วิธีการกำหนดมุมระหว่างเวกเตอร์ โคไซน์ของมุมระหว่างเวกเตอร์ที่ไม่ใช่ศูนย์

"เวกเตอร์สเกลาร์ผลิตภัณฑ์" - ผลคูณสเกลาร์ของเวกเตอร์ ในรูปสามเหลี่ยมด้านเท่า ABC ที่มีด้าน 1 ความสูง BD จะถูกวาด ตามคำจำกัดความ กำหนดลักษณะมุม? ระหว่างเวกเตอร์และถ้า: a) b) c) d) ที่ค่าของ t เป็นเวกเตอร์ที่ตั้งฉากกับเวกเตอร์ถ้า (2, -1), (4, 3) ผลคูณสเกลาร์ของเวกเตอร์และแสดงไว้

"Geometry 9 class "Vectors"" - ระยะห่างระหว่างจุดสองจุด ปัญหาที่ง่ายที่สุดในพิกัด ตรวจสอบตัวเอง! พิกัดเวกเตอร์ ในปี ค.ศ. 1903 O. Henrichi เสนอว่าผลิตภัณฑ์สเกลาร์แสดงด้วยสัญลักษณ์ (a, c) เวกเตอร์เป็นส่วนกำกับ การสลายตัวของเวกเตอร์ในเวกเตอร์พิกัด แนวคิดของเวกเตอร์ การสลายตัวของเวกเตอร์บนระนาบในเวกเตอร์ที่ไม่ใช่คอลิเนียร์สองตัว

"เวกเตอร์การแก้ปัญหา" - แสดงเวกเตอร์ AM, DA, CA, MB, CD ในรูปของเวกเตอร์ a และเวกเตอร์ b № 2 แสดงเวกเตอร์ DP, DM, AC ผ่านเวกเตอร์ a และ b อาร์: PD=2:3; AK: KD = 1: 2 แสดงเวกเตอร์ CK, RK ผ่านเวกเตอร์ a และ b BE:EC = 3:1 K อยู่ตรงกลางของ DC VK: KС = 3: 4 แสดงเวกเตอร์ AK, DK ผ่านเวกเตอร์ a และ b การใช้เวกเตอร์ในการแก้ปัญหา (ตอนที่ 1)

"ปัญหาเกี่ยวกับเวกเตอร์" - ทฤษฎีบท หาพิกัด. สามแต้มจะได้รับ จุดยอดของสามเหลี่ยม หาพิกัดของเวกเตอร์ หาพิกัดของจุด หาพิกัดและความยาวของเวกเตอร์ แสดงความยาวของเวกเตอร์ พิกัดเวกเตอร์ พิกัดเวกเตอร์ หาพิกัดของเวกเตอร์ เวกเตอร์จะได้รับ ตั้งชื่อพิกัดของเวกเตอร์ เวกเตอร์มีพิกัด

"วิธีการพิกัดบนเครื่องบิน" - วงกลมถูกวาด ตั้งฉาก แกนพิกัด. ค่าของไซน์ ระบบพิกัดสี่เหลี่ยมบนเครื่องบิน หาพิกัดจุดยอด. ขอ​พิจารณา​ตัว​อย่าง. ทางแก้ไขปัญหานี้ คะแนนจะได้รับบนเครื่องบิน จุดยอดของสี่เหลี่ยมด้านขนาน ขยายเวกเตอร์ คำนวณ. คะแนนเยอะ. แก้ระบบสมการแบบกราฟิก

"การบวกและการลบเวกเตอร์" - 1. วัตถุประสงค์ของบทเรียน 2. ส่วนหลัก ของคุณมากที่สุด เพื่อนรักคนเดินละเมอ! เรียนรู้วิธีลบเวกเตอร์ 2. ระบุเวกเตอร์ของผลรวมของเวกเตอร์ a และ b เพื่อนของฉัน!! มาดูกันว่าเรามีอะไรที่นี่ เป้าหมายของเรา: บทสรุป 3. รีวิวหัว. 4. รายการอ้างอิง เที่ยวกับคนบ้า จากจุด A เราเลื่อนเวกเตอร์ทั้งสองตัว

มีการนำเสนอทั้งหมด 29 เรื่องในหัวข้อ

เมื่อศึกษาเรขาคณิต มีคำถามมากมายเกิดขึ้นในหัวข้อของเวกเตอร์ นักเรียนประสบปัญหาเฉพาะเมื่อจำเป็นต้องหามุมระหว่างเวกเตอร์

ศัพท์พื้นฐาน

ก่อนพิจารณามุมระหว่างเวกเตอร์ จำเป็นต้องทำความคุ้นเคยกับคำจำกัดความของเวกเตอร์และแนวคิดของมุมระหว่างเวกเตอร์

เวกเตอร์คือเซ็กเมนต์ที่มีทิศทาง นั่นคือ เซ็กเมนต์ที่กำหนดจุดเริ่มต้นและจุดสิ้นสุด

มุมระหว่างเวกเตอร์สองตัวบนระนาบที่มีจุดกำเนิดร่วมคือมุมที่เล็กกว่า ซึ่งจำเป็นต้องเคลื่อนเวกเตอร์ตัวใดตัวหนึ่งไปรอบๆ จุดร่วม ไปยังตำแหน่งที่ทิศทางตรงกัน

สูตรการแก้ปัญหา

เมื่อคุณเข้าใจว่าเวกเตอร์คืออะไรและกำหนดมุมของเวกเตอร์นั้นอย่างไร คุณสามารถคำนวณมุมระหว่างเวกเตอร์ได้ สูตรการแก้ปัญหานี้ค่อนข้างง่ายและผลลัพธ์ของการประยุกต์ใช้จะเป็นค่าของโคไซน์ของมุม โดยนิยามจะเท่ากับผลหาร สินค้าจุดเวกเตอร์และผลคูณของความยาว

ผลคูณสเกลาร์ของเวกเตอร์ถือเป็นผลรวมของพิกัดที่สอดคล้องกันของเวกเตอร์ตัวคูณคูณกัน ความยาวของเวกเตอร์หรือโมดูลัสคำนวณจากรากที่สองของผลรวมของกำลังสองของพิกัด

เมื่อได้รับค่าโคไซน์ของมุมแล้ว คุณสามารถคำนวณค่าของมุมได้เองโดยใช้เครื่องคิดเลขหรือใช้ตารางตรีโกณมิติ

ตัวอย่าง

หลังจากที่คุณทราบวิธีการคำนวณมุมระหว่างเวกเตอร์แล้ว การแก้ปัญหาที่เกี่ยวข้องจะกลายเป็นเรื่องง่ายและตรงไปตรงมา ตัวอย่างเช่น ลองพิจารณาปัญหาง่ายๆ ของการหาขนาดของมุม

ก่อนอื่นจะสะดวกกว่าในการคำนวณค่าความยาวของเวกเตอร์และผลิตภัณฑ์สเกลาร์ที่จำเป็นสำหรับการแก้ปัญหา โดยใช้คำอธิบายข้างต้น เราได้รับ:

แทนที่ค่าที่ได้รับลงในสูตรเราจะคำนวณค่าโคไซน์ของมุมที่ต้องการ:

ตัวเลขนี้ไม่ใช่ค่าโคไซน์ทั่วไปหนึ่งในห้า ดังนั้นเพื่อให้ได้ค่ามุม คุณจะต้องใช้เครื่องคิดเลขหรือตารางตรีโกณมิติของ Bradis แต่ก่อนที่จะได้มุมระหว่างเวกเตอร์ สูตรสามารถทำให้ง่ายขึ้นเพื่อกำจัดเครื่องหมายลบเพิ่มเติม:

คำตอบสุดท้ายสามารถทิ้งไว้ในแบบฟอร์มนี้เพื่อรักษาความถูกต้อง หรือจะคำนวณค่าของมุมเป็นองศาก็ได้ ตามตาราง Bradis ค่าของมันจะอยู่ที่ประมาณ 116 องศาและ 70 นาที และเครื่องคิดเลขจะแสดงค่า 116.57 องศา

การคำนวณมุมในปริภูมิ n มิติ

เมื่อพิจารณาเวกเตอร์สองตัวในพื้นที่สามมิติ เป็นการยากที่จะเข้าใจว่าเรากำลังพูดถึงมุมใดหากพวกมันไม่อยู่ในระนาบเดียวกัน เพื่อทำให้การรับรู้ง่ายขึ้น คุณสามารถวาดส่วนที่ตัดกันสองส่วนที่เป็นมุมที่เล็กที่สุดระหว่างพวกมัน และมันจะเป็นส่วนที่ต้องการ แม้จะมีพิกัดที่สามในเวกเตอร์ แต่กระบวนการคำนวณมุมระหว่างเวกเตอร์จะไม่เปลี่ยนแปลง คำนวณผลคูณสเกลาร์และโมดูลของเวกเตอร์ อาร์คโคไซน์ของผลหารและจะเป็นคำตอบสำหรับปัญหานี้

ในเรขาคณิต ปัญหามักเกิดขึ้นกับช่องว่างที่มีมากกว่าสามมิติ แต่สำหรับพวกเขา อัลกอริธึมในการค้นหาคำตอบก็ดูคล้ายกัน

ความแตกต่างระหว่าง 0 ถึง 180 องศา

ข้อผิดพลาดทั่วไปอย่างหนึ่งเมื่อเขียนคำตอบสำหรับปัญหาที่ออกแบบมาเพื่อคำนวณมุมระหว่างเวกเตอร์คือการตัดสินใจที่จะเขียนว่าเวกเตอร์นั้นขนานกัน นั่นคือมุมที่ต้องการกลายเป็น 0 หรือ 180 องศา คำตอบนี้ไม่ถูกต้อง

