Least common multiple of three numbers examples. Finding the least common multiple: methods, examples of finding the LCM

To understand how to calculate the LCM, you should first determine the meaning of the term "multiple".


A multiple of A is a natural number that is divisible by A without remainder. Thus, 15, 20, 25, and so on can be considered multiples of 5.


There can be a limited number of divisors of a particular number, but there are an infinite number of multiples.


A common multiple of natural numbers is a number that is divisible by them without a remainder.

How to find the least common multiple of numbers

The least common multiple (LCM) of numbers (two, three or more) is the smallest natural number that is evenly divisible by all these numbers.


To find the NOC, you can use several methods.


For small numbers, it is convenient to write out in a line all the multiples of these numbers until a common one is found among them. Multiples are denoted in the record with a capital letter K.


For example, multiples of 4 can be written like this:


K(4) = (8,12, 16, 20, 24, ...)


K(6) = (12, 18, 24, ...)


So, you can see that the least common multiple of the numbers 4 and 6 is the number 24. This entry is performed as follows:


LCM(4, 6) = 24


If the numbers are large, find the common multiple of three or more numbers, then it is better to use another way to calculate the LCM.


To complete the task, it is necessary to decompose the proposed numbers into prime factors.


First you need to write out the expansion of the largest of the numbers in a line, and below it - the rest.


In the expansion of each number, there may be a different number of factors.


For example, let's factor the numbers 50 and 20 into prime factors.




In the expansion of the smaller number, one should underline the factors that are missing in the expansion of the first largest number, and then add them to it. In the presented example, a deuce is missing.


Now we can calculate the least common multiple of 20 and 50.


LCM (20, 50) = 2 * 5 * 5 * 2 = 100


Thus, the product of the prime factors of the larger number and the factors of the second number, which are not included in the decomposition of the larger number, will be the least common multiple.


To find the LCM of three or more numbers, all of them should be decomposed into prime factors, as in the previous case.


As an example, you can find the least common multiple of the numbers 16, 24, 36.


36 = 2 * 2 * 3 * 3


24 = 2 * 2 * 2 * 3


16 = 2 * 2 * 2 * 2


Thus, only two deuces from the decomposition of sixteen were not included in the factorization of a larger number (one is in the decomposition of twenty-four).


Thus, they need to be added to the decomposition of a larger number.


LCM (12, 16, 36) = 2 * 2 * 3 * 3 * 2 * 2 = 9


There are special cases of determining the least common multiple. So, if one of the numbers can be divided without a remainder by another, then the larger of these numbers will be the least common multiple.


For example, NOCs of twelve and twenty-four would be twenty-four.


If it is necessary to find the least common multiple of coprime numbers that do not have the same divisors, then their LCM will be equal to their product.


For example, LCM(10, 11) = 110.

Consider three ways to find the least common multiple.

Finding by Factoring

The first way is to find the least common multiple by factoring the given numbers into prime factors.

Suppose we need to find the LCM of numbers: 99, 30 and 28. To do this, we decompose each of these numbers into prime factors:

For the desired number to be divisible by 99, 30 and 28, it is necessary and sufficient that it includes all the prime factors of these divisors. To do this, we need to take all the prime factors of these numbers to the highest occurring power and multiply them together:

2 2 3 2 5 7 11 = 13 860

So LCM (99, 30, 28) = 13,860. No other number less than 13,860 is evenly divisible by 99, 30, or 28.

To find the least common multiple of given numbers, you need to decompose them into prime factors, then take each prime factor with the largest exponent with which it occurs, and multiply these factors together.

Since coprime numbers have no common prime factors, their least common multiple is equal to the product of these numbers. For example, three numbers: 20, 49 and 33 are coprime. So

LCM (20, 49, 33) = 20 49 33 = 32,340.

The same should be done when looking for the least common multiple of various primes. For example, LCM (3, 7, 11) = 3 7 11 = 231.

Finding by selection

The second way is to find the least common multiple by fitting.

