Порівняти дробові числа з різними знаменниками. Порівняння дробів: правила, приклади, рішення

Ця стаття розглядає порівняння дробів. Тут ми з'ясуємо, який із дробів більший або менший, застосуємо правило, розберемо приклади рішення. Порівняємо дроби як із однаковими, і різними знаменниками. Зробимо порівняння звичайного дробу з натуральним числом.

Yandex.RTB R-A-339285-1

Порівняння дробів із однаковими знаменниками

Коли проводиться порівняння дробів з однаковими знаменниками, ми працюємо лише з чисельником, а отже, порівнюємо частки числа. Якщо є дроб 3 7 , то він має 3 частки 1 7 тоді дроб 8 7 має 8 таких часток. Інакше висловлюючись, якщо знаменник однаковий, виробляється порівняння чисельників цих дробів, тобто 3 7 і 8 7 порівнюються числа 3 і 8 .

Звідси випливає правило порівняння дробів з однаковими знаменниками: з наявних дробів з однаковими показниками вважається більшим той дріб, у якого чисельник більший і навпаки.

Це свідчить, що слід звернути увагу до чисельники. Для цього розглянемо приклад.

Приклад 1

Зробити порівняння заданих дробів 65126 і 87126 .

Рішення

Оскільки знаменники дробів однакові, переходимо до чисельників. З чисел 87 та 65 очевидно, що 65 менше. З правила порівняння дробів з однаковими знаменниками маємо, що 87 126 більше 65 126 .

Відповідь: 87 126 > 65 126 .

Порівняння дробів із різними знаменниками

Порівняння таких дробів можна співвіднести з порівнянням дробів з однаковими показниками, але є різниця. Тепер необхідно дроби приводити до спільного знаменника.

Якщо є дроби з різними знаменниками, їх порівняння необхідно:

  • знайти спільний знаменник;
  • порівняти дроби.

Розглянемо дані події з прикладу.

Приклад 2

Зробити порівняння дробів 5 12 і 9 16 .

Рішення

Насамперед необхідно привести дроби до спільного знаменника. Це робиться таким чином: знаходиться НОК, тобто найменший спільний дільник, 12 та 16 . Це число 48. Необхідно надписати додаткові множники до першого дробу 5 12 , це число з приватного 48: 12 = 4 , для другого дробу 9 16 – 48: 16 = 3 . Запишемо таке: 5 12 = 5 · 4 12 · 4 = 20 48 і 9 16 = 9 · 3 16 · 3 = 27 48 .

Після порівняння дробів отримуємо, що 20 48< 27 48 . Значит, 5 12 меньше 9 16 .

Відповідь: 5 12 < 9 16 .

Є ще один спосіб порівняння дробів із різними знаменниками. Він виконується без приведення до спільного знаменника. Розглянемо з прикладу. Щоб порівняти дроби a b і c d приводимо до спільного знаменника, тоді b · d, тобто добуток цих знаменників. Тоді додаткові множники для дробів будуть знаменники сусіднього дробу. Це запишеться так a · d b · d і c · b d · b. Використовуючи правило з однаковими знаменниками, маємо, що порівняння дробів звелося до порівнянь творів a · d та c · b. Звідси отримуємо правило порівняння дробів з різними знаменниками: якщо a · d > b · c, тоді a b > c d, але якщо a · d< b · c , тогда a b < c d . Рассмотрим сравнение с разными знаменателями.

Приклад 3

Зробити порівняння дробів 5 18 та 23 86 .

Рішення

Цей приклад має a = 5 , b = 18 , c = 23 і d = 86 . Тоді необхідно обчислити a · d і b · c. Звідси випливає, що a · d = 5 · 86 = 430 і b · c = 18 · 23 = 414 . Але 430 > 414 тоді заданий дріб 5 18 більше, ніж 23 86 .

Відповідь: 5 18 > 23 86 .

Порівняння дробів з однаковими чисельниками

Якщо дроби мають однакові чисельники та різні знаменники, тоді можна виконувати порівняння за попереднім пунктом. Результат порівняння можливий при порівнянні їх знаменників.

Є правило порівняння дробів із однаковими чисельниками : із двох дробів з однаковими чисельниками більший той дріб, який має менший знаменник і навпаки.

Розглянемо з прикладу.

Приклад 4

Зробити порівняння дробів 54 19 та 54 31 .

Рішення

Маємо, що чисельники однакові, означає, що дріб, що має знаменник 19 більший за дроб, який має знаменник 31 . Це зрозуміло, виходячи із правила.

Відповідь: 54 19 > 54 31 .

