungkan oleh penyusun masalah. Tetapi ketika persamaan dan ketidaksetaraan logaritmik ikut bermain, persyaratan DHS akan menjadi wajib. Memang, dalam dasar dan argumen bisa ada konstruksi yang sangat kuat, yang belum tentu sesuai dengan batasan di atas.

Sekarang pertimbangkan skema umum perhitungan logaritma. Ini terdiri dari tiga langkah:

  1. Nyatakan basis a dan argumen x sebagai pangkat dengan kemungkinan basis terkecil lebih besar dari satu. Sepanjang jalan, lebih baik untuk menyingkirkan pecahan desimal;
  2. Selesaikan persamaan untuk variabel b: x = a b ;
  3. Angka yang dihasilkan b akan menjadi jawabannya.

Itu saja! Jika logaritma ternyata irasional, ini akan terlihat pada langkah pertama. Persyaratan bahwa basis lebih besar dari satu sangat relevan: ini mengurangi kemungkinan kesalahan dan sangat menyederhanakan perhitungan. Demikian pula dengan pecahan desimal: jika Anda segera mengubahnya menjadi pecahan biasa, kesalahan akan jauh lebih sedikit.

Mari kita lihat bagaimana skema ini bekerja dengan contoh spesifik:

Tugas. Hitung logaritma: log 5 25

  1. Mari kita nyatakan basis dan argumen sebagai pangkat lima: 5 = 5 1 ; 25 = 52;
  2. Mari kita buat dan selesaikan persamaannya:
    log 5 25 = b (5 1) b = 5 2 5 b = 5 2 b = 2;

  3. Menerima jawaban: 2.

Tugas. Hitung logaritma:

Tugas. Hitung logaritma: log 4 64

  1. Mari kita nyatakan basis dan argumen sebagai pangkat dua: 4 = 2 2 ; 64 = 26;
  2. Mari kita buat dan selesaikan persamaannya:
    log 4 64 = b (2 2) b = 2 6 2 2b = 2 6 2b = 6 b = 3;
  3. Menerima jawaban: 3.

Tugas. Hitung logaritma: log 16 1

  1. Mari kita nyatakan basis dan argumen sebagai pangkat dua: 16 = 2 4 ; 1 = 20;
  2. Mari kita buat dan selesaikan persamaannya:
    log 16 1 = b (2 4) b = 2 0 2 4b = 2 0 4b = 0 b = 0;
  3. Menerima tanggapan: 0.

Tugas. Hitung logaritma: log 7 14

  1. Mari kita nyatakan basis dan argumen sebagai pangkat tujuh: 7 = 7 1 ; 14 tidak direpresentasikan sebagai pangkat tujuh, karena 7 1< 14 < 7 2 ;
  2. Ini mengikuti dari paragraf sebelumnya bahwa logaritma tidak dipertimbangkan;
  3. Jawabannya tidak ada perubahan: log 7 14.

Sebuah catatan kecil pada contoh terakhir. Bagaimana cara memastikan bahwa suatu bilangan bukanlah pangkat eksak dari bilangan lain? Sangat sederhana - hanya menguraikannya menjadi faktor prima. Jika paling sedikit ada dua faktor yang berbeda dalam pemuaian, bilangan tersebut bukanlah pangkat eksak.

Tugas. Cari tahu apakah pangkat yang tepat dari bilangan tersebut adalah: 8; 48; 81; 35; empat belas.

8 \u003d 2 2 2 \u003d 2 3 - derajat yang tepat, karena hanya ada satu pengganda;
48 = 6 8 = 3 2 2 2 2 = 3 2 4 bukan merupakan pangkat eksak karena ada dua faktor: 3 dan 2;
81 \u003d 9 9 \u003d 3 3 3 3 \u003d 3 4 - derajat yang tepat;
35 = 7 5 - sekali lagi bukan gelar yang pasti;
14 \u003d 7 2 - sekali lagi bukan gelar yang tepat;

Perhatikan juga bahwa bilangan prima itu sendiri selalu merupakan pangkat eksak dari dirinya sendiri.

logaritma desimal

Beberapa logaritma sangat umum sehingga memiliki nama dan sebutan khusus.

dari argumen x adalah logaritma basis 10, mis. kekuatan yang 10 harus dinaikkan untuk mendapatkan x. sebutan: lgx.