Example 1. When the largest of the given numbers is evenly divisible by other given numbers, then the LCM of these numbers is equal to the larger of them. For example, given four numbers: 60, 30, 10 and 6. Each of them is divisible by 60, therefore:

NOC(60, 30, 10, 6) = 60

In other cases, to find the least common multiple, the following procedure is used:

  1. Determine the largest number from the given numbers.
  2. Next, we find numbers that are multiples of the largest number, multiplying it by natural numbers in ascending order and checking whether the remaining given numbers are divisible by the resulting product.

Example 2. Given three numbers 24, 3 and 18. Determine the largest of them - this is the number 24. Next, find the multiples of 24, checking whether each of them is divisible by 18 and by 3:

24 1 = 24 is divisible by 3 but not divisible by 18.

24 2 = 48 - divisible by 3 but not divisible by 18.

24 3 \u003d 72 - divisible by 3 and 18.

So LCM(24, 3, 18) = 72.

Finding by Sequential Finding LCM

The third way is to find the least common multiple by successively finding the LCM.

The LCM of two given numbers is equal to the product of these numbers divided by their greatest common divisor.

Example 1. Find the LCM of two given numbers: 12 and 8. Determine their greatest common divisor: GCD (12, 8) = 4. Multiply these numbers:

We divide the product into their GCD:

So LCM(12, 8) = 24.

To find the LCM of three or more numbers, the following procedure is used:

  1. First, the LCM of any two of the given numbers is found.
  2. Then, the LCM of the found least common multiple and the third given number.
  3. Then, the LCM of the resulting least common multiple and the fourth number, and so on.
  4. Thus the LCM search continues as long as there are numbers.

Example 2. Let's find the LCM of three given numbers: 12, 8 and 9. We have already found the LCM of the numbers 12 and 8 in the previous example (this is the number 24). It remains to find the least common multiple of 24 and the third given number - 9. Determine their greatest common divisor: gcd (24, 9) = 3. Multiply LCM with the number 9:

We divide the product into their GCD:

So LCM(12, 8, 9) = 72.

Consider the solution of the following problem. The boy's step is 75 cm, and the girl's step is 60 cm. It is necessary to find the smallest distance at which both of them will take an integer number of steps.

Decision. The entire path that the guys will go through must be divisible by 60 and 70 without a remainder, since they must each take an integer number of steps. In other words, the answer must be a multiple of both 75 and 60.

First, we will write out all multiples, for the number 75. We get:

  • 75, 150, 225, 300, 375, 450, 525, 600, 675, … .

Now let's write out the numbers that will be a multiple of 60. We get:

  • 60, 120, 180, 240, 300, 360, 420, 480, 540, 600, 660, … .

Now we find the numbers that are in both rows.

  • Common multiples of numbers will be numbers, 300, 600, etc.

The smallest of them is the number 300. In this case, it will be called the least common multiple of the numbers 75 and 60.

Returning to the condition of the problem, the smallest distance at which the guys take an integer number of steps will be 300 cm. The boy will go this way in 4 steps, and the girl will need to take 5 steps.

Finding the Least Common Multiple

  • The least common multiple of two natural numbers a and b is the smallest natural number that is a multiple of both a and b.

In order to find the least common multiple of two numbers, it is not necessary to write down all the multiples for these numbers in a row.

You can use the following method.

How to find the least common multiple

First, you need to decompose these numbers into prime factors.

  • 60 = 2*2*3*5,
  • 75=3*5*5.

Now let's write down all the factors that are in the expansion of the first number (2,2,3,5) and add to it all the missing factors from the expansion of the second number (5).

As a result, we get a series of prime numbers: 2,2,3,5,5. The product of these numbers will be the least common factor for these numbers. 2*2*3*5*5 = 300.

General scheme for finding the least common multiple

  • 1. Decompose numbers into prime factors.
  • 2. Write down the prime factors that are part of one of them.
  • 3. Add to these factors all those that are in the decomposition of the rest, but not in the selected one.
  • 4. Find the product of all the factors written out.

This method is universal. It can be used to find the least common multiple of any number of natural numbers.

Definition. The largest natural number by which the numbers a and b are divisible without a remainder is called greatest common divisor (gcd) these numbers.