เมื่อได้ค่ามุมเท่ากับ 0 องศาจากผลลัพธ์ของการแก้ปัญหาแล้ว คำตอบที่ถูกต้องคือกำหนดให้เวกเตอร์เป็นทิศทางร่วม กล่าวคือ เวกเตอร์จะมีทิศทางเดียวกัน ในกรณีที่ได้ 180 องศา เวกเตอร์จะอยู่ในลักษณะของทิศตรงข้าม

เวกเตอร์เฉพาะ

โดยการค้นหามุมระหว่างเวกเตอร์ จะพบประเภทพิเศษประเภทใดประเภทหนึ่ง นอกเหนือไปจากประเภทที่กำกับร่วมและทิศทางตรงกันข้ามที่อธิบายข้างต้น

  • เวกเตอร์หลายตัวขนานกับระนาบเดียวเรียกว่าโคพลานาร์
  • เวกเตอร์ที่มีความยาวและทิศทางเท่ากันเรียกว่าเท่ากัน
  • เวกเตอร์ที่วางอยู่บนเส้นตรงเดียวกันโดยไม่คำนึงถึงทิศทางเรียกว่า collinear
  • หากความยาวของเวกเตอร์เป็นศูนย์ นั่นคือ จุดเริ่มต้นและจุดสิ้นสุดตรงกัน จะเรียกว่าศูนย์ และหากเป็นหนึ่ง จะถูกเรียกว่าหนึ่ง

คำแนะนำ

ให้เวกเตอร์ที่ไม่ใช่ศูนย์สองตัวบนระนาบ โดยพล็อตจากจุดหนึ่ง: เวกเตอร์ A พร้อมพิกัด (x1, y1) B พร้อมพิกัด (x2, y2) ฉีดระหว่างพวกเขาจะแสดงเป็น θ ในการหาหน่วยวัดองศาของมุม θ คุณต้องใช้นิยามของผลิตภัณฑ์สเกลาร์

ผลคูณสเกลาร์ของเวกเตอร์ที่ไม่ใช่ศูนย์สองตัวเป็นตัวเลขที่เท่ากับผลคูณของความยาวของเวกเตอร์เหล่านี้และโคไซน์ของมุมระหว่างพวกมัน นั่นคือ (A,B)=|A|*|B|*cos( θ). ตอนนี้คุณต้องแสดงโคไซน์ของมุมจากสิ่งนี้: cos(θ)=(A,B)/(|A|*|B|)

ผลคูณของสเกลาร์สามารถพบได้โดยใช้สูตร (A,B)=x1*x2+y1*y2 เนื่องจากผลคูณของเวกเตอร์ที่ไม่ใช่ศูนย์เท่ากับผลรวมของผลิตภัณฑ์ของเวกเตอร์ที่สอดคล้องกัน หากผลคูณสเกลาร์ของเวกเตอร์ที่ไม่ใช่ศูนย์เท่ากับศูนย์ เวกเตอร์จะตั้งฉาก (มุมระหว่างพวกมันคือ 90 องศา) และสามารถละเว้นการคำนวณเพิ่มเติมได้ ถ้าผลคูณสเกลาร์ของเวกเตอร์สองตัวเป็นบวก แสดงว่ามุมระหว่างพวกนี้ เวกเตอร์เฉียบพลันและถ้าเป็นลบแสดงว่ามุมป้าน

ตอนนี้ให้คำนวณความยาวของเวกเตอร์ A และ B โดยใช้สูตร: |A|=√(x1²+y1²), |B|=√(x2²+y2²) ความยาวของเวกเตอร์คำนวณเป็น รากที่สองจากผลรวมของกำลังสองของพิกัด

แทนที่ค่าที่พบของผลิตภัณฑ์สเกลาร์และความยาวของเวกเตอร์ลงในสูตรสำหรับมุมที่ได้รับในขั้นตอนที่ 2 นั่นคือ cos(θ)=(x1*x2+y1*y2)/(√(x1²+) y1²)+√(x2²+y2²)). ทีนี้ เมื่อรู้ค่าของ , เพื่อค้นหาการวัดองศาของมุมระหว่าง เวกเตอร์คุณต้องใช้ตาราง Bradis หรือนำมาจากสิ่งนี้: θ=arccos(cos(θ))

หากเวกเตอร์ A และ B กำหนดไว้ในปริภูมิสามมิติและมีพิกัด (x1, y1, z1) และ (x2, y2, z2) ตามลำดับ เมื่อหาโคไซน์ของมุมก็จะเพิ่มอีกหนึ่งพิกัด ในกรณีนี้ โคไซน์: cos(θ)=(x1*x2+y1*y2+z1*z2)/(√(x1²+y1²+z1²)+√(x2²+y2²+z2²))

คำแนะนำที่เป็นประโยชน์

หากเวกเตอร์สองตัวไม่ได้ถูกพล็อตจากจุดหนึ่ง ดังนั้นหากต้องการหามุมระหว่างพวกมันด้วยการแปลแบบคู่ขนาน คุณจะต้องรวมจุดเริ่มต้นของเวกเตอร์เหล่านี้
มุมระหว่างเวกเตอร์สองตัวต้องไม่เกิน 180 องศา

ที่มา:

  • วิธีการคำนวณมุมระหว่างเวกเตอร์
  • มุมระหว่างเส้นกับระนาบ

ในการแก้ปัญหามากมาย ทั้งประยุกต์และทฤษฎี ในฟิสิกส์และพีชคณิตเชิงเส้น จำเป็นต้องคำนวณมุมระหว่างเวกเตอร์ งานที่ดูเหมือนง่ายนี้อาจทำให้เกิดปัญหาได้มากมาย หากคุณไม่เข้าใจสาระสำคัญของผลิตภัณฑ์สเกลาร์อย่างชัดเจนและคุณค่าที่ปรากฏขึ้นจากผลิตภัณฑ์นี้

คำแนะนำ

มุมระหว่างเวกเตอร์ในปริภูมิเวกเตอร์เชิงเส้นคือมุมต่ำสุดที่ ซึ่งได้ค่าโคไดเร็กชันของเวกเตอร์ เวกเตอร์ตัวใดตัวหนึ่งเคลื่อนที่ไปรอบๆ จุดเริ่มต้น จากคำจำกัดความจะเห็นได้ชัดว่าค่าของมุมต้องไม่เกิน 180 องศา (ดูขั้นตอน)

ในกรณีนี้ ถือว่าค่อนข้างถูกต้องในปริภูมิเชิงเส้น เมื่อเวกเตอร์ถูกถ่ายโอนขนานกัน มุมระหว่างพวกมันจะไม่เปลี่ยนแปลง ดังนั้นสำหรับการคำนวณเชิงวิเคราะห์ของมุม การวางแนวเชิงพื้นที่ของเวกเตอร์จึงไม่สำคัญ

ผลลัพธ์ของดอทโปรดัคคือตัวเลข มิฉะนั้น สเกลาร์ จำไว้ว่า (สิ่งสำคัญคือต้องรู้) เพื่อป้องกันข้อผิดพลาดในการคำนวณเพิ่มเติม สูตรสำหรับผลคูณสเกลาร์ที่อยู่บนระนาบหรือในช่องว่างของเวกเตอร์มีรูปแบบ (ดูรูปสำหรับขั้นตอน)

หากเวกเตอร์อยู่ในอวกาศ ให้ทำการคำนวณในลักษณะเดียวกัน สิ่งเดียวจะเป็นลักษณะของเงื่อนไขในการจ่ายเงินปันผล - นี่คือระยะเวลาสำหรับการสมัครเช่น องค์ประกอบที่สามของเวกเตอร์ ดังนั้น เมื่อคำนวณโมดูลัสของเวกเตอร์ จะต้องคำนึงถึงองค์ประกอบ z ด้วย จากนั้นสำหรับเวกเตอร์ที่อยู่ในอวกาศ นิพจน์สุดท้ายจะถูกแปลงดังนี้ (ดูรูปที่ 6 ไปยังขั้นตอน)

เวกเตอร์คือส่วนของเส้นตรงที่มีทิศทางที่กำหนด มุมระหว่างเวกเตอร์มี ความหมายทางกายภาพตัวอย่างเช่น เมื่อหาความยาวของเส้นโครงของเวกเตอร์บนแกน

คำแนะนำ

มุมระหว่างเวกเตอร์ที่ไม่ใช่ศูนย์สองตัวโดยใช้การคำนวณผลคูณดอท ตามคำจำกัดความ ผลิตภัณฑ์จะเท่ากับผลคูณของความยาวและมุมระหว่างพวกมัน ในทางกลับกัน ผลคูณภายในสำหรับเวกเตอร์สองตัว a ที่มีพิกัด (x1; y1) และ b ที่มีพิกัด (x2; y2) ถูกคำนวณ: ab = x1x2 + y1y2 จากสองวิธีนี้ ดอทโปรดัคจะทำมุมระหว่างเวกเตอร์ได้ง่าย

หาความยาวหรือโมดูลของเวกเตอร์ สำหรับเวกเตอร์ของเรา a และ b: |a| = (x1² + y1²)^1/2, |b| = (x2² + y2²)^1/2

ค้นหาผลคูณภายในของเวกเตอร์โดยการคูณพิกัดเป็นคู่: ab = x1x2 + y1y2 จากคำจำกัดความของผลิตภัณฑ์ดอท ab = |a|*|b|*cos α โดยที่ α คือมุมระหว่างเวกเตอร์ จากนั้นเราจะได้ x1x2 + y1y2 = |a|*|b|*cos α จากนั้น cos α = (x1x2 + y1y2)/(|a|*|b|) = (x1x2 + y1y2)/((x1² + y1²)(x2² + y2²))^1/2

หามุม α โดยใช้ตาราง Bradys

วิดีโอที่เกี่ยวข้อง

บันทึก

ผลคูณสเกลาร์เป็นลักษณะสเกลาร์ของความยาวของเวกเตอร์และมุมระหว่างพวกมัน

เครื่องบินเป็นหนึ่งในแนวคิดพื้นฐานในเรขาคณิต ระนาบคือพื้นผิวที่ข้อความนั้นเป็นจริง - เส้นตรงใดๆ ที่เชื่อมระหว่างจุดสองจุดนั้นเป็นของพื้นผิวนี้ทั้งหมด เครื่องบินถูกกำหนด ตัวอักษรกรีกα, β, γ เป็นต้น ระนาบสองระนาบตัดกันเป็นเส้นตรงที่เป็นของระนาบทั้งสองเสมอ

คำแนะนำ

พิจารณาครึ่งระนาบ α และ β ที่เกิดขึ้นที่จุดตัดของ มุมที่เกิดจากเส้นตรง a และระนาบครึ่งระนาบ α และ β สองเส้นโดยมุมไดฮีดรัล ในกรณีนี้ ระนาบครึ่งระนาบที่สร้างมุมไดฮีดรัลโดยใบหน้า เส้น a ที่ระนาบตัดกันเรียกว่า ขอบ มุมไดฮีดรัล.

