Краткая характеристика алюминия. Алюминий

>> Химия: Алюминий

Строение и свойства атомов. Алюминий Аl - элемент главной подгруппы III группы Периодической системы Д. И. Менделеева. Атом алюминия содержит на внешнем энергетическом уровне три электрона, которые он легко отдает при химических взаимодействиях. У родоначальника подгруппы и верхнего соседа алюминия - бора радиус атома меньше (у бора он равен 0,080 нм, у алюминия - 0,143 нм). Кроме того, у атома алюминия появляется один промежуточный восьмиэлектрон-ный слой (2е-; 8е-; Зе-), который препятствует притяжению внешних электронов к ядру. Поэтому у атомов алюминия восстановительные свойства выражены гораздо сильнее, чем у атомов бора, который проявляет неметаллические свойства.

Почти во всех своих соединениях алюминий имеет степень окисления +3.

Алюминий - простое вещество. Серебристо-белый легкий металл. Плавится при 660 °С. Очень пластичен, легко вытягивается в проволоку и прокатывается в фольгу толщиной 0,01 мм. Обладает очень большой электрической проводимостью и теплопроводностью. Образует с другими металлами легкие и прочные сплавы.

Какую химическую реакцию положил в основу рассказа «Бенгальские огни» его автор Н. Носов?

На каких физических и химических свойствах основано применение в технике алюминия и его сплавов?

Напишите в ионном виде уравнения реакций между растворами сульфата алюминия и гидроксида калия при недостатке и избытке последнего.

Напишите уравнения реакций следующих превращений: Аl -> АlСl3 -> Аl(0Н)3 -> Аl2O3 -> NаАl02 -> Аl2(SO4)3 -> Аl(ОН)3 ->АlСl3 ->NаАlO2

Реакции, идущие с участием электролитов, запишите в ионной форме. Первую реакцию рассмотрите как окислительно-восстановительный процесс.

Содержание урока конспект урока опорный каркас презентация урока акселеративные методы интерактивные технологии Практика задачи и упражнения самопроверка практикумы, тренинги, кейсы, квесты домашние задания дискуссионные вопросы риторические вопросы от учеников Иллюстрации аудио-, видеоклипы и мультимедиа фотографии, картинки графики, таблицы, схемы юмор, анекдоты, приколы, комиксы притчи, поговорки, кроссворды, цитаты Дополнения рефераты статьи фишки для любознательных шпаргалки учебники основные и дополнительные словарь терминов прочие Совершенствование учебников и уроков исправление ошибок в учебнике обновление фрагмента в учебнике элементы новаторства на уроке замена устаревших знаний новыми Только для учителей идеальные уроки календарный план на год методические рекомендации программы обсуждения Интегрированные уроки

Свойства 13 Al.

Атомная масса

26,98

кларк, ат.%

(распространненость в природе)

5,5

Электронная конфигурация*

Агрегатное состояние

(н. у.).

твердое вещество

0,143

Цвет

серебристо-белый

0,057

695

Энергия ионизации

5,98

2447

Относительная электроотрицательность

1,5

Плотность

2,698

Возможные степени окисления

1, +2,+3

Стандартный электродный потенциал

1,69

*Приведена конфигурация внешних электронных уровней атома элемента. Конфигурация остальных электронных уровней совпадает с таковой для благородного газа, завершающего предыдущий период и указанного в скобках.

Алюминий — основной представитель металлов главной подгруппы III группы периодической системы. Свойства его аналогов — галлия, индия и таллия — во многом напоминают свойства алюминия, поскольку все эти элементы имеют одинаковую электронную конфигурацию внешнего уровня ns 2 np 1 и поэтому все они проявляют степень окисления 3+.

Физические свойства. Алюминий — серебристо-белый металл, обладающий высокой тепло- и электропроводностью. Поверхность металла покрыта тонкой, но очень прочной пленкой оксида алюминия Аl 2 Oз.

Химические свойства. Алюминий весьма активен, если нет защитной пленки Аl 2 Oз. Эта пленка препятствует взаимодействию алюминия с водой. Если удалить защитную пленку химическим способом (например, раствором щелочи), то металл начинает энергично взаимодействовать с водой с выделением водорода:

Алюминий в виде стружки или порошка ярко горит на воздухе, выделяя большое количество энергии:

Эта особенность алюминия широко используется для получения различных металлов изих оксидов путем восстановления алюминием. Метод получил название алюмотермии . Алюмотермией можно получить только те металлы, у которых теплоты образования оксидов меньше теплоты образования Аl 2 Oз, например:

При нагревании алюминий реагирует с галогенами серой, азотом и углеродом, образуя при этом соответственно галогениды:

Сульфид и карбид алюминия полностью гидролизуются образованием гидроксида алюминия и соответственно сероводорода и метана.