Let's find the greatest common divisor of the numbers 24 and 35.
The divisors of 24 will be the numbers 1, 2, 3, 4, 6, 8, 12, 24, and the divisors of 35 will be the numbers 1, 5, 7, 35.
We see that the numbers 24 and 35 have only one common divisor - the number 1. Such numbers are called coprime.

Definition. The natural numbers are called coprime if their greatest common divisor (gcd) is 1.

Greatest Common Divisor (GCD) can be found without writing out all the divisors of the given numbers.

Factoring the numbers 48 and 36, we get:
48 = 2 * 2 * 2 * 2 * 3, 36 = 2 * 2 * 3 * 3.
From the factors included in the expansion of the first of these numbers, we delete those that are not included in the expansion of the second number (i.e., two deuces).
The factors 2 * 2 * 3 remain. Their product is 12. This number is the greatest common divisor of the numbers 48 and 36. The greatest common divisor of three or more numbers is also found.

To find greatest common divisor

2) from the factors included in the expansion of one of these numbers, cross out those that are not included in the expansion of other numbers;
3) find the product of the remaining factors.

If all given numbers are divisible by one of them, then this number is greatest common divisor given numbers.
For example, the greatest common divisor of 15, 45, 75, and 180 is 15, since it divides all other numbers: 45, 75, and 180.

Least common multiple (LCM)

Definition. Least common multiple (LCM) natural numbers a and b are the smallest natural number that is a multiple of both a and b. The least common multiple (LCM) of the numbers 75 and 60 can be found without writing out multiples of these numbers in a row. To do this, we decompose 75 and 60 into simple factors: 75 \u003d 3 * 5 * 5, and 60 \u003d 2 * 2 * 3 * 5.
Let's write out the factors included in the expansion of the first of these numbers, and add to them the missing factors 2 and 2 from the expansion of the second number (i.e., we combine the factors).
We get five factors 2 * 2 * 3 * 5 * 5, the product of which is 300. This number is the least common multiple of the numbers 75 and 60.

Also find the least common multiple of three or more numbers.

To find the least common multiple several natural numbers, you need:
1) decompose them into prime factors;
2) write out the factors included in the expansion of one of the numbers;
3) add to them the missing factors from the expansions of the remaining numbers;
4) find the product of the resulting factors.

Note that if one of these numbers is divisible by all other numbers, then this number is the least common multiple of these numbers.
For example, the least common multiple of 12, 15, 20, and 60 would be 60, since it is divisible by all given numbers.

Pythagoras (VI century BC) and his students studied the issue of divisibility of numbers. A number equal to the sum of all its divisors (without the number itself), they called the perfect number. For example, the numbers 6 (6 = 1 + 2 + 3), 28 (28 = 1 + 2 + 4 + 7 + 14) are perfect. The next perfect numbers are 496, 8128, 33,550,336. The Pythagoreans knew only the first three perfect numbers. The fourth - 8128 - became known in the 1st century. n. e. The fifth - 33 550 336 - was found in the 15th century. By 1983, 27 perfect numbers were already known. But until now, scientists do not know whether there are odd perfect numbers, whether there is the largest perfect number.
The interest of ancient mathematicians in prime numbers is due to the fact that any number is either prime or can be represented as a product of prime numbers, that is, prime numbers are like bricks from which the rest of the natural numbers are built.
You probably noticed that prime numbers in the series of natural numbers occur unevenly - in some parts of the series there are more of them, in others - less. But the further we move along the number series, the rarer the prime numbers. The question arises: does the last (largest) prime number exist? The ancient Greek mathematician Euclid (3rd century BC), in his book "Beginnings", which for two thousand years was the main textbook of mathematics, proved that there are infinitely many prime numbers, that is, behind each prime number there is an even greater prime number.
To find prime numbers, another Greek mathematician of the same time, Eratosthenes, came up with such a method. He wrote down all the numbers from 1 to some number, and then crossed out the unit, which is neither a prime nor a composite number, then crossed out through one all the numbers after 2 (numbers that are multiples of 2, i.e. 4, 6 , 8, etc.). The first remaining number after 2 was 3. Then, after two, all the numbers after 3 were crossed out (numbers that are multiples of 3, i.e. 6, 9, 12, etc.). in the end, only the prime numbers remained uncrossed out.