Інакше можна розглянути на прикладі. Є дві тарілки, у яких 1 2 пирога, анна інший 1 16 . Якщо з'їсти 1 2 пирога, то наситишся швидше, ніж 1 16 . Звідси висновок, що найбільший знаменник за однакових чисельників є найменшим при порівнянні дробів.

Порівняння дробу з натуральним числом

Порівняння звичайного дробу з натуральним числом йде як порівняння двох дробів із записом знаменників як 1 . Для детального розгляду нижче наведемо приклад.

Приклад 4

Необхідно виконати порівняння 63 8 та 9 .

Рішення

Необхідно подати число 9 як дробу 9 1 . Тоді маємо необхідність порівняння дробів 63 8 та 9 1 . Далі слід приведення до спільного знаменника шляхом знаходження додаткових множників. Після цього бачимо, що потрібно порівняти дроби з однаковими знаменниками 638 і 728. Виходячи з правила порівняння, 63< 72 , тогда получаем 63 8 < 72 8 . Значит, заданная дробь меньше целого числа 9 , то есть имеем 63 8 < 9 .

Відповідь: 63 8 < 9 .

Якщо ви помітили помилку в тексті, будь ласка, виділіть її та натисніть Ctrl+Enter

У повсякденні нам часто доводиться порівнювати дробові величини. Найчастіше це не викликає жодних труднощів. Справді, всім зрозуміло, що половина яблука більша за чверть. Але коли необхідно записати це у вигляді математичного вираження, це може спричинити труднощі. Використовуючи такі математичні правила, ви легко можете впоратися із цим завданням.

Як порівнювати дроби з однаковими знаменниками

Такі дроби порівнювати найзручніше. У цьому випадку використовуйте правило:

З двох дробів з однаковими знаменниками, але різними чисельниками, більшим буде той, чисельник якого більший, а меншим – той, чисельник якого менший.

Наприклад, порівняти дроби 3/8 та 5/8. Знаменники у цьому прикладі рівні, отже, застосовуємо це правило. 3<5 и 3/8 меньше, чем 5/8.

Якщо розрізати дві піци на 8 часток, то 3/8 частки завжди менше, ніж 5/8.

Порівняння дробів з однаковими чисельниками та різними знаменниками

У цьому випадку порівнюють розміри часток-знаменників. Слід застосовувати правило:

Якщо у двох дробів чисельники рівні, то більший той дріб, знаменник якого менший.

Наприклад, порівняти дроби 3/4 та 3/8. У цьому прикладі чисельники рівні, отже, використовуємо друге правило. У дробу 3/4 знаменник менший, ніж у дробу 3/8. Відтак 3/4>3/8

Якщо ви з'їсте 3 шматки піци, розділеної на 4 частини, то будете більш ситі, ніж якби з'їли 3 шматки піци, розділеної на 8 частин.


Порівняння дробів з різними чисельниками та знаменниками

Застосовуємо третє правило:

Порівняння дробів із різними знаменниками потрібно призвести до порівняння дробів із однаковими знаменниками. Для цього необхідно привести дроби до спільного знаменника та використати перше правило.

Наприклад, необхідно порівняти дроби та . Для визначення більшого дробу наведемо ці два дроби до спільного знаменника:

  • Тепер знайдемо другий додатковий множник: 6: 3 = 2. Записуємо його над другим дробом:

З двох дробів з однаковими знаменниками більше та, у якої чисельник більша, і менша та, у якої чисельник менший. Насправді ж знаменник показує, на скільки частин розділили одну цілу величину, а чисельник показує, скільки таких частин взяли.

Виходить, що ділили кожне ціле коло на одне й те саме число 5 , А брали різну кількість частин: більше взяли - великий дріб і вийшла.

З двох дробів з однаковими чисельниками більше та, у якої знаменник менший, і менший за той, у якого знаменник більший.Ну і справді, якщо ми одне коло розділимо на 8 частин, а інший на 5 частин та візьмемо по одній частині від кожного з кіл. Яка частина буде більшою?

Звичайно, від кола, поділеного на 5 частин! А тепер уявіть, що ділили не кола, а торти. Ви б який шматочок віддали перевагу, точніше, яку частку: п'яту чи восьму?

Щоб порівняти дроби з різними чисельниками та різними знаменниками, треба привести дроби до найменшого загального знаменника, а потім порівнювати дроби з однаковими знаменниками.