Misalnya, log 10 = 1; log 100 = 2; lg 1000 = 3 - dst.

Mulai sekarang, ketika frasa seperti "Temukan lg 0,01" muncul di buku teks, ketahuilah bahwa ini bukan salah ketik. Ini adalah logaritma desimal. Namun, jika Anda tidak terbiasa dengan sebutan seperti itu, Anda selalu dapat menulis ulang:
log x = log 10 x

Segala sesuatu yang benar untuk logaritma biasa juga benar untuk desimal.

logaritma natural

Ada logaritma lain yang memiliki notasi sendiri. Dalam arti tertentu, ini bahkan lebih penting daripada desimal. Ini tentang tentang logaritma natural.

dari argumen x adalah logaritma ke basis e, mis. kekuatan yang nomor e harus dinaikkan untuk mendapatkan nomor x. Penunjukan: lnx.

Banyak yang akan bertanya: berapakah angka e? Ini bilangan irasional, miliknya nilai yang tepat tidak mungkin untuk menemukan dan merekam. Ini hanya angka pertama:
e = 2.718281828459…

Kami tidak akan menyelidiki apa nomor ini dan mengapa itu diperlukan. Ingatlah bahwa e adalah basis dari logaritma natural:
ln x = log e x

Jadi ln e = 1; log e 2 = 2; ln e 16 = 16 - dst. Di sisi lain, ln 2 adalah bilangan irasional. Secara umum, logaritma natural dari sembarang bilangan rasional irasional. Kecuali, tentu saja, kesatuan: ln 1 = 0.

Untuk logaritma natural semua aturan yang benar untuk logaritma biasa adalah valid.

Lihat juga:

Logaritma. Sifat-sifat logaritma (kekuatan logaritma).

Bagaimana cara merepresentasikan angka sebagai logaritma?

Kami menggunakan definisi logaritma.

Logaritma adalah indikator kekuatan yang basisnya harus dinaikkan untuk mendapatkan nomor di bawah tanda logaritma.

Jadi, untuk menyatakan bilangan tertentu c sebagai logaritma ke basis a, perlu untuk meletakkan derajat di bawah tanda logaritma dengan basis yang sama dengan basis logaritma, dan menulis bilangan ini c ke dalam eksponen :

Dalam bentuk logaritma, Anda dapat mewakili bilangan apa pun secara mutlak - positif, negatif, bilangan bulat, pecahan, rasional, irasional:

Agar tidak bingung a dan c dalam kondisi stres ujian atau ujian, Anda dapat menggunakan aturan berikut untuk diingat:

yang di bawah turun, yang di atas naik.

Misalnya, Anda ingin merepresentasikan angka 2 sebagai logaritma ke basis 3.

Kami memiliki dua angka - 2 dan 3. Angka-angka ini adalah basis dan eksponen, yang akan kami tulis di bawah tanda logaritma. Tetap menentukan mana dari angka-angka ini yang harus ditulis, di dasar derajat, dan mana - naik, di eksponen.

Basis 3 dalam catatan logaritma berada di bawah, yang berarti bahwa ketika kita menyatakan deuce sebagai logaritma ke basis 3, kita juga akan menulis 3 ke basis.

2 lebih tinggi dari 3. Dan dalam notasi derajat, kami menulis dua di atas tiga, yaitu dalam eksponen:

Logaritma. Tingkat pertama.

logaritma

logaritma nomor positif b dengan alasan sebuah, di mana a > 0, a 1, adalah eksponen yang angkanya harus dinaikkan. sebuah, Untuk memperoleh b.

Definisi logaritma secara singkat dapat dituliskan seperti ini:

Persamaan ini berlaku untuk b > 0, a > 0, a 1. Dia biasa dipanggil identitas logaritma.
Tindakan menemukan logaritma suatu bilangan disebut logaritma.