มุมไดฮีดรัลเหมือนมุมแบน หน่วยเป็นองศา ในการสร้างมุมไดฮีดรัลนั้นจำเป็นต้องเลือกจุด O บนใบหน้าโดยพลการ ในทั้งสองรังสี a สองเส้นจะถูกลากผ่านจุด O มุมผลลัพธ์ AOB เรียกว่ามุมเชิงเส้นของมุมไดฮีดรัล a

ดังนั้น ให้เวกเตอร์ V = (a, b, c) และระนาบ A x + B y + C z = 0 โดยที่ A, B และ C เป็นพิกัดของ N ปกติ แล้วโคไซน์ของมุม α ระหว่างเวกเตอร์ V และ N คือ: cos α \u003d (a A + b B + c C) / (√ (a² + b² + c²) √ (A² + B² + C²))

ในการคำนวณค่ามุมในหน่วยองศาหรือเรเดียน คุณต้องคำนวณฟังก์ชันผกผันกับโคไซน์จากนิพจน์ผลลัพธ์ กล่าวคือ อาร์คโคไซน์: α \u003d arscos ((a A + b B + c C) / (√ (a² + b² + c²) √ (A² + B² + C²)))

ตัวอย่าง: find ฉีดระหว่าง เวกเตอร์(5, -3, 8) และ เครื่องบินกำหนดโดยสมการทั่วไป 2 x - 5 y + 3 z = 0 วิธีแก้ปัญหา: จดพิกัดของเวกเตอร์ปกติของระนาบ N = (2, -5, 3) ทดแทนทุกอย่าง ค่าที่รู้จักในสูตรข้างต้น: cos α = (10 + 15 + 24) / √3724 ≈ 0.8 → α = 36.87°

วิดีโอที่เกี่ยวข้อง

เขียนสมการและแยกโคไซน์ออกจากมัน จากสูตรหนึ่ง ผลคูณของเวกเตอร์สเกลาร์เท่ากับความยาวคูณกันและด้วยโคไซน์ มุมและในทางกลับกัน - ผลรวมของผลิตภัณฑ์พิกัดตามแต่ละแกน เท่ากับทั้งสองสูตร เราสามารถสรุปได้ว่าโคไซน์ มุมต้องเท่ากับอัตราส่วนของผลรวมของผลิตภัณฑ์พิกัดต่อผลคูณของความยาวของเวกเตอร์

เขียนสมการผลลัพธ์ ในการทำสิ่งนี้ เราต้องกำหนดเวกเตอร์ทั้งสอง สมมติว่าได้รับในระบบคาร์ทีเซียน 3 มิติและจุดเริ่มต้นอยู่ในตาราง ทิศทางและขนาดของเวกเตอร์แรกจะได้รับจากจุด (X₁,Y₁,Z₁) จุดที่สอง - (X₂,Y₂,Z₂) และมุมจะแสดงด้วยตัวอักษร γ จากนั้น ความยาวของเวกเตอร์แต่ละตัวสามารถเป็นได้ ตัวอย่างเช่น ตามทฤษฎีบทพีทาโกรัสที่เกิดจากการฉายภาพบนแกนพิกัดแต่ละแกน: √(X₁² + Y₁² + Z₁²) และ √(X₂² + Y₂² + Z₂²) แทนที่นิพจน์เหล่านี้ในสูตรที่กำหนดในขั้นตอนก่อนหน้า แล้วคุณจะได้ค่าเท่ากัน: cos(γ) = (X₁*X₂ + Y₁*Y₂ + Z₁*Z₂) / (√(X₁² + Y₁² + Z₁²) * √(X₂² + Y₂² + Z₂² ))

ใช้ความจริงที่ว่าผลรวมของกำลังสอง ไซนัสและ co ไซนัสจาก มุมค่าหนึ่งจะให้ค่าหนึ่งเสมอ ดังนั้น โดยการเพิ่มสิ่งที่ได้รับในขั้นตอนก่อนหน้าสำหรับ co ไซนัสยกกำลังสองแล้วลบออกจากความสามัคคี แล้ว

ผลิตภัณฑ์ Dot ของเวกเตอร์

เราจัดการกับเวกเตอร์ต่อไป ในบทเรียนแรก เวกเตอร์สำหรับหุ่นเราได้พิจารณาแนวคิดของเวกเตอร์ การกระทำกับเวกเตอร์ พิกัดเวกเตอร์ และปัญหาที่ง่ายที่สุดของเวกเตอร์ หากคุณมาที่หน้านี้เป็นครั้งแรกจากเครื่องมือค้นหา เราขอแนะนำให้คุณอ่านข้อความด้านบนนี้ บทความเบื้องต้นเนื่องจากเพื่อที่จะดูดซึมเนื้อหา จำเป็นต้องนำทางในข้อกำหนดและสัญลักษณ์ที่ฉันใช้เพื่อให้มี ความรู้พื้นฐานเกี่ยวกับเวกเตอร์และสามารถแก้ปัญหาเบื้องต้นได้ บทเรียนนี้เป็นความต่อเนื่องทางตรรกะของหัวข้อ และในนั้นฉันจะวิเคราะห์รายละเอียดงานทั่วไปที่ใช้ผลคูณสเกลาร์ของเวกเตอร์ นี้มันมาก กิจกรรมสำคัญ . พยายามอย่าข้ามตัวอย่าง สิ่งเหล่านี้มาพร้อมกับโบนัสที่มีประโยชน์ - การฝึกจะช่วยให้คุณรวบรวมเนื้อหาที่ครอบคลุมและ "ลงมือทำ" ในการแก้ปัญหาทั่วไปของเรขาคณิตเชิงวิเคราะห์

การบวกเวกเตอร์ การคูณเวกเตอร์ด้วยตัวเลข…. มันคงไร้เดียงสาที่จะคิดว่านักคณิตศาสตร์ไม่ได้คิดอย่างอื่น นอกจากการดำเนินการที่พิจารณาแล้ว ยังมีการดำเนินการอื่นๆ อีกหลายประการเกี่ยวกับเวกเตอร์ กล่าวคือ: ผลคูณดอทของเวกเตอร์, ผลคูณของเวกเตอร์และ ผลคูณของเวกเตอร์. ผลิตภัณฑ์สเกลาร์ของเวกเตอร์เป็นที่คุ้นเคยสำหรับเราจากโรงเรียน อีกสองผลิตภัณฑ์เกี่ยวข้องกับหลักสูตรตามธรรมเนียม คณิตศาสตร์ชั้นสูง. หัวข้อนั้นง่าย อัลกอริทึมสำหรับการแก้ปัญหาต่าง ๆ เป็นแบบตายตัวและเข้าใจได้ สิ่งเดียวเท่านั้น มีข้อมูลจำนวนพอสมควร ดังนั้นจึงไม่พึงปรารถนาที่จะพยายามเชี่ยวชาญและแก้ปัญหาทุกอย่างในครั้งเดียว นี่เป็นเรื่องจริงโดยเฉพาะอย่างยิ่งสำหรับหุ่นเชื่อฉันผู้เขียนไม่ต้องการรู้สึกเหมือน Chikatilo จากคณิตศาสตร์อย่างแน่นอน แน่นอนว่าไม่ใช่จากคณิตศาสตร์เช่นกัน =) นักเรียนที่เตรียมพร้อมมากขึ้นสามารถใช้วัสดุในการคัดเลือก "รับ" ความรู้ที่ขาดหายไปสำหรับคุณฉันจะเป็น Count Dracula ที่ไม่เป็นอันตราย =)

สุดท้ายนี้ มาเปิดประตูกันสักหน่อยแล้วมาดูกันว่าจะเกิดอะไรขึ้นเมื่อเวกเตอร์สองตัวมาเจอกัน….