приклади. Порівняти прості дроби:

Наведемо ці дроби до найменшого спільного знаменника. НОЗ (4 ; 6) = 12. Знаходимо додаткові множники для кожного дробу. Для 1-го дробу додатковий множник 3 (12: 4=3 ). Для 2-го дробу додатковий множник 2 (12: 6=2 ). Тепер порівнюємо чисельники двох дробів з однаковими знаменниками. Оскільки чисельник першого дробу менший за чисельник другого дробу ( 9<10) , то й самий перший дріб менше другого дробу.

Продовжуємо вивчати дроби. Сьогодні ми поговоримо про їхнє порівняння. Тема цікава та корисна. Вона дозволить новачкові відчути себе вченим у білому халаті.

Суть порівняння дробів у тому, щоб дізнатися який із двох дробів більше чи менше.

Щоб відповісти на запитання який із двох дробів більше або менше, користуються , такими як більше (>) або менше (<).

Вчені-математики вже подбали про готові правила, що дозволяють відразу відповісти на запитання який дріб більше, а який менше. Ці правила можна сміливо застосовувати.

Ми розглянемо ці правила і спробуємо розібратися, чому відбувається саме так.

Зміст уроку

Порівняння дробів із однаковими знаменниками

Дроби, які слід порівняти, трапляються різні. Найзручніший випадок це коли у дробів однакові знаменники, але різні чисельники. У цьому випадку застосовують таке правило:

З двох дробів з однаковими знаменниками більше той дріб, у якого чисельник більший. І відповідно меншим буде той дріб, у якого чисельник менший.

Наприклад, порівняємо дроби та й відповімо, який із цих дробів більший. Тут однакові знаменники, але різні чисельники. У дробу чисельник більший, ніж у дробу . Значить дріб більше, ніж . Так і відповідаємо. Відповідати потрібно за допомогою піктограми більше (>)

Цей приклад можна легко зрозуміти, якщо згадати про піцу, розділені на чотири частини. піци більше, ніж піци:

Кожен погодиться з тим, що перша піца більша, ніж друга.

Порівняння дробів з однаковими чисельниками

Наступний випадок, коли ми можемо потрапити, це коли чисельники дробів однакові, але знаменники різні. Для таких випадків передбачено таке правило:

З двох дробів з однаковими чисельниками більший той дріб, у якого знаменник менший. І відповідно менший той дріб, у якого знаменник більший.

Наприклад, порівняємо дроби та . У цих дробів однакові чисельники. У дробу знаменник менший, ніж у дробу . Значить дріб більше, ніж дріб. Так і відповідаємо:

Цей приклад можна легко зрозуміти, якщо згадати про піци, які розділені на три та чотири частини. піци більше, ніж піци:

Кожен погодиться на те, що перша піца більше, ніж друга.

Порівняння дробів з різними чисельниками та різними знаменниками

Нерідко трапляється так, що доводиться порівнювати дроби з різними чисельниками та різними знаменниками.

Наприклад, порівняти дроби та . Щоб відповісти на запитання, який із цих дробів більший або менший, потрібно привести їх до однакового (загального) знаменника. Потім можна буде легко визначити який дріб більший або менший.

Наведемо дроби і до однакового (загального) знаменника. Знайдемо (НОК) знаменників обох дробів. НОК знаменників дробів та це число 6.

Тепер знаходимо додаткові множники для кожного дробу. Розділимо НОК на знаменник першого дробу. НОК це число 6, а знаменник першого дробу це число 2. Ділимо 6 на 2, отримуємо додатковий множник 3. Записуємо його над першим дробом:

Тепер знайдемо другий додатковий множник. Розділимо НОК на знаменник другого дробу. НОК це число 6, а знаменник другого дробу це число 3. Ділимо 6 на 3, отримуємо додатковий множник 2. Записуємо його над другим дробом:

Помножимо дроби на свої додаткові множники:

Ми прийшли до того, що дроби, які мали різні знаменники, перетворилися на дроби, у яких однакові знаменники. А як порівнювати такі дроби ми знаємо. З двох дробів з однаковими знаменниками більше той дріб, у якого чисельник більший:

Правило правилом, а ми спробуємо розібратися чомусь більше, ніж . Для цього виділимо цілу частину в дробі. У дробі нічого виділяти не потрібно, оскільки цей дріб уже правильний.

Після виділення цілої частини в дробі отримаємо наступне вираз:

Тепер можна легко зрозуміти, чому більше, ніж . Давайте намалюємо ці дроби у вигляді піци:

2 цілі піци та піци, більше ніж піци.

Віднімання змішаних чисел. Складні випадки.

Віднімаючи змішані числа, іноді можна виявити, що все йде не так гладко, як хотілося б. Часто трапляється так, що при вирішенні якогось прикладу відповідь виходить не такою, якою вона має бути.