Sifat-sifat logaritma:

Logaritma dari produk:

Logaritma hasil bagi dari pembagian:

Mengganti basis logaritma:

logaritma derajat:

logaritma akar:

Logaritma dengan basis daya:





desimal dan logaritma natural.

logaritma desimal nomor memanggil logaritma basis 10 dari nomor itu dan menulis   lg b
logaritma natural nomor memanggil logaritma dari nomor ini ke basis e, di mana e adalah bilangan irasional, kira-kira sama dengan 2,7. Pada saat yang sama, mereka menulis ln b.

Catatan lain tentang Aljabar dan Geometri

Sifat dasar logaritma

Sifat dasar logaritma

Logaritma, seperti bilangan apa pun, dapat ditambahkan, dikurangi, dan dikonversi dengan segala cara yang memungkinkan. Tapi karena logaritma bukan bilangan biasa, ada aturan di sini, yang disebut sifat dasar.

Aturan-aturan ini harus diketahui - tidak ada masalah logaritma yang serius yang dapat diselesaikan tanpa aturan tersebut. Selain itu, jumlahnya sangat sedikit - semuanya bisa dipelajari dalam satu hari. Jadi mari kita mulai.

Penjumlahan dan pengurangan logaritma

Pertimbangkan dua logaritma dengan basis yang sama: log a x dan log a y. Kemudian mereka dapat ditambahkan dan dikurangkan, dan:

  1. log a x + log a y = log a (x y);
  2. log a x - log a y = log a (x:y).

Jadi, jumlah logaritma sama dengan logaritma hasil kali, dan selisihnya adalah logaritma hasil bagi. Catatan: momen kunci di sini - alasan yang sama. Jika basisnya berbeda, aturan ini tidak berfungsi!

Rumus-rumus ini akan membantu menghitung ekspresi logaritma bahkan ketika bagian-bagian individualnya tidak dipertimbangkan (lihat pelajaran "Apa itu logaritma"). Lihatlah contoh dan lihat:

log 6 4 + log 6 9.

Karena basis logaritmanya sama, kami menggunakan rumus penjumlahan:
log 6 4 + log 6 9 = log 6 (4 9) = log 6 36 = 2.

Tugas. Temukan nilai dari ekspresi: log 2 48 log 2 3.

Basisnya sama, kami menggunakan rumus perbedaan:
log 2 48 - log 2 3 = log 2 (48: 3) = log 2 16 = 4.

Tugas. Temukan nilai dari ekspresi: log 3 135 log 3 5.

Sekali lagi, basisnya sama, jadi kita punya:
log 3 135 log 3 5 = log 3 (135: 5) = log 3 27 = 3.

Seperti yang Anda lihat, ekspresi asli terdiri dari logaritma "buruk", yang tidak dianggap terpisah. Tetapi setelah transformasi, angka-angka yang cukup normal ternyata. Berdasarkan fakta ini, banyak kertas ujian. Ya, kontrol - ekspresi serupa dalam semua keseriusan (kadang - hampir tanpa perubahan) ditawarkan di ujian.

Menghapus eksponen dari logaritma

Sekarang mari kita sedikit memperumit tugas. Bagaimana jika ada gelar dalam basis atau argumen logaritma? Kemudian eksponen derajat ini dapat diambil dari tanda logaritma sesuai dengan aturan berikut:

Sangat mudah untuk melihat itu aturan terakhir mengikuti dua yang pertama. Tetapi lebih baik untuk mengingatnya - dalam beberapa kasus itu akan secara signifikan mengurangi jumlah perhitungan.

Tentu saja, semua aturan ini masuk akal jika logaritma ODZ diamati: a > 0, a 1, x > 0. Dan satu hal lagi: belajar menerapkan semua rumus tidak hanya dari kiri ke kanan, tetapi juga sebaliknya, mis. Anda dapat memasukkan angka sebelum tanda logaritma ke dalam logaritma itu sendiri.

Bagaimana menyelesaikan logaritma

Ini yang paling sering dibutuhkan.

Tugas. Temukan nilai dari ekspresi: log 7 49 6 .