Алюминий легко растворяется в соляной кислоте любой концентрации:

Концентрированные серная и азотная кислоты на холоде не действуют на алюминий (пассивируют). При нагревании алюминий способен восстанавливать эти кислоты без выделения водорода:

В разбавленной серной кислоте алюминий растворяется с выделением водорода:

В разбавленной азотной кислоте реакция идет с выделением оксида азота (II):

Алюминий растворяется в растворах щелочей и карбонатов щелочных металлов с образованием тетрагидроксоалюминатов:

Оксид алюминия. Al 2 O 3 имеет 9 кристаллических модификаций. Самая распространенная a - модификация. Она наиболее химически инертна, на ее основе выращивают монокристаллы различных камней для использования с ювелирной промышленности и технике.

В лаборатории оксид алюминия получают, сжигая порошок алюминия в кислороде или прокаливая его гидроксид:

Оксид алюминия, будучи амфотерным, может реагировать не только с кислотами, но и с щелочами, а также при сплавлении с карбонатами щелочных металлов, давая при этом метаалюминаты:

и с кислыми солями:

Гидроксид алюминия — белое студенистое вещество, практически нерастворимое в воде, обладающее амфотерными свойствами. Гидроксид алюминия может быть получен обработкой солей алюминия щелочами или гидроксидом аммония. В первом случае необходимо избегать избытка щелочи, поскольку в противном случае гидроксид алюминия растворится с образованием комплексных тетрагидроксоалюминатов [Аl(ОН) 4 ]` :

На самом деле в последней реакции образуются тетрагидроксодиакваалюминат-ионы ` , однако для записи реакций обычно используют упрощенную форму [Аl(ОН) 4 ]` . При слабом подкислении тетрагидроксоалюминаты разрушаются:

Соли алюминия. Из гидроксида алюминия можно получить практически все соли алюминия. Почти все соли алюминия и сильных кислот хорошо растворимы в воде и при этом сильно гидролизованы.

Галогениды алюминия хорошо растворимы в воде, и по своей структуре являются димерами:

2AlCl 3 є Al 2 Cl 6

Сульфаты алюминия легко, как и все его соли, гидролизуются:

Известны также калий-алюминиевые квасцы: KAl(SO 4) 2Ч 12H 2 O.

Ацетат алюминия Al(CH 3 COO) 3 используют в медицине в качестве примочек.

Алюмосиликаты. В природе алюминий встречается в виде соединений с кислородом и кремнием - алюмосиликатов. Общая их формула: (Na, K) 2 Al 2 Si 2 O 8 -нефелин.

Также природными соединениями алюминия являются: Al 2 O 3 - корунд, глинозем; и соединения с общими формулами Al 2 O 3 Ч nH 2 O и Al(OH) 3Ч nH 2 O - бокситы.

Получение. Алюминий получают электролизом расплава Al 2 O 3 .

ОПРЕДЕЛЕНИЕ

Алюминий - тринадцатый элемент Периодической таблицы. Обозначение - Al от латинского «aluminium». Расположен в третьем периоде, IIIА группе. Относится к металлам. Заряд ядра равен 13.

Алюминий - самый распространенный в земной коре металл. Он входит в состав глин, полевых шпатов, слюд и многих других минералов. Общее содержание алюминия в земной коре составляет 8% (масс.).

Алюминий - серебристо-белый (рис. 1) легкий металл. Он легко вытягивается в проволоку и прокатывается в тонкие листы.

При комнатной температуре алюминий не изменяется на воздухе, но лишь потому, что его поверхность покрыта тонкой пленкой оксида, обладающего очень сильным защитным действием.

Рис. 1. Алюминий. Внешний вид.

Атомная и молекулярная масса алюминия

Относительной молекулярная масса вещества (M r) - это число, показывающее, во сколько раз масса данной молекулы больше 1/12 массы атома углерода, а относительная атомная масса элемента (A r) — во сколько раз средняя масса атомов химического элемента больше 1/12 массы атома углерода.

Поскольку в свободном состоянии алюминий существует в виде одноатомных молекул Al, значения его атомной и молекулярной масс совпадают. Они равны 26,9815.

Изотопы алюминия

Известно, что в природе алюминий может находиться в виде одного стабильного изотопа 27 Al. Массовое число равно 27. Ядро атома изотопа алюминия 27 Al содержит тринадцать протонов и четырнадцать нейтронов.