При відніманні чисел зменшуване має бути більше віднімається. Тільки в цьому випадку буде отримано нормальну відповідь.

Наприклад, 10-8 = 2

10 - зменшуване

8 - віднімається

2 - різниця

Зменшуване 10 більше віднімається 8, тому ми отримали нормальну відповідь 2.

А тепер подивимося, що буде якщо зменшуване виявиться менше віднімається. Приклад 5−7=−2

5 - зменшуване

7 - віднімається

−2 — різниця

У цьому випадку ми виходимо за межі звичних для нас чисел і потрапляємо у світ негативних чисел, де нам поки що ходити рано, а то й небезпечно. Щоб працювати з негативними числами, потрібна відповідна математична підготовка, яку ми ще отримали.

Якщо при вирішенні прикладів на віднімання ви виявите, що зменшується менше віднімається, то можете поки що пропустити такий приклад. Працювати з негативними числами можна лише після їх вивчення.

З дробами ситуація та сама. Зменшуване має бути більше віднімається. Тільки в цьому випадку можна буде отримати нормальну відповідь. А щоб зрозуміти чи зменшуваний дріб, ніж віднімається, потрібно вміти порівняти ці дроби.

Наприклад, розв'яжемо приклад .

Це приклад на віднімання. Щоб вирішити його, потрібно перевірити чи зменшуваний дріб, ніж віднімається. більше ніж

тому сміливо можемо повернутись до прикладу і вирішити його:

Тепер вирішимо такий приклад

Перевіряємо чи зменшуваний дріб, ніж віднімається. Виявляємо, що вона менша:

У цьому випадку розумніше зупинитись і не продовжувати подальше обчислення. Повернемося до цього прикладу, коли вивчимо негативні числа.

Змішані числа перед відніманням теж бажано перевіряти. Наприклад, знайдемо значення виразу.

Спочатку перевіримо чи зменшуване більше змішане число, ніж віднімається. Для цього переведемо змішані числа до неправильних дробів:

Отримали дроби з різними чисельниками та різними знаменниками. Щоб порівняти такі дроби, необхідно привести їх до однакового (загального) знаменника. Не докладно розписуватимемо, як це зробити. Якщо ви відчуваєте труднощі, обов'язково повторіть .

Після приведення дробів до однакового знаменника, отримуємо такий вираз:

Тепер потрібно порівняти дроби та . Це дроби з однаковими знаменниками. З двох дробів з однаковими знаменниками більше той дріб, у якого чисельник більший.

У дробу чисельник більший, ніж у дробу . Значить дріб більше, ніж дріб.

А це означає, що зменшуване більше, ніж віднімається

Отже ми можемо повернутися до нашого прикладу і сміливо вирішити його:

Приклад 3.Знайти значення виразу

Перевіримо чи зменшуване, ніж віднімається.

Перекладемо змішані числа в неправильні дроби:

Отримали дроби з різними чисельниками та різними знаменниками. Наведемо ці дроби до однакового (загального) знаменника.

У цьому уроці ми навчимося порівнювати дроби між собою. Це дуже корисна навичка, яка необхідна для вирішення цілого класу складніших завдань.

Для початку нагадаю визначення рівності дробів:

Дроби a/b і c/d називаються рівними, якщо ad = bc.

  1. 5/8 = 15/24, оскільки 5 · 24 = 8 · 15 = 120;
  2. 3/2 = 27/18, оскільки 3 · 18 = 2 · 27 = 54.

У решті випадків дроби є нерівними, і їм справедливо одне з таких тверджень:

  1. Дроб а/b більший, ніж дріб c/d;
  2. Дроб а/b менший, ніж дріб c/d.

Дроб а /b називається більшим, ніж дріб c /d , якщо a /b − c /d > 0.

Дроб x / y називається меншим, ніж дріб s /t , якщо x / y − s /t< 0.

Позначення:

Таким чином, порівняння дробів зводиться до їх віднімання. Питання: як не заплутатися з позначеннями «більше» (>) і «менше» (<)? Для ответа просто приглядитесь к тому, как выглядят эти знаки:

  1. Частина галки, що розширюється, завжди спрямована до більшого числа;
  2. Гострий ніс галки завжди вказує на менше.

Часто у завданнях, де потрібно порівняти числа, між ними ставлять знак ∨. Це - галка носом вниз, що начебто натякає: більше з чисел поки що не визначено.