ความหมายของผลคูณสเกลาร์ของเวกเตอร์
คุณสมบัติของผลิตภัณฑ์สเกลาร์ งานทั่วไป

แนวคิดของผลิตภัณฑ์ดอท

ครั้งแรกเกี่ยวกับ มุมระหว่างเวกเตอร์. ฉันคิดว่าทุกคนเข้าใจโดยสัญชาตญาณว่ามุมระหว่างเวกเตอร์คืออะไร แต่เผื่อไว้ มากกว่านี้หน่อย พิจารณาเวกเตอร์ที่ไม่ใช่ศูนย์อิสระและ . หากเราเลื่อนเวกเตอร์เหล่านี้จากจุดที่กำหนด เราก็จะได้ภาพที่หลายคนนำเสนอทางจิตใจแล้ว:

ฉันขอสารภาพว่าที่นี่ฉันอธิบายสถานการณ์ในระดับความเข้าใจเท่านั้น หากคุณต้องการคำจำกัดความที่เข้มงวดของมุมระหว่างเวกเตอร์ โปรดอ้างอิงจากตำราเรียน แต่โดยหลักการแล้ว เราไม่จำเป็นต้องใช้ และยิ่งไปกว่านั้น บางครั้งฉันจะเพิกเฉยเวกเตอร์ศูนย์เนื่องจากค่านัยสำคัญในทางปฏิบัติต่ำของพวกมัน ฉันได้จองไว้เฉพาะสำหรับผู้เยี่ยมชมไซต์ขั้นสูง ซึ่งสามารถตำหนิฉันสำหรับความไม่สมบูรณ์ทางทฤษฎีของข้อความต่อไปนี้บางส่วน

สามารถรับค่าได้ตั้งแต่ 0 ถึง 180 องศา (จาก 0 ถึงเรเดียน) รวม วิเคราะห์ ให้ข้อเท็จจริงถูกเขียนเป็นอสมการสองเท่า: หรือ (เป็นเรเดียน).

ในวรรณคดี ไอคอนมุมมักจะละเว้นและเขียนง่าย

คำนิยาม:ผลคูณสเกลาร์ของเวกเตอร์สองตัวมีค่า NUMBER เท่ากับผลคูณของความยาวของเวกเตอร์เหล่านี้และโคไซน์ของมุมระหว่างพวกมัน:

ตอนนี้เป็นคำจำกัดความที่ค่อนข้างเข้มงวด

เราเน้นที่ข้อมูลที่จำเป็น:

การกำหนด:ผลิตภัณฑ์สเกลาร์แสดงโดยหรือง่ายๆ

ผลลัพธ์ของการดำเนินการคือ NUMBER: คูณเวกเตอร์ด้วยเวกเตอร์เพื่อให้ได้ตัวเลข อันที่จริง ถ้าความยาวของเวกเตอร์เป็นตัวเลข โคไซน์ของมุมก็เป็นตัวเลข แล้วผลคูณของพวกมัน จะเป็นตัวเลขด้วย

เพียงไม่กี่ตัวอย่างการวอร์มอัพ:

ตัวอย่างที่ 1

การตัดสินใจ:เราใช้สูตร . ในกรณีนี้:

ตอบ:

ค่าโคไซน์สามารถพบได้ใน ตารางตรีโกณมิติ. ฉันแนะนำให้พิมพ์ - จะต้องใช้ในเกือบทุกส่วนของหอคอยและจะต้องหลายครั้ง

จากมุมมองทางคณิตศาสตร์ล้วนๆ ผลคูณของสเกลาร์นั้นไม่มีมิติ นั่นคือ ผลลัพธ์ ในกรณีนี้ เป็นเพียงตัวเลข และก็เท่านั้น จากมุมมองของปัญหาฟิสิกส์ ผลคูณของสเกลาร์มีความแน่นอนเสมอ ความหมายทางกายภาพนั่นคือหลังจากผลลัพธ์ต้องระบุหน่วยทางกายภาพหนึ่งหน่วยหรืออีกหน่วยหนึ่ง ตัวอย่าง Canonical ของการคำนวณงานของแรงสามารถพบได้ในตำราเรียน (สูตรคือดอทโปรดัค) งานของแรงวัดเป็นจูล ดังนั้น คำตอบจะถูกเขียนค่อนข้างเฉพาะเจาะจง เช่น

ตัวอย่าง 2

ค้นหาว่า และมุมระหว่างเวกเตอร์คือ

นี่คือตัวอย่างการตัดสินใจ คำตอบอยู่ท้ายบทเรียน

มุมระหว่างเวกเตอร์และค่าดอทผลิตภัณฑ์

ในตัวอย่างที่ 1 ผลคูณสเกลาร์กลายเป็นบวก และในตัวอย่างที่ 2 มันกลับกลายเป็นลบ ให้เราหาว่าเครื่องหมายของผลิตภัณฑ์สเกลาร์ขึ้นอยู่กับอะไร ลองดูสูตรของเรา: . ความยาวของเวกเตอร์ที่ไม่ใช่ศูนย์จะเป็นค่าบวกเสมอ ดังนั้นเครื่องหมายจึงขึ้นอยู่กับค่าของโคไซน์เท่านั้น

บันทึก: เพื่อความเข้าใจที่ดีขึ้นของข้อมูลด้านล่าง จะดีกว่าที่จะศึกษากราฟโคไซน์ในคู่มือ กราฟและคุณสมบัติของฟังก์ชัน. ดูว่าโคไซน์ทำงานอย่างไรบนเซ็กเมนต์

ตามที่ระบุไว้แล้ว มุมระหว่างเวกเตอร์สามารถเปลี่ยนแปลงได้ภายใน และเป็นไปได้ในกรณีต่อไปนี้:

1) ถ้า ฉีดระหว่างเวกเตอร์ เผ็ด: (จาก 0 ถึง 90 องศา) จากนั้น , และ สินค้าดอทจะเป็นบวก ร่วมกำกับจากนั้นมุมระหว่างทั้งสองจะถือเป็นศูนย์และผลิตภัณฑ์สเกลาร์จะเป็นบวกด้วย เนื่องจาก สูตรจึงถูกทำให้ง่ายขึ้น: .

2) ถ้า ฉีดระหว่างเวกเตอร์ ทื่อ: (จาก 90 ถึง 180 องศา) จากนั้น และในทำนองเดียวกัน dot product เป็นค่าลบ: . กรณีพิเศษ: ถ้าเวกเตอร์ มุ่งตรงข้าม, แล้ว ถือว่ามุมระหว่างกัน ปรับใช้: (180 องศา). ผลคูณสเกลาร์ก็เป็นค่าลบเช่นกัน เนื่องจาก

ข้อความสนทนาก็เป็นจริงเช่นกัน:

1) ถ้า แล้วมุมระหว่างเวกเตอร์เหล่านี้เป็นแบบเฉียบพลัน อีกทางหนึ่ง เวกเตอร์เป็นทิศทางร่วม

2) ถ้า แล้วมุมระหว่างเวกเตอร์เหล่านี้จะเป็นมุมป้าน อีกทางหนึ่ง เวกเตอร์ถูกกำกับอย่างตรงกันข้าม

แต่กรณีที่สามมีความสนใจเป็นพิเศษ:

3) ถ้า ฉีดระหว่างเวกเตอร์ ตรง: (90 องศา) จากนั้นและ ผลิตภัณฑ์ดอทเป็นศูนย์: . การสนทนาก็เป็นจริงเช่นกัน if แล้ว . คำสั่งกระชับมีสูตรดังนี้: ผลคูณสเกลาร์ของเวกเตอร์สองตัวจะเป็นศูนย์ก็ต่อเมื่อเวกเตอร์ที่กำหนดนั้นเป็นมุมฉาก. สั้น สัญกรณ์คณิตศาสตร์:

! บันทึก : ทำซ้ำ พื้นฐานของตรรกะทางคณิตศาสตร์: ไอคอนผลเชิงตรรกะสองด้านมักจะอ่านว่า "ถ้าเท่านั้น", "ถ้าและเฉพาะถ้า" อย่างที่คุณเห็น ลูกศรถูกชี้ไปทั้งสองทิศทาง - "จากสิ่งนี้ตามนี้ และในทางกลับกัน - จากนี้ไปตามนี้" ยังไงซะ ความแตกต่างจากไอคอนติดตามทางเดียว ? การอ้างสิทธิ์ไอคอน ว่ามีเพียงว่า "จากสิ่งนี้ตามนี้" และไม่ใช่ความจริงที่ว่าสิ่งที่ตรงกันข้ามเป็นจริง ตัวอย่างเช่น: แต่ไม่ใช่สัตว์ทุกตัวที่เป็นเสือดำ ดังนั้นจึงไม่สามารถใช้ไอคอนได้ในกรณีนี้ ในเวลาเดียวกัน แทนที่จะเป็นไอคอน สามารถใช้ไอคอนด้านเดียว ตัวอย่างเช่น ขณะแก้ปัญหา เราพบว่าเราสรุปได้ว่าเวกเตอร์เป็นมุมฉาก: - บันทึกดังกล่าวจะถูกต้องและเหมาะสมกว่า .

กรณีที่สามมีความสำคัญในทางปฏิบัติอย่างมากเนื่องจากจะช่วยให้คุณตรวจสอบว่าเวกเตอร์เป็นมุมฉากหรือไม่ เราจะแก้ปัญหานี้ในส่วนที่สองของบทเรียน


คุณสมบัติของผลิตภัณฑ์ดอท

กลับไปที่สถานการณ์เมื่อเวกเตอร์สองตัว ร่วมกำกับ. ในกรณีนี้มุมระหว่างพวกเขา ศูนย์, , และสูตรผลคูณสเกลาร์อยู่ในรูปแบบ: .

จะเกิดอะไรขึ้นถ้าเวกเตอร์คูณด้วยตัวมันเอง? เป็นที่ชัดเจนว่าเวกเตอร์มีทิศทางร่วมกับตัวมันเอง ดังนั้นเราจึงใช้สูตรแบบง่ายข้างต้น:

เบอร์นี้เรียกว่า สเกลาร์สแควร์ vector และแสดงเป็น .

ดังนั้น, สเกลาร์สแควร์ของเวกเตอร์เท่ากับกำลังสองของความยาวของเวกเตอร์ที่กำหนด:

จากความเท่าเทียมกันนี้ คุณจะได้สูตรการคำนวณความยาวของเวกเตอร์:

แม้ว่าจะดูคลุมเครือ แต่งานของบทเรียนจะทำให้ทุกอย่างเข้าที่ เพื่อแก้ปัญหา เราต้อง คุณสมบัติของผลิตภัณฑ์ดอท.