Mari kita singkirkan derajat dalam argumen sesuai dengan rumus pertama:
log 7 49 6 = 6 log 7 49 = 6 2 = 12

Tugas. Temukan nilai ekspresi:

Perhatikan bahwa penyebutnya adalah logaritma yang basis dan argumennya adalah pangkat eksak: 16 = 2 4 ; 49 = 72. Kita punya:

Saya pikir contoh terakhir perlu klarifikasi. Ke mana perginya logaritma? Sepanjang perjalanan saat terakhir kami bekerja hanya dengan penyebut. Mereka mempresentasikan basis dan argumen logaritma yang berdiri di sana dalam bentuk derajat dan mengeluarkan indikator - mereka mendapat pecahan "tiga lantai".

Sekarang mari kita lihat pecahan utama. Pembilang dan penyebutnya sama: log 2 7. Karena log 2 7 0, kita dapat mengurangi pecahan - 2/4 akan tetap menjadi penyebut. Menurut aturan aritmatika, empat dapat ditransfer ke pembilang, yang dilakukan. Hasilnya adalah jawabannya: 2.

Transisi ke yayasan baru

Berbicara tentang aturan untuk menambah dan mengurangi logaritma, saya secara khusus menekankan bahwa mereka hanya bekerja dengan basis yang sama. Bagaimana jika basisnya berbeda? Bagaimana jika mereka bukan kekuatan eksak dari angka yang sama?

Formula untuk transisi ke pangkalan baru datang untuk menyelamatkan. Kami merumuskannya dalam bentuk teorema:

Biarkan log logaritma a x diberikan. Maka untuk sembarang bilangan c sehingga c > 0 dan c 1, persamaannya benar:

Secara khusus, jika kita menempatkan c = x, kita mendapatkan:

Ini mengikuti dari rumus kedua bahwa basis dan argumen logaritma dapat dipertukarkan, tetapi seluruh ekspresi "dibalik", mis. logaritma dalam penyebut.

Rumus ini jarang ditemukan dalam ekspresi numerik biasa. Dimungkinkan untuk mengevaluasi seberapa nyaman mereka hanya ketika menyelesaikan persamaan dan pertidaksamaan logaritmik.

Namun, ada tugas yang tidak bisa diselesaikan sama sekali kecuali dengan pindah ke yayasan baru. Mari kita pertimbangkan beberapa di antaranya:

Tugas. Temukan nilai dari ekspresi: log 5 16 log 2 25.

Perhatikan bahwa argumen dari kedua logaritma adalah eksponen eksak. Mari kita keluarkan indikatornya: log 5 16 = log 5 2 4 = 4log 5 2; log 2 25 = log 2 5 2 = 2log 2 5;

Sekarang mari kita membalik logaritma kedua:

Karena produk tidak berubah dari permutasi faktor, kami dengan tenang mengalikan empat dan dua, dan kemudian menemukan logaritma.

Tugas. Temukan nilai dari ekspresi: log 9 100 lg 3.

Basis dan argumen dari logaritma pertama adalah pangkat eksak. Mari kita tuliskan dan singkirkan indikatornya:

Sekarang mari kita singkirkan logaritma desimal dengan pindah ke basis baru:

Identitas logaritma dasar

Seringkali dalam proses penyelesaian diperlukan untuk mewakili angka sebagai logaritma ke basis yang diberikan.

Dalam hal ini, rumus akan membantu kita:

Dalam kasus pertama, angka n menjadi eksponen dalam argumen. Angka n bisa berupa apa saja, karena itu hanya nilai logaritma.

Rumus kedua sebenarnya adalah definisi yang diparafrasekan. Disebut seperti ini:

Memang, apa yang akan terjadi jika angka b dinaikkan sedemikian rupa sehingga angka b dalam derajat ini memberikan angka a? Itu benar: ini adalah nomor yang sama a. Baca paragraf ini dengan cermat lagi - banyak orang "menggantung" di atasnya.

Seperti rumus konversi basis baru, identitas logaritmik dasar terkadang merupakan satu-satunya solusi yang mungkin.