Завдання. Порівняти числа:

Дотримуючись визначення, віднімемо дроби один з одного:


У кожному порівнянні нам потрібно було приводити дроби до спільного знаменника. Зокрема, використовуючи метод «хрест-навхрест» та пошук найменшого загального кратного. Я навмисно не акцентував увагу на цих моментах, але якщо щось незрозуміло, загляньте в урок «Складання та віднімання дробів» - він дуже легкий.

Порівняння десяткових дробів

У випадку із десятковими дробами все набагато простіше. Тут не треба нічого віднімати – досить просто порівняти розряди. Не зайвим буде згадати, що таке значну частину числа. Тим, хто забув, пропоную повторити урок «Множення та розподіл десяткових дробів» – це також займе буквально пару хвилин.

Позитивний десятковий дріб X більший за позитивний десятковий дроб Y , якщо в ньому знайдеться такий десятковий розряд, що:

  1. Цифра, що стоїть у цьому розряді дробу X , більше відповідної цифри дробу Y ;
  2. Усі розряди старші від даного у дробів X і Y збігаються.
  1. 12,25> 12,16. Перші два розряди збігаються (12 = 12), а третій – більше (2 > 1);
  2. 0,00697 < 0,01. Первые два разряда опять совпадают (00 = 00), а третий - меньше (0 < 1).

Інакше кажучи, ми послідовно переглядаємо десяткові розряди і шукаємо різницю. При цьому більшій цифрі відповідає і більший дріб.

Однак це визначення вимагає пояснення. Наприклад, як записувати та порівнювати розряди до десяткової точки? Згадайте: до будь-якого числа, записаного в десятковій формі, можна приписувати ліворуч будь-яку кількість нулів. Ось ще пара прикладів:

  1. 0,12 < 951, т.к. 0,12 = 000,12 - приписали два нуля слева. Очевидно, 0 < 9 (речь идет о старшем разряде).
  2. 2300,5> 0,0025, т.к. 0,0025 = 0000,0025 - приписали три нулі зліва. Тепер видно, що відмінність починається у першому ж розряді: 2 > 0.

Звичайно, у наведених прикладах з нулями був явний перебір, але сенс саме такий: заповнити розряди, що відсутні, зліва, а потім порівняти.

Завдання. Порівняйте дроби:

  1. 0,029 ∨ 0,007;
  2. 14,045 ∨ 15,5;
  3. 0,00003 ∨ 0,0000099;
  4. 1700,1 ∨ 0,99501.

За визначенням маємо:

  1. 0,029> 0,007. Перші два розряди збігаються (00 = 00), далі починається різницю (2 > 0);
  2. 14,045 < 15,5. Различие - во втором разряде: 4 < 5;
  3. 0,00003> 0,0000099. Тут треба уважно рахувати нулі. Перші 5 розрядів в обох дробах нульові, але далі в першому дробі стоїть 3, а в другому – 0. Очевидно, 3 > 0;
  4. 1700,1> 0,99501. Перепишемо другий дріб у вигляді 0000,99501, додавши 3 нуля зліва. Тепер все очевидно: 1 > 0 – відмінність виявлено у першому ж розряді.

На жаль, наведена схема порівняння десяткових дробів не є універсальною. Цим методом можна порівнювати лише позитивні числа. У загальному випадку алгоритм роботи наступний:

  1. Позитивний дріб завжди більший за негативний;
  2. Два позитивні дроби порівнюються за наведеним вище алгоритмом;
  3. Два негативні дроби порівнюються так само, але в кінці знак нерівності змінюється на протилежний.

Ну, як, неслабо? Зараз розглянемо конкретні приклади – і все стане зрозумілим.

Завдання. Порівняйте дроби:

  1. 0,0027 ∨ 0,0072;
  2. −0,192 ∨ −0,39;
  3. 0,15 ∨ −11,3;
  4. 19,032 ∨ 0,0919295;
  5. −750 ∨ −1,45.
  1. 0,0027 < 0,0072. Здесь все стандартно: две положительные дроби, различие начинается на 4 разряде (2 < 7);
  2. −0,192 > −0,39. Дроби негативні, 2 розряди різні. 1< 3, но в силу отрицательности знак неравенства меняется на противоположный;
  3. 0,15> -11,3. Позитивне число завжди більше від'ємного;
  4. 19,032> 0,091. Достатньо другий дріб переписати у вигляді 00,091, щоб побачити, що різниця виникає вже в 1 розряді;
  5. −750 < −1,45. Если сравнить числа 750 и 1,45 (без минусов), легко видеть, что 750 >001,45. Відмінність – у першому ж розряді.
Loading...Loading...