Students are given a lot of math assignments. Among them, very often there are tasks with the following formulation: there are two values. How to find the least common multiple of given numbers? It is necessary to be able to perform such tasks, since the acquired skills are used to work with fractions with different denominators. In the article, we will analyze how to find the LCM and the basic concepts.

Before finding the answer to the question of how to find the LCM, you need to define the term multiple. Most often, the wording of this concept is as follows: a multiple of some value A is a natural number that will be divisible by A without a remainder. So, for 4, 8, 12, 16, 20 and so on, up to the necessary limit.

In this case, the number of divisors for a particular value can be limited, and there are infinitely many multiples. There is also the same value for natural values. This is an indicator that is divided by them without a remainder. Having dealt with the concept of the smallest value for certain indicators, let's move on to how to find it.

Finding the NOC

The least multiple of two or more exponents is the smallest natural number that is fully divisible by all the given numbers.

There are several ways to find such a value. Let's consider the following methods:

  1. If the numbers are small, then write in the line all divisible by it. Keep doing this until you find something in common among them. In the record, they are denoted by the letter K. For example, for 4 and 3, the smallest multiple is 12.
  2. If these are large or you need to find a multiple for 3 or more values, then you should use a different technique here, which involves decomposing numbers into prime factors. First, lay out the largest of the indicated, then all the rest. Each of them has its own number of multipliers. As an example, let's decompose 20 (2*2*5) and 50 (5*5*2). For the smaller of them, underline the factors and add to the largest. The result will be 100, which will be the least common multiple of the above numbers.
  3. When finding 3 numbers (16, 24 and 36) the principles are the same as for the other two. Let's expand each of them: 16 = 2*2*2*2, 24=2*2*2*3, 36=2*2*3*3. Only two deuces from the expansion of the number 16 were not included in the decomposition of the largest. We add them and get 144, which is the smallest result for the previously indicated numerical values.

Now we know what is the general technique for finding the smallest value for two, three or more values. However, there are also private methods, helping to search for NOCs, if the previous ones do not help.

How to find GCD and NOC.

Private Ways of Finding

As with any mathematical section, there are special cases of finding LCMs that help in specific situations:

  • if one of the numbers is divisible by the others without a remainder, then the lowest multiple of these numbers is equal to it (NOC 60 and 15 is equal to 15);
  • Coprime numbers do not have common prime divisors. Their smallest value is equal to the product of these numbers. Thus, for the numbers 7 and 8, this will be 56;
  • the same rule works for other cases, including special ones, which can be read about in specialized literature. This should also include cases of decomposition of composite numbers, which are the subject of separate articles and even Ph.D. dissertations.

Special cases are less common than standard examples. But thanks to them, you can learn how to work with fractions of varying degrees of complexity. This is especially true for fractions., where there are different denominators.

Some examples

Let's look at a few examples, thanks to which you can understand the principle of finding the smallest multiple:

  1. We find LCM (35; 40). We lay out first 35 = 5*7, then 40 = 5*8. We add 8 to the smallest number and get the NOC 280.
  2. NOC (45; 54). We lay out each of them: 45 = 3*3*5 and 54 = 3*3*6. We add the number 6 to 45. We get the NOC equal to 270.
  3. Well, the last example. There are 5 and 4. There are no simple multiples for them, so the least common multiple in this case will be their product, equal to 20.

Thanks to examples, you can understand how the NOC is located, what are the nuances and what is the meaning of such manipulations.

Finding the NOC is much easier than it might seem at first. For this, both a simple expansion and the multiplication of simple values ​​\u200b\u200bto each other are used.. The ability to work with this section of mathematics helps in the further study of mathematical topics, especially fractions of varying degrees of complexity.

Do not forget to periodically solve examples with different methods, this develops the logical apparatus and allows you to remember numerous terms. Learn methods for finding such an indicator and you will be able to work well with the rest of the mathematical sections. Happy learning math!

Video

This video will help you understand and remember how to find the least common multiple.

Loading...Loading...