Tugas. Temukan nilai ekspresi:

Perhatikan bahwa log 25 64 = log 5 8 - baru saja mengeluarkan kuadrat dari basis dan argumen logaritma. Mengingat aturan untuk mengalikan kekuatan dengan dasar yang sama, kita mendapatkan:

Jika seseorang tidak tahu, ini adalah tugas nyata dari Ujian Negara Bersatu

Satuan logaritma dan nol logaritmik

Sebagai kesimpulan, saya akan memberikan dua identitas yang sulit untuk disebut properti - melainkan, ini adalah konsekuensi dari definisi logaritma. Mereka terus-menerus ditemukan dalam masalah dan, yang mengejutkan, menciptakan masalah bahkan untuk siswa "mahir".

  1. log a a = 1 adalah. Ingat sekali dan untuk semua: logaritma ke basis apa pun dari basis itu sendiri sama dengan satu.
  2. log a 1 = 0 adalah. Basis a bisa apa saja, tetapi jika argumennya satu, logaritmanya adalah nol! Karena a 0 = 1 adalah konsekuensi langsung dari definisi.

Itu semua properti. Pastikan untuk berlatih mempraktikkannya! Unduh lembar contekan di awal pelajaran, cetak dan selesaikan masalahnya.

Berhubungan dengan

tugas menemukan salah satu dari tiga angka dari dua lainnya, diberikan, dapat diatur. Diberikan a dan kemudian N ditemukan dengan eksponensial. Jika N diberikan dan kemudian a ditemukan dengan mengekstrak akar pangkat x (atau eksponensial). Sekarang perhatikan kasus ketika, diberikan a dan N, diperlukan untuk menemukan x.

Biarkan angka N positif: angka a positif dan tidak sama dengan satu: .

Definisi. Logaritma dari angka N ke basis a adalah eksponen yang Anda perlukan untuk menaikkan a untuk mendapatkan angka N; logaritma dilambangkan dengan

Jadi, dalam persamaan (26.1), eksponen ditemukan sebagai logaritma dari N ke basis a. Entri

memiliki arti yang sama. Kesetaraan (26.1) kadang-kadang disebut identitas dasar teori logaritma; sebenarnya, itu mengungkapkan definisi konsep logaritma. Dengan definisi ini, basis logaritma a selalu positif dan berbeda dari satu; bilangan logaritma N adalah positif. Bilangan negatif dan nol tidak memiliki logaritma. Dapat dibuktikan bahwa setiap bilangan dengan basis tertentu memiliki logaritma yang terdefinisi dengan baik. Oleh karena itu kesetaraan memerlukan . Perhatikan bahwa kondisinya penting di sini, jika tidak, kesimpulan tidak akan dibenarkan, karena persamaan berlaku untuk semua nilai x dan y.

Contoh 1. Temukan

Keputusan. Untuk mendapatkan nomornya, Anda perlu menaikkan basis 2 ke pangkat Oleh karena itu.

Anda dapat merekam saat memecahkan contoh seperti itu dalam bentuk berikut:

Contoh 2. Temukan .

Keputusan. Kita punya

Dalam contoh 1 dan 2, kita dengan mudah menemukan logaritma yang diinginkan dengan menyatakan bilangan logaritma sebagai derajat basis dengan eksponen rasional. Dalam kasus umum, misalnya, untuk dll., ini tidak dapat dilakukan, karena logaritma memiliki nilai irasional. Mari kita perhatikan satu pertanyaan yang berkaitan dengan pernyataan ini. Dalam 12 kami memberikan konsep kemungkinan menentukan kekuatan nyata dari bilangan positif yang diberikan. Ini diperlukan untuk pengenalan logaritma, yang, secara umum, dapat berupa bilangan irasional.

Pertimbangkan beberapa sifat logaritma.

Sifat 1. Jika bilangan dan basis sama, maka logaritma sama dengan satu, dan sebaliknya, jika logaritma sama dengan satu, maka bilangan dan basis sama.

Bukti. Biarkan Dengan definisi logaritma, kami memiliki dan dari mana

Sebaliknya, biarkan Kemudian menurut definisi

Properti 2. Logaritma kesatuan untuk setiap basis sama dengan nol.