สำหรับเวกเตอร์ที่กำหนดเองและจำนวนใดๆ คุณสมบัติต่อไปนี้เป็นจริง:

1) - พลัดถิ่นหรือ สับเปลี่ยนกฎหมายผลิตภัณฑ์สเกลาร์

2) - จำหน่ายหรือ แจกจ่ายกฎหมายผลิตภัณฑ์สเกลาร์ พูดง่ายๆ ก็คือ คุณสามารถเปิดวงเล็บได้

3) - การรวมกันหรือ สมาคมกฎหมายผลิตภัณฑ์สเกลาร์ สามารถนำค่าคงที่ออกจากผลคูณสเกลาร์ได้

บ่อยครั้งที่คุณสมบัติทุกประเภท (ซึ่งจำเป็นต้องได้รับการพิสูจน์ด้วย!) นักเรียนจะมองว่าเป็น ขยะซึ่งต้องจำและลืมได้ทันทีหลังสอบเท่านั้น ดูเหมือนว่าสิ่งที่สำคัญที่นี่ทุกคนรู้ตั้งแต่ชั้นประถมศึกษาปีที่ 1 แล้วว่าผลิตภัณฑ์ไม่เปลี่ยนแปลงจากการเรียงสับเปลี่ยนของปัจจัย: ฉันต้องเตือนคุณในวิชาคณิตศาสตร์ขั้นสูงด้วยวิธีการดังกล่าว มันง่ายที่จะทำสิ่งต่าง ๆ ให้ยุ่งเหยิง ตัวอย่างเช่น สมบัติการสับเปลี่ยนใช้ไม่ได้กับ เมทริกซ์พีชคณิต. มันไม่เป็นความจริงสำหรับ ผลคูณของเวกเตอร์. ดังนั้น อย่างน้อยก็ดีกว่าที่จะเจาะลึกคุณสมบัติใด ๆ ที่คุณจะพบในวิชาคณิตศาสตร์ระดับสูง เพื่อทำความเข้าใจว่าสิ่งใดทำได้และไม่สามารถทำได้

ตัวอย่างที่ 3

.

การตัดสินใจ:อันดับแรก เรามาอธิบายสถานการณ์ด้วยเวกเตอร์กันก่อน มันเกี่ยวกับอะไร? ผลรวมของเวกเตอร์และเป็นเวกเตอร์ที่กำหนดไว้อย่างดี ซึ่งเขียนแทนด้วย . การตีความทางเรขาคณิตของการกระทำด้วยเวกเตอร์สามารถพบได้ในบทความ เวกเตอร์สำหรับหุ่น. ผักชีฝรั่งเดียวกันกับเวกเตอร์ คือผลรวมของเวกเตอร์ และ

ดังนั้นตามเงื่อนไข จะต้องค้นหาผลคูณของสเกลาร์ ตามทฤษฎีคุณต้องใช้สูตรการทำงาน แต่ปัญหาคือเราไม่รู้ความยาวของเวกเตอร์และมุมระหว่างพวกมัน แต่ในเงื่อนไขนั้น พารามิเตอร์ที่คล้ายคลึงกันจะได้รับสำหรับเวกเตอร์ ดังนั้นเราจะไปทางอื่น:

(1) เราแทนที่นิพจน์ของเวกเตอร์

(2) เราเปิดวงเล็บตามกฎของการคูณของพหุนาม, twister ลิ้นหยาบคายสามารถพบได้ในบทความ ตัวเลขที่ซับซ้อนหรือ การรวมฟังก์ชันเศษส่วน-ตรรกยะ. ฉันจะไม่พูดซ้ำ =) อย่างไรก็ตาม คุณสมบัติการกระจายของผลิตภัณฑ์สเกลาร์ช่วยให้เราเปิดวงเล็บได้ เรามีสิทธิ

(3) ในเทอมแรกและเทอมสุดท้าย เราเขียนกำลังสองสเกลาร์ของเวกเตอร์อย่างกระชับ: . ในระยะที่สอง เราใช้การสับเปลี่ยนได้ของผลิตภัณฑ์สเกลาร์:

(4) ต่อไปนี้เป็นคำที่คล้ายกัน: .

(5) ในเทอมแรก เราใช้สูตรสเกลาร์สแควร์ที่กล่าวถึงเมื่อไม่นานนี้ ในระยะสุดท้าย ตามลำดับ สิ่งเดียวกันใช้: . ระยะที่สองขยายตามสูตรมาตรฐาน .

(6) แทนที่เงื่อนไขเหล่านี้ และดำเนินการคำนวณขั้นสุดท้ายอย่างระมัดระวัง

ตอบ:

ความหมายเชิงลบดอทโปรดัคระบุข้อเท็จจริงที่ว่ามุมระหว่างเวกเตอร์นั้นมีลักษณะป้าน

งานเป็นเรื่องปกติ นี่คือตัวอย่างสำหรับโซลูชันอิสระ:

ตัวอย่างที่ 4

หาผลคูณสเกลาร์ของเวกเตอร์ และ , ถ้าทราบว่า .

งานทั่วไปอีกงานหนึ่ง สำหรับสูตรความยาวเวกเตอร์ใหม่เท่านั้น การกำหนดที่นี่จะทับซ้อนกันเล็กน้อย ดังนั้นเพื่อความชัดเจน ฉันจะเขียนมันใหม่ด้วยตัวอักษรอื่น:

ตัวอย่างที่ 5

หาความยาวของเวกเตอร์ if .

การตัดสินใจจะเป็นดังนี้:

(1) เราจัดหานิพจน์เวกเตอร์

(2) เราใช้สูตรความยาว: ในขณะที่เรามีนิพจน์จำนวนเต็มเป็นเวกเตอร์ "ve"

(3) เราใช้สูตรโรงเรียนสำหรับกำลังสองของผลรวม ให้ความสนใจว่ามันทำงานอย่างไรที่นี่: - อันที่จริง นี่คือกำลังสองของความแตกต่าง และที่จริง มันก็เป็นอย่างนั้น ผู้ที่ต้องการสามารถจัดเรียงเวกเตอร์ในสถานที่: - มันกลับกลายเป็นสิ่งเดียวกันจนถึงการจัดเรียงเงื่อนไขใหม่

(4) สิ่งต่อไปนี้คุ้นเคยจากปัญหาสองข้อก่อนหน้านี้แล้ว

ตอบ:

เนื่องจากเรากำลังพูดถึงความยาว อย่าลืมระบุขนาด - "หน่วย"

ตัวอย่างที่ 6

หาความยาวของเวกเตอร์ if .

นี่คือตัวอย่างที่ต้องทำด้วยตัวเอง โซลูชั่นที่สมบูรณ์และคำตอบในตอนท้ายของบทเรียน

เรายังคงบีบสิ่งที่มีประโยชน์ออกจากผลคูณสเกลาร์ มาดูสูตรของเรากันอีกครั้ง . ตามกฎของสัดส่วน เรารีเซ็ตความยาวของเวกเตอร์เป็นตัวส่วนทางด้านซ้าย:

มาสลับชิ้นส่วนกัน:

ความหมายของสูตรนี้คืออะไร? ถ้าทราบความยาวของเวกเตอร์สองตัวและผลิตภัณฑ์สเกลาร์ของพวกมัน ก็จะสามารถคำนวณโคไซน์ของมุมระหว่างเวกเตอร์เหล่านี้ได้ และด้วยเหตุนี้ ตัวของมุมเอง

ผลิตภัณฑ์สเกลาร์เป็นตัวเลขหรือไม่? ตัวเลข. ความยาวเวกเตอร์เป็นตัวเลขหรือไม่ ตัวเลข เศษส่วนก็เป็นตัวเลขเช่นกัน และถ้าทราบโคไซน์ของมุม: แล้วใช้ ฟังก์ชันผกผันหามุมได้ง่าย: .

ตัวอย่าง 7

หามุมระหว่างเวกเตอร์ และ ถ้าทราบแล้ว

การตัดสินใจ:เราใช้สูตร:

บน ขั้นตอนสุดท้ายการคำนวณใช้เทคนิค - การกำจัดความไร้เหตุผลในตัวส่วน เพื่อขจัดความไร้เหตุผล ฉันคูณทั้งตัวเศษและส่วนด้วย .

ดังนั้นถ้า , แล้ว:

ค่าผกผัน ฟังก์ชันตรีโกณมิติสามารถพบได้โดย ตารางตรีโกณมิติ. แม้ว่าสิ่งนี้จะไม่ค่อยเกิดขึ้น ในปัญหาของเรขาคณิตเชิงวิเคราะห์ หมีเงอะงะบางตัวปรากฏขึ้นบ่อยกว่ามาก และต้องหาค่ามุมโดยประมาณโดยใช้เครื่องคิดเลข อันที่จริง เราจะเห็นภาพนี้ซ้ำแล้วซ้ำเล่า

ตอบ:

อย่าลืมระบุมิติข้อมูล - เรเดียนและองศาอีกครั้ง โดยส่วนตัวแล้ว ในการจงใจ "ลบคำถามทั้งหมด" ฉันต้องการระบุทั้งสองอย่าง (เว้นแต่ตามเงื่อนไข จำเป็นต้องนำเสนอคำตอบเป็นเรเดียนหรือหน่วยองศาเท่านั้น)

ตอนนี้คุณสามารถจัดการกับมากขึ้น งานยาก:

ตัวอย่างที่ 7*

กำหนดความยาวของเวกเตอร์ และมุมระหว่างพวกมัน หามุมระหว่างเวกเตอร์ , .

งานไม่ยากเท่าหลายทาง
มาวิเคราะห์อัลกอริทึมของโซลูชันกัน:

1) ตามเงื่อนไข ต้องหามุมระหว่างเวกเตอร์ กับ ดังนั้น ต้องใช้สูตร .

2) เราพบผลิตภัณฑ์สเกลาร์ (ดูตัวอย่างที่ 3, 4)

3) ค้นหาความยาวของเวกเตอร์และความยาวของเวกเตอร์ (ดูตัวอย่างที่ 5, 6)

4) จุดสิ้นสุดของการแก้ปัญหาเกิดขึ้นพร้อมกับตัวอย่างที่ 7 - เรารู้ตัวเลข ซึ่งหมายความว่าหามุมได้ง่าย:

โซลูชั่นด่วนและคำตอบในตอนท้ายของบทเรียน

ส่วนที่สองของบทเรียนนี้เน้นไปที่ผลคูณดอทเดียวกัน พิกัด. มันจะง่ายกว่าในส่วนแรก

ผลคูณดอทของเวกเตอร์
กำหนดโดยพิกัดตามลำดับปกติ

ตอบ:

จำเป็นต้องพูดการจัดการพิกัดนั้นน่าพอใจกว่ามาก

ตัวอย่าง 14

หาผลคูณสเกลาร์ของเวกเตอร์และ if

นี่คือตัวอย่างที่ต้องทำด้วยตัวเอง ที่นี่คุณสามารถใช้การเชื่อมโยงของการดำเนินการนั่นคือไม่นับ แต่นำสเกลาร์สามตัวออกจากผลิตภัณฑ์สเกลาร์ทันทีแล้วคูณด้วยสุดท้าย คำตอบและคำตอบในตอนท้ายของบทเรียน

ที่ส่วนท้ายของย่อหน้า ตัวอย่างที่ยั่วยุของการคำนวณความยาวของเวกเตอร์:

ตัวอย่าง 15

หาความยาวของเวกเตอร์ , ถ้า

การตัดสินใจ:ขอทางอีกครั้ง ส่วนก่อนหน้า: , แต่มีวิธีอื่น:

มาหาเวกเตอร์กัน:

และความยาวตามสูตรเล็กน้อย :

ผลิตภัณฑ์สเกลาร์ไม่เกี่ยวข้องเลย!

การคำนวณความยาวของเวกเตอร์เป็นอย่างไร
หยุด. ทำไมไม่ใช้ประโยชน์จากคุณสมบัติความยาวที่ชัดเจนของเวกเตอร์ล่ะ? สิ่งที่สามารถพูดเกี่ยวกับความยาวของเวกเตอร์? เวกเตอร์นี้ยาวกว่าเวกเตอร์ 5 เท่า ทิศทางตรงกันข้ามแต่ไม่สำคัญเพราะเรากำลังพูดถึงความยาว แน่นอน ความยาวของเวกเตอร์เท่ากับผลคูณ โมดูลตัวเลขต่อความยาวเวกเตอร์:
- เครื่องหมายของโมดูล "กิน" ค่าลบที่เป็นไปได้ของตัวเลข

ดังนั้น:

ตอบ:

สูตรสำหรับโคไซน์ของมุมระหว่างเวกเตอร์ที่กำหนดโดยพิกัด

ตอนนี้เรามีข้อมูลครบถ้วนแล้ว ดังนั้นสูตรที่ได้มาก่อนหน้านี้สำหรับโคไซน์ของมุมระหว่างเวกเตอร์ แสดงในรูปของพิกัดเวกเตอร์:

โคไซน์ของมุมระหว่างเวกเตอร์ระนาบและ , กำหนดแบบ orthonormal , แสดงโดยสูตร:
.

โคไซน์ของมุมระหว่างเวกเตอร์อวกาศ, กำหนดแบบออร์โธนอร์มอล, แสดงโดยสูตร:

ตัวอย่างที่ 16

ให้จุดยอดสามจุดของสามเหลี่ยม หา (มุมยอด ).

การตัดสินใจ:ตามเงื่อนไขไม่จำเป็นต้องวาดรูป แต่ยังคง:

มุมที่ต้องการจะถูกทำเครื่องหมายด้วยส่วนโค้งสีเขียว จำการกำหนดมุมของโรงเรียนทันที: - ความสนใจเป็นพิเศษบน กลางจดหมาย - นี่คือจุดยอดของมุมที่เราต้องการ เพื่อความกระชับ สามารถเขียนแบบง่ายๆ ได้เช่นกัน

จากรูปวาด จะเห็นได้ชัดว่ามุมของสามเหลี่ยมตรงกับมุมระหว่างเวกเตอร์ และ กล่าวอีกนัยหนึ่ง: .

เป็นที่พึงปรารถนาที่จะเรียนรู้วิธีการทำการวิเคราะห์ทางจิตใจ

มาหาเวกเตอร์กัน:

มาคำนวณผลคูณสเกลาร์กัน:

และความยาวของเวกเตอร์:

โคไซน์ของมุม:

เป็นลำดับของงานที่ฉันแนะนำให้กับหุ่น ผู้อ่านขั้นสูงสามารถเขียนการคำนวณ "ในหนึ่งบรรทัด":

นี่คือตัวอย่างค่าโคไซน์ที่ "ไม่ดี" ค่าผลลัพธ์ไม่เป็นที่สิ้นสุด ดังนั้นจึงไม่มี ความหมายพิเศษกำจัดความไร้เหตุผลในตัวส่วน

มาหามุมกัน:

หากคุณดูภาพวาดผลลัพธ์จะค่อนข้างน่าเชื่อถือ ในการตรวจสอบมุมยังสามารถวัดด้วยไม้โปรแทรกเตอร์ อย่าทำให้การเคลือบจอภาพเสียหาย =)

ตอบ:

ในคำตอบอย่าลืมว่า ถามถึงมุมของสามเหลี่ยม(และไม่เกี่ยวกับมุมระหว่างเวกเตอร์) อย่าลืมระบุคำตอบที่แน่นอน: และค่าโดยประมาณของมุม: พบกับเครื่องคิดเลข

ผู้ที่ชื่นชอบกระบวนการนี้สามารถคำนวณมุม และทำให้แน่ใจว่าความเท่าเทียมกันตามรูปแบบบัญญัติเป็นจริง

ตัวอย่าง 17

สามเหลี่ยมถูกกำหนดในอวกาศโดยพิกัดของจุดยอดของมัน หามุมระหว่างด้านกับ

นี่คือตัวอย่างที่ต้องทำด้วยตัวเอง คำตอบที่สมบูรณ์และคำตอบในตอนท้ายของบทเรียน

ส่วนสุดท้ายขนาดเล็กจะทุ่มเทให้กับการคาดการณ์ซึ่งผลิตภัณฑ์สเกลาร์ก็ "เกี่ยวข้อง" ด้วย:

การฉายภาพเวกเตอร์ลงบนเวกเตอร์ การฉายภาพเวกเตอร์บนแกนพิกัด
โคไซน์ทิศทางเวกเตอร์

พิจารณาเวกเตอร์และ:

เราฉายเวกเตอร์ลงบนเวกเตอร์ สำหรับสิ่งนี้เราละเว้นจากจุดเริ่มต้นและจุดสิ้นสุดของเวกเตอร์ ตั้งฉากต่อเวกเตอร์ (เส้นประสีเขียว) ลองนึกภาพว่ารังสีของแสงตกลงมาในแนวตั้งฉากกับเวกเตอร์ จากนั้นส่วน (เส้นสีแดง) จะเป็น "เงา" ของเวกเตอร์ ในกรณีนี้ การฉายภาพของเวกเตอร์บนเวกเตอร์คือ LENGTH ของเซ็กเมนต์ นั่นคือ PROJECTION IS A NUMBER

NUMBER นี้แสดงดังนี้: , "เวกเตอร์ขนาดใหญ่" หมายถึงเวกเตอร์ ที่โครงการ "เวกเตอร์ตัวห้อยขนาดเล็ก" หมายถึงเวกเตอร์ บนซึ่งเป็นที่คาดการณ์

ตัวข้อความนั้นอ่านได้ดังนี้: “การฉายภาพของเวกเตอร์ “a” ไปยังเวกเตอร์ “เป็น”

จะเกิดอะไรขึ้นถ้าเวกเตอร์ "be" "สั้นเกินไป" เราวาดเส้นตรงที่มีเวกเตอร์ "เป็น" และเวกเตอร์ "a" จะถูกฉายออกมาแล้ว ไปยังทิศทางของเวกเตอร์ "เป็น"ง่ายๆ - บนเส้นตรงที่มีเวกเตอร์ "be" สิ่งเดียวกันนี้จะเกิดขึ้นหากเวกเตอร์ "a" ถูกจัดวางไว้ในอาณาจักรที่ 30 - จะยังคงฉายภาพได้อย่างง่ายดายบนเส้นที่มีเวกเตอร์ "be"

ถ้ามุมระหว่างเวกเตอร์ เผ็ด(ตามภาพ) แล้ว

ถ้าเวกเตอร์ มุมฉากจากนั้น (การฉายภาพคือจุดที่ถือว่ามิติข้อมูลเป็นศูนย์)

ถ้ามุมระหว่างเวกเตอร์ ทื่อ(ในรูป จัดเรียงลูกศรของเวกเตอร์ทางจิตใจ) จากนั้น (ความยาวเท่ากัน แต่ถ่ายด้วยเครื่องหมายลบ)

กันเวกเตอร์เหล่านี้จากจุดหนึ่ง:

แน่นอน เมื่อเคลื่อนที่เวกเตอร์ การฉายภาพจะไม่เปลี่ยนแปลง

มุมระหว่างเวกเตอร์สองตัว , :