Bukti. Dengan definisi logaritma (pangkat nol dari setiap basis positif sama dengan satu, lihat (10.1)). Dari sini

Q.E.D.

Pernyataan sebaliknya juga benar: jika , maka N = 1. Memang, kita memiliki .

Sebelum menyatakan sifat-sifat logaritma berikut, kita setuju untuk mengatakan bahwa dua bilangan a dan b terletak pada sisi yang sama dari bilangan ketiga c jika keduanya lebih besar dari c atau lebih kecil dari c. Jika salah satu bilangan ini lebih besar dari c dan bilangan lainnya lebih kecil dari c, maka kita katakan bahwa bilangan-bilangan tersebut terletak pada sisi yang berlawanan dari c.

Sifat 3. Jika bilangan dan basis terletak pada sisi yang sama, maka logaritmanya positif; jika bilangan dan alas terletak pada sisi yang berlawanan, maka logaritmanya negatif.

Pembuktian sifat 3 didasarkan pada kenyataan bahwa derajat a lebih besar dari satu jika basis lebih besar dari satu dan eksponennya positif, atau basisnya lebih kecil dari satu dan eksponennya negatif. Derajat kurang dari satu jika basis lebih besar dari satu dan eksponennya negatif, atau basisnya kurang dari satu dan eksponennya positif.

Ada empat kasus yang harus dipertimbangkan:

Kami membatasi diri pada analisis yang pertama, pembaca akan mempertimbangkan sisanya sendiri.

Biarkan eksponen dalam kesetaraan menjadi tidak negatif atau sama dengan nol, oleh karena itu, itu positif, yaitu, yang harus dibuktikan.

Contoh 3. Tentukan mana dari logaritma berikut yang positif dan mana yang negatif:

Penyelesaian, a) karena angka 15 dan alas 12 terletak pada sisi yang sama dari satuan;

b) , karena 1000 dan 2 terletak di sisi unit yang sama; pada saat yang sama, tidak penting bahwa basis lebih besar dari bilangan logaritmik;

c), karena 3.1 dan 0.8 terletak pada sisi yang berlawanan dari kesatuan;

G) ; mengapa?

e); mengapa?

Sifat-sifat berikut 4-6 sering disebut aturan logaritma: mereka memungkinkan, mengetahui logaritma dari beberapa angka, untuk menemukan logaritma dari produk mereka, hasil bagi, derajat masing-masing.

Properti 4 (aturan untuk logaritma produk). Logaritma produk dari beberapa bilangan positif dalam basis yang diberikan sama dengan jumlah logaritma dari angka-angka ini dalam basis yang sama.

Bukti. Biarkan angka positif diberikan.

Untuk logaritma produk mereka, kami menulis persamaan (26.1) mendefinisikan logaritma:

Dari sini kita menemukan

Membandingkan eksponen dari ekspresi pertama dan terakhir, kami memperoleh persamaan yang diperlukan:

Perhatikan bahwa kondisinya sangat penting; logaritma dari produk dari dua angka negatif masuk akal, tetapi dalam kasus ini kita mendapatkan

Secara umum, jika produk dari beberapa faktor positif, maka logaritmanya sama dengan jumlah logaritma modul dari faktor-faktor ini.

Properti 5 (aturan logaritma hasil bagi). Logaritma dari hasil bagi bilangan positif sama dengan perbedaan antara logaritma dari dividen dan pembagi, diambil dalam basis yang sama. Bukti. Temukan secara konsisten

Q.E.D.

Properti 6 (aturan logaritma derajat). Logaritma pangkat dari sembarang bilangan positif sama dengan logaritma bilangan tersebut dikalikan eksponen.

Bukti. Kami menulis lagi identitas utama (26.1) untuk nomor:

Q.E.D.

Konsekuensi. Logaritma dari akar bilangan positif sama dengan logaritma dari bilangan akar dibagi dengan pangkat dari akar:

Kita dapat membuktikan keabsahan akibat wajar ini dengan menyajikan bagaimana dan menggunakan properti 6.

Contoh 4. Logaritma ke basis a:

a) (diasumsikan bahwa semua nilai b, c, d, e positif);

b) (diasumsikan bahwa ).

Solusi, a) Lebih mudah untuk meneruskan ekspresi ini ke pangkat pecahan:

Berdasarkan persamaan (26.5)-(26.7) sekarang kita dapat menulis:

Kami memperhatikan bahwa operasi yang lebih sederhana dilakukan pada logaritma angka daripada pada angka itu sendiri: ketika mengalikan angka, logaritmanya ditambahkan, ketika dibagi, dikurangi, dll.

Itulah mengapa logaritma telah digunakan dalam praktik komputasi (lihat Bagian 29).

Tindakan kebalikan dari logaritma disebut potensiasi, yaitu: potensiasi adalah tindakan dengan mana bilangan itu sendiri ditemukan oleh logaritma yang diberikan dari suatu bilangan. Pada dasarnya, potensiasi bukanlah tindakan khusus: ia turun untuk menaikkan basis ke kekuatan (sama dengan logaritma angka). Istilah "potensiasi" dapat dianggap sinonim dengan istilah "eksponensial".

Saat mempotensiasi, perlu menggunakan aturan yang kebalikan dari aturan logaritma: ganti jumlah logaritma dengan logaritma produk, selisih logaritma dengan logaritma hasil bagi, dll. Secara khusus, jika ada faktor apa pun di depan tanda logaritma, maka selama potensiasi itu harus ditransfer ke derajat indikator di bawah tanda logaritma.

Contoh 5. Carilah N jika diketahui

Keputusan. Sehubungan dengan aturan potensiasi yang baru saja dinyatakan, faktor 2/3 dan 1/3, yang berada di depan tanda-tanda logaritma di sisi kanan persamaan ini, akan dipindahkan ke pangkat di bawah tanda-tanda logaritma ini; kita mendapatkan

Sekarang kita ganti selisih logaritma dengan logaritma hasil bagi:

untuk mendapatkan pecahan terakhir dalam rantai persamaan ini, kami membebaskan pecahan sebelumnya dari irasionalitas dalam penyebut (bagian 25).

Sifat 7. Jika alas lebih besar dari satu, maka lagi memiliki logaritma yang lebih besar (dan yang lebih kecil memiliki yang lebih kecil), jika basisnya kurang dari satu, maka bilangan yang lebih besar memiliki logaritma yang lebih kecil (dan yang lebih kecil memiliki yang lebih besar).

Sifat ini juga dirumuskan sebagai aturan untuk logaritma pertidaksamaan, yang keduanya positif:

Saat mengambil logaritma pertidaksamaan dengan basis lebih besar dari satu, tanda pertidaksamaan dipertahankan, dan saat mengambil logaritma dengan basis kurang dari satu, tanda pertidaksamaan dibalik (lihat juga butir 80).

Pembuktian didasarkan pada sifat 5 dan 3. Perhatikan kasus ketika Jika , maka dan, dengan mengambil logaritma, kita peroleh

(a dan N/M terletak pada satu sisi yang sama). Dari sini

Kasus a berikut, pembaca akan mencari tahu sendiri.

Logaritma bilangan positif b ke basis a (a>0, a tidak sama dengan 1) adalah bilangan c sedemikian sehingga a c = b: log a b = c a c = b (a > 0, a 1, b > 0)       

Perhatikan bahwa logaritma dari angka non-positif tidak ditentukan. Juga, basis logaritma harus berupa bilangan positif yang tidak sama dengan 1. Misalnya, jika kita kuadratkan -2, kita mendapatkan angka 4, tetapi ini tidak berarti bahwa basis -2 logaritma dari 4 adalah 2.

Identitas logaritma dasar

a log a b = b (a > 0, a 1) (2)

Penting bahwa domain definisi bagian kanan dan kiri rumus ini berbeda. Ruas kiri didefinisikan hanya untuk b>0, a>0 dan a 1. Ruas kanan didefinisikan untuk sembarang b, dan tidak bergantung pada a sama sekali. Dengan demikian, penerapan "identitas" logaritma dasar dalam menyelesaikan persamaan dan pertidaksamaan dapat menyebabkan perubahan DPV.