ถ้ามุมระหว่างเวกเตอร์สองตัวเป็นมุมแหลม ผลคูณดอทของพวกมันจะเป็นค่าบวก ถ้ามุมระหว่างเวกเตอร์เป็นมุมป้าน ผลคูณของสเกลาร์ของเวกเตอร์พวกนี้จะเป็นลบ ผลคูณสเกลาร์ของเวกเตอร์ที่ไม่ใช่ศูนย์สองตัวจะเป็นศูนย์ก็ต่อเมื่อเวกเตอร์เหล่านี้เป็นมุมฉากเท่านั้น

ออกกำลังกาย.หามุมระหว่างเวกเตอร์กับ

การตัดสินใจ.โคไซน์ของมุมที่ต้องการ

16. การคำนวณมุมระหว่างเส้นตรง เส้นตรง และระนาบ

มุมระหว่างเส้นกับระนาบตัดเส้นนี้และไม่ตั้งฉากกับมันคือมุมระหว่างเส้นกับการฉายบนระนาบนี้

การกำหนดมุมระหว่างเส้นกับระนาบช่วยให้เราสรุปได้ว่ามุมระหว่างเส้นกับระนาบคือมุมระหว่างเส้นตัดกันสองเส้น: เส้นตรงและการฉายภาพบนระนาบ ดังนั้นมุมระหว่างเส้นกับระนาบจึงเป็นมุมแหลม

มุมระหว่างเส้นตั้งฉากกับระนาบถือว่าเท่ากัน และมุมระหว่างเส้นคู่ขนานกับระนาบไม่ได้ถูกกำหนดเลย หรือถือว่าเท่ากับ

§ 69. การคำนวณมุมระหว่างเส้นตรง

ปัญหาการคำนวณมุมระหว่างเส้นตรงสองเส้นในอวกาศได้รับการแก้ไขในลักษณะเดียวกับในระนาบ (§ 32) แทนด้วย φ มุมระหว่างเส้น l 1 และ l 2 , และผ่าน ψ - มุมระหว่างเวกเตอร์ทิศทาง เอ และ เส้นตรงเหล่านี้

แล้วถ้า

ψ 90° (รูปที่ 206.6) จากนั้น φ = 180° - ψ เห็นได้ชัดว่าในทั้งสองกรณี ความเท่าเทียมกัน cos φ = |cos ψ| เป็นจริง ตามสูตร (1) § 20 เรามี

เพราะฉะนั้น,

ให้เส้นถูกกำหนดโดยสมการบัญญัติของพวกมัน

จากนั้นกำหนดมุม φ ระหว่างเส้นโดยใช้สูตร

หากเส้นใดเส้นหนึ่ง (หรือทั้งสองอย่าง) ถูกกำหนดโดยสมการที่ไม่เป็นที่ยอมรับ ในการคำนวณมุม คุณต้องหาพิกัดของเวกเตอร์ทิศทางของเส้นเหล่านี้ แล้วใช้สูตร (1)

17. เส้นขนาน, ทฤษฎีบทบนเส้นคู่ขนาน

คำนิยาม.สองบรรทัดในระนาบเรียกว่า ขนานถ้าไม่มีจุดร่วม

สองเส้นในสามมิติเรียกว่า ขนานหากอยู่ในระนาบเดียวกันและไม่มีจุดร่วม

มุมระหว่างเวกเตอร์สองตัว

จากคำจำกัดความของผลิตภัณฑ์ดอท:

.

เงื่อนไขมุมฉากของเวกเตอร์สองตัว:

เงื่อนไข Collinearity สำหรับเวกเตอร์สองตัว:

.

ต่อจากนิยาม 5 - . จากนิยามผลคูณของเวกเตอร์ตามตัวเลข มันตามมาด้วย ดังนั้น ตามกฎความเท่าเทียมกันของเวกเตอร์ เราเขียน , , , ซึ่งหมายถึง . แต่เวกเตอร์ที่เกิดจากการคูณของเวกเตอร์ด้วยตัวเลขจะขนานกับเวกเตอร์นั้น

การฉายภาพเวกเตอร์เป็นเวกเตอร์:

.

ตัวอย่างที่ 4. ให้คะแนน , , , .

หาผลคูณสเกลาร์.

การตัดสินใจ. เราหาได้จากสูตรผลคูณสเกลาร์ของเวกเตอร์ที่กำหนดโดยพิกัดของพวกมัน ตราบเท่าที่

, ,

ตัวอย่างที่ 5ให้คะแนน , , , .

ค้นหาการฉายภาพ

การตัดสินใจ. ตราบเท่าที่

, ,

จากสูตรการฉายภาพเราได้

.

ตัวอย่างที่ 6ให้คะแนน , , , .

หามุมระหว่างเวกเตอร์กับ

การตัดสินใจ. สังเกตว่าเวกเตอร์

, ,

ไม่เป็นแนวร่วม เนื่องจากพิกัดไม่เป็นสัดส่วน:

.

เวกเตอร์เหล่านี้ไม่ได้ตั้งฉากเช่นกัน เนื่องจากดอทโปรดัคของพวกมันคือ

มาหากัน

ฉีด ค้นหาจากสูตร:

.

ตัวอย่าง 7กำหนดว่าเวกเตอร์ใดและ คอลลิเนียร์

การตัดสินใจ. ในกรณีของ collinearity พิกัดที่สอดคล้องกันของเวกเตอร์ และต้องเป็นสัดส่วน กล่าวคือ

.

จากนี้และ.

ตัวอย่างที่ 8. หาค่าของเวกเตอร์ และ ตั้งฉาก

การตัดสินใจ. เวกเตอร์ และตั้งฉากถ้าดอทโปรดัคเป็นศูนย์ จากเงื่อนไขนี้เราได้รับ: . นั่นคือ, .

ตัวอย่างที่ 9. การค้นหา , ถ้า , , .

การตัดสินใจ. เนื่องจากคุณสมบัติของผลิตภัณฑ์สเกลาร์ เรามี:

ตัวอย่าง 10. หามุมระหว่างเวกเตอร์กับ , ที่ไหน และ - เวกเตอร์หน่วยและมุมระหว่างเวกเตอร์และเท่ากับ 120o

การตัดสินใจ. เรามี: , ,

ในที่สุดเราก็มี: .

5 ข. ผลิตภัณฑ์เวกเตอร์.

คำจำกัดความ 21.ศิลปะเวกเตอร์ vector to vector เรียกว่า vector หรือ กำหนดโดยเงื่อนไขสามข้อต่อไปนี้:

1) โมดูลของเวกเตอร์คือ โดยที่มุมระหว่างเวกเตอร์ และ นั่นคือ .

ตามมาด้วยว่าโมดูลัสของผลิตภัณฑ์เวกเตอร์เป็นตัวเลข เท่ากับพื้นที่สี่เหลี่ยมด้านขนานที่สร้างขึ้นบนเวกเตอร์และด้านข้าง

2) เวกเตอร์ตั้งฉากกับเวกเตอร์แต่ละตัวและ ( ; ) เช่น ตั้งฉากกับระนาบของสี่เหลี่ยมด้านขนานที่สร้างบนเวกเตอร์ และ .

3) เวกเตอร์ถูกกำกับเพื่อที่ว่าหากมองจากจุดสิ้นสุดของมัน การเลี้ยวที่สั้นที่สุดจากเวกเตอร์ไปยังเวกเตอร์จะเป็นทวนเข็มนาฬิกา (เวกเตอร์ , , ก่อตัวเป็นสามทางขวา)

วิธีการคำนวณมุมระหว่างเวกเตอร์?

เมื่อศึกษาเรขาคณิต มีคำถามมากมายเกิดขึ้นในหัวข้อของเวกเตอร์ นักเรียนประสบปัญหาเฉพาะเมื่อจำเป็นต้องหามุมระหว่างเวกเตอร์

ศัพท์พื้นฐาน

ก่อนพิจารณามุมระหว่างเวกเตอร์ จำเป็นต้องทำความคุ้นเคยกับคำจำกัดความของเวกเตอร์และแนวคิดของมุมระหว่างเวกเตอร์

เวกเตอร์คือเซ็กเมนต์ที่มีทิศทาง นั่นคือ เซ็กเมนต์ที่กำหนดจุดเริ่มต้นและจุดสิ้นสุด

มุมระหว่างเวกเตอร์สองตัวบนระนาบที่มีจุดกำเนิดร่วมคือมุมที่เล็กกว่า ซึ่งจำเป็นต้องเคลื่อนเวกเตอร์ตัวใดตัวหนึ่งไปรอบๆ จุดร่วม ไปยังตำแหน่งที่ทิศทางตรงกัน

สูตรการแก้ปัญหา

เมื่อคุณเข้าใจว่าเวกเตอร์คืออะไรและกำหนดมุมของเวกเตอร์นั้นอย่างไร คุณสามารถคำนวณมุมระหว่างเวกเตอร์ได้ สูตรการแก้ปัญหานี้ค่อนข้างง่ายและผลลัพธ์ของการประยุกต์ใช้จะเป็นค่าของโคไซน์ของมุม ตามคำจำกัดความ มันเท่ากับผลคูณของผลิตภัณฑ์สเกลาร์ของเวกเตอร์และผลคูณของความยาว

ผลคูณสเกลาร์ของเวกเตอร์ถือเป็นผลรวมของพิกัดที่สอดคล้องกันของเวกเตอร์ตัวคูณคูณกัน ความยาวของเวกเตอร์หรือโมดูลัสคำนวณจากรากที่สองของผลรวมของกำลังสองของพิกัด

เมื่อได้รับค่าโคไซน์ของมุมแล้ว คุณสามารถคำนวณค่าของมุมได้เองโดยใช้เครื่องคิดเลขหรือใช้ตารางตรีโกณมิติ