Dua konsekuensi yang jelas dari definisi logaritma

log a a = 1 (a > 0, a 1) (3)
log a 1 = 0 (a > 0, a 1) (4)

Memang, ketika menaikkan angka a ke pangkat pertama, kami mendapatkan angka yang sama, dan ketika menaikkannya ke pangkat nol, kami mendapatkan satu.

Logaritma hasil kali dan logaritma hasil bagi

log a (b c) = log a b + log a c (a > 0, a 1, b > 0, c > 0) (5)

Log a b c = log a b log a c (a > 0, a 1, b > 0, c > 0) (6)

Saya ingin memperingatkan anak-anak sekolah agar tidak menggunakan rumus-rumus ini secara sembarangan saat memecahkan persamaan dan pertidaksamaan logaritmik. Ketika digunakan "dari kiri ke kanan", ODZ menyempit, dan ketika berpindah dari jumlah atau selisih logaritma ke logaritma produk atau hasil bagi, ODZ mengembang.

Memang, ekspresi log a (f (x) g (x)) didefinisikan dalam dua kasus: ketika kedua fungsi benar-benar positif atau ketika f(x) dan g(x) keduanya kurang dari nol.

Mengubah ekspresi ini menjadi jumlah log a f (x) + log a g (x) , kita terpaksa membatasi diri hanya pada kasus ketika f(x)>0 dan g(x)>0. Ada penyempitan kisaran nilai yang dapat diterima, dan ini sangat tidak dapat diterima, karena dapat menyebabkan hilangnya solusi. Masalah serupa ada untuk rumus (6).

Derajat dapat diambil dari tanda logaritma

log a b p = p log a b (a > 0, a 1, b > 0) (7)

Dan sekali lagi saya ingin meminta akurasi. Perhatikan contoh berikut:

Log a (f (x) 2 = 2 log a f (x)

Sisi kiri persamaan jelas didefinisikan untuk semua nilai f(x) kecuali nol. Sisi kanan hanya untuk f(x)>0! Mengambil kekuatan dari logaritma, kami kembali mempersempit ODZ. Prosedur sebaliknya mengarah pada perluasan kisaran nilai yang dapat diterima. Semua pernyataan ini tidak hanya berlaku untuk pangkat 2, tetapi juga untuk pangkat genap.

Rumus untuk pindah ke pangkalan baru

log a b = log c b log c a (a > 0, a 1, b > 0, c > 0, c 1) (8)

Itu kasus yang jarang terjadi ketika ODZ tidak berubah selama konversi. Jika Anda telah memilih basis c dengan bijak (positif dan tidak sama dengan 1), rumus untuk pindah ke basis baru sangat aman.

Jika kita memilih angka b sebagai basis baru c, kita mendapatkan yang penting kasus spesial rumus (8):

Log a b = 1 log b a (a > 0, a 1, b > 0, b 1) (9)

Beberapa contoh sederhana dengan logaritma

Contoh 1 Hitung: lg2 + lg50.
Keputusan. lg2 + lg50 = lg100 = 2. Kami menggunakan rumus untuk jumlah logaritma (5) dan definisi logaritma desimal.


Contoh 2 Hitung: lg125/lg5.
Keputusan. lg125/lg5 = log 5 125 = 3. Kami menggunakan rumus transisi basis baru (8).

Tabel rumus yang berkaitan dengan logaritma

a log a b = b (a > 0, a 1)
log a a = 1 (a > 0, a 1)
log a 1 = 0 (a > 0, a 1)
log a (b c) = log a b + log a c (a > 0, a 1, b > 0, c > 0)
log a b c = log a b log a c (a > 0, a 1, b > 0, c > 0)
log a b p = p log a b (a > 0, a 1, b > 0)
log a b = log c b log c a (a > 0, a 1, b > 0, c > 0, c 1)
log a b = 1 log b a (a > 0, a 1, b > 0, b 1)
Memuat...Memuat...