ตัวอย่าง

หลังจากที่คุณทราบวิธีการคำนวณมุมระหว่างเวกเตอร์แล้ว การแก้ปัญหาที่เกี่ยวข้องจะกลายเป็นเรื่องง่ายและตรงไปตรงมา ตัวอย่างเช่น ลองพิจารณาปัญหาง่ายๆ ของการหาขนาดของมุม

ก่อนอื่นจะสะดวกกว่าในการคำนวณค่าความยาวของเวกเตอร์และผลิตภัณฑ์สเกลาร์ที่จำเป็นสำหรับการแก้ปัญหา โดยใช้คำอธิบายข้างต้น เราได้รับ:

แทนที่ค่าที่ได้รับลงในสูตรเราจะคำนวณค่าโคไซน์ของมุมที่ต้องการ:

ตัวเลขนี้ไม่ใช่ค่าโคไซน์ทั่วไปหนึ่งในห้า ดังนั้นเพื่อให้ได้ค่ามุม คุณจะต้องใช้เครื่องคิดเลขหรือตารางตรีโกณมิติของ Bradis แต่ก่อนที่จะได้มุมระหว่างเวกเตอร์ สูตรสามารถทำให้ง่ายขึ้นเพื่อกำจัดเครื่องหมายลบเพิ่มเติม:

คำตอบสุดท้ายสามารถทิ้งไว้ในแบบฟอร์มนี้เพื่อรักษาความถูกต้อง หรือจะคำนวณค่าของมุมเป็นองศาก็ได้ ตามตาราง Bradis ค่าของมันจะอยู่ที่ประมาณ 116 องศาและ 70 นาที และเครื่องคิดเลขจะแสดงค่า 116.57 องศา

การคำนวณมุมในปริภูมิ n มิติ

เมื่อพิจารณาเวกเตอร์สองตัวในพื้นที่สามมิติ เป็นการยากที่จะเข้าใจว่าเรากำลังพูดถึงมุมใดหากพวกมันไม่อยู่ในระนาบเดียวกัน เพื่อทำให้การรับรู้ง่ายขึ้น คุณสามารถวาดส่วนที่ตัดกันสองส่วนที่เป็นมุมที่เล็กที่สุดระหว่างพวกมัน และมันจะเป็นส่วนที่ต้องการ แม้จะมีพิกัดที่สามในเวกเตอร์ แต่กระบวนการคำนวณมุมระหว่างเวกเตอร์จะไม่เปลี่ยนแปลง คำนวณผลคูณสเกลาร์และโมดูลของเวกเตอร์ อาร์คโคไซน์ของผลหารและจะเป็นคำตอบสำหรับปัญหานี้

ในเรขาคณิต ปัญหามักเกิดขึ้นกับช่องว่างที่มีมากกว่าสามมิติ แต่สำหรับพวกเขา อัลกอริธึมในการค้นหาคำตอบก็ดูคล้ายกัน

ความแตกต่างระหว่าง 0 ถึง 180 องศา

ข้อผิดพลาดทั่วไปอย่างหนึ่งเมื่อเขียนคำตอบสำหรับปัญหาที่ออกแบบมาเพื่อคำนวณมุมระหว่างเวกเตอร์คือการตัดสินใจที่จะเขียนว่าเวกเตอร์นั้นขนานกัน นั่นคือมุมที่ต้องการกลายเป็น 0 หรือ 180 องศา คำตอบนี้ไม่ถูกต้อง

เมื่อได้ค่ามุมเท่ากับ 0 องศาจากผลลัพธ์ของการแก้ปัญหาแล้ว คำตอบที่ถูกต้องคือกำหนดให้เวกเตอร์เป็นทิศทางร่วม กล่าวคือ เวกเตอร์จะมีทิศทางเดียวกัน ในกรณีที่ได้ 180 องศา เวกเตอร์จะอยู่ในลักษณะของทิศตรงข้าม

เวกเตอร์เฉพาะ

โดยการค้นหามุมระหว่างเวกเตอร์ จะพบประเภทพิเศษประเภทใดประเภทหนึ่ง นอกเหนือไปจากประเภทที่กำกับร่วมและทิศทางตรงกันข้ามที่อธิบายข้างต้น

  • เวกเตอร์หลายตัวขนานกับระนาบเดียวเรียกว่าโคพลานาร์
  • เวกเตอร์ที่มีความยาวและทิศทางเท่ากันเรียกว่าเท่ากัน
  • เวกเตอร์ที่วางอยู่บนเส้นตรงเดียวกันโดยไม่คำนึงถึงทิศทางเรียกว่า collinear
  • หากความยาวของเวกเตอร์เป็นศูนย์ นั่นคือ จุดเริ่มต้นและจุดสิ้นสุดตรงกัน จะเรียกว่าศูนย์ และหากเป็นหนึ่ง จะถูกเรียกว่าหนึ่ง

จะหามุมระหว่างเวกเตอร์ได้อย่างไร?

ช่วยฉันด้วย! รู้สูตรแต่คิดไม่ออก
เวกเตอร์ a (8; 10; 4) เวกเตอร์ b (5; -20; -10)

Alexander Titov

มุมระหว่างเวกเตอร์ที่กำหนดโดยพิกัดนั้นพบได้ตามอัลกอริธึมมาตรฐาน ก่อนอื่นคุณต้องหาผลคูณสเกลาร์ของเวกเตอร์ a และ b: (a, b) = x1x2 + y1y2 + z1z2 เราแทนที่พิกัดของเวกเตอร์เหล่านี้ที่นี่แล้วพิจารณา:
(a,b) = 8*5 + 10*(-20) = 4*(-10) = 40 - 200 - 40 = -200
ต่อไป เรากำหนดความยาวของเวกเตอร์แต่ละตัว ความยาวหรือโมดูลัสของเวกเตอร์คือรากที่สองของผลรวมของกำลังสองของพิกัด:
|a| = รากของ (x1^2 + y1^2 + z1^2) = รากของ (8^2 + 10^2 + 4^2) = รากของ (64 + 100 + 16) = รากของ 180 = 6 รากของ 5
|b| = สแควร์รูทของ (x2^2 + y2^2 + z2^2) = สแควร์รูทของ (5^2 + (-20)^2 + (-10)^2) = สแควร์รูทของ (25 + 400 + 100 ) = สแควร์รูทจาก 525 = 5 รูทจาก 21
เราคูณความยาวเหล่านี้ เราได้ 30 รากจาก 105
และสุดท้าย เราหารผลคูณสเกลาร์ของเวกเตอร์ด้วยผลคูณของความยาวของเวกเตอร์เหล่านี้ เราได้ -200 / (30 รากจาก 105) หรือ
- (4 รากของ 105) / 63. นี่คือโคไซน์ของมุมระหว่างเวกเตอร์ และมุมเองก็เท่ากับโคไซน์อาร์คของเลขนี้
f \u003d arccos (-4 รากจาก 105) / 63.
ถ้านับถูก.

วิธีการคำนวณไซน์ของมุมระหว่างเวกเตอร์จากพิกัดของเวกเตอร์

มิคาอิล Tkachev

เราคูณเวกเตอร์เหล่านี้ ดอทโปรดัคของพวกมันเท่ากับผลคูณของความยาวของเวกเตอร์เหล่านี้กับโคไซน์ของมุมระหว่างพวกมัน
เราไม่รู้จักมุม แต่รู้พิกัด
ลองเขียนมันทางคณิตศาสตร์แบบนี้
ให้ เวกเตอร์ที่กำหนด a(x1;y1) และ b(x2;y2)
แล้ว

A*b=|a|*|b|*cosA

CosA=a*b/|a|*|b|

เราเถียง
ผลคูณ a*b-scalar ของเวกเตอร์ เท่ากับผลรวมของผลคูณของพิกัดที่สอดคล้องกันของพิกัดของเวกเตอร์เหล่านี้ นั่นคือ เท่ากับ x1*x2+y1*y2

|a|*|b|-ผลคูณของความยาวเวกเตอร์เท่ากับ √((x1)^2+(y1)^2)*√((x2)^2+(y2)^2)

ดังนั้นโคไซน์ของมุมระหว่างเวกเตอร์คือ:

CosA=(x1*x2+y1*y2)/√((x1)^2+(y1)^2)*√((x2)^2+(y2)^2)

เมื่อทราบโคไซน์ของมุมแล้ว เราก็สามารถคำนวณค่าไซน์ของมันได้ มาพูดคุยกันถึงวิธีการทำ:

ถ้าโคไซน์ของมุมเป็นบวก มุมนี้จะอยู่ใน 1 หรือ 4 ในสี่ ดังนั้นไซน์ของมุมจะเป็นบวกหรือลบ แต่เนื่องจากมุมระหว่างเวกเตอร์น้อยกว่าหรือเท่ากับ 180 องศา ไซน์ของมันคือบวก เราโต้แย้งในทำนองเดียวกันถ้าโคไซน์เป็นลบ

SinA=√(1-cos^2A)=√(1-((x1*x2+y1*y2)/√((x1)^2+(y1)^2)*√((x2)^2+( y2)^2))^2)

แค่นั้นแหละ)))) ขอให้โชคดีในการคิดออก)))

Dmitry Levishchev

ความจริงที่ว่าเป็นไปไม่ได้ที่จะไซน์โดยตรงนั้นไม่เป็นความจริง
นอกเหนือจากสูตร:
(a,b)=|a|*|b|*cos A
นอกจากนี้ยังมีสิ่งนี้:
||=|a|*|b|*sin A
นั่นคือ แทนที่จะเป็นผลคูณสเกลาร์ คุณสามารถใช้โมดูลของผลิตภัณฑ์เวกเตอร์ได้

กำลังโหลด...กำลังโหลด...