Существуют радиоактивные изотопы алюминия с массовыми числами от 21-го до 42-х, среди которых наиболее долгоживущим является изотоп 26 Al, период полураспада которого составляет 720 тысяч лет.

Ионы алюминия

На внешнем энергетическом уровне атома алюминия имеется три электрона, которые являются валентными:

1s 2 2s 2 2p 6 3s 2 3р 1 .

В результате химического взаимодействия алюминий отдает свои валентные электроны, т.е. является их донором, и превращается в положительно заряженный ион:

Al 0 -3e → Al 3+ .

Молекула и атом алюминия

В свободном состоянии алюминий существует в виде одноатомных молекул Al. Приведем некоторые свойства, характеризующие атом и молекулу алюминия:

Сплавы алюминия

Основное применение алюминия - производство сплавов на его основе. Легирующие добавки (например, медь, кремний, магний, цинк, марганец) вводят в алюминий главным образом для повышения его прочности.

Широкое применение имеют дуралюмины, содержащие медь и магний, силумины, в которых основной добавкой служит кремний, магналий (сплав алюминия с 9,5-11,5% магния).

Алюминий - одна из наиболее распространенных добавок в сплавах на основе меди, магния, титана, никеля, цинка и железа.

Примеры решения задач

ПРИМЕР 1

Задание Для сварки рельсов по методу алюмотермии используют смесь алюминия и оксида железа Fe 3 O 4 . Составьте термохимическое уравнение реакции, если при образовании железа массой 1 кг (1000 г) выделяется 6340 кДж тепла.
Решение Запишем уравнение реакции получения железа алюмотермическим методом:

8Al + 3Fe 2 O 3 = 9Fe+ 4Al 2 O 3 .

Найдем теоретическую массу железа (рассчитанная по термохимическому уравнению реакции):

n(Fe) = 9 моль;

m(Fe) = n(Fe) ×M(Fe);

m(Fe) = 9 × 56 = 504 г.

Пусть в ходе реакции выделится х кДж теплоты. Составим пропорцию:

1000 г - 6340 кДж;

504 г - х кДж.

Отсюда х будет равен:

х = 540 ×6340 / 1000 = 3195.

Значит в ходе реакции получения железа алюмотермическим методом выделяется 3195 кДж теплоты. Термохимическое уравнение реакции имеет вид:

8Al + 3Fe 2 O 3 = 9Fe+ 4Al 2 O 3 + 3195 кДж.

Ответ В ходе реакции выделяется 3195 кДж теплоты.

ПРИМЕР 2

Задание Алюминий обработали 200 г 16%-го раствора азотной кислоты, при этом выделился газ. Определите массу и объем выделившегося газа.
Решение Запишем уравнение реакции растворения алюминия в азотной кислоте:

2Al + 6HNO 3 = 2Al(NO 3) 3 + 3H 2 -.

Рассчитаем массу растворенного вещества азотной кислоты:

m(HNO 3) = m solution (HNO 3)×w(HNO 3) / 100%;

m(HNO 3) = 20 ×96% / 100% =19,2 г.

Найдем количество вещества азотной кислоты:

M(HNO 3) = Ar(H) + Ar(N) + 3×Ar(O) = 1 + 14 + 3×16 = 63 г/моль.

n(HNO 3) = m (HNO 3) / M(HNO 3);

n(HNO 3) = 19,2 / 63 = 0,3моль.

Согласно уравнению реакцииn(HNO 3) :n(H 2) = 6:3, т.е.

n(H 2) = 3×n(HNO 3) / 6 = ½ ×n(HNO 3) = ½ × 0,3 = 0,15 моль.

Тогда масса и объем выделившегося водорода будут равны:

M(H 2) = 2×Ar(H) = 2×1 = 2 г/моль.

m(H 2) = n(H 2) ×M(H 2) = 0,15×2 = 0,3г.

V(H 2) = n(H 2) ×V m ;

V(H 2) = 0,15× 22,4 = 3,36л.

Ответ В результате реакции выделяется водород массой 0,3 г и объемом 3,36 л.

Алюми́ний - элемент 13-й группы периодической таблицы химических элементов, третьего периода, с атомным номером 13. Относится к группе лёгких металлов. Наиболее распространённый металл и третий по распространённости химический элемент в земной коре (после кислорода и кремния).

Простое вещество алюминий - лёгкий, парамагнитный металл серебристо-белогоцвета, легко поддающийся формовке, литью, механической обработке. Алюминий обладает высокой тепло- иэлектропроводностью, стойкостью к коррозии за счёт быстрого образования прочных оксидных плёнок, защищающих поверхность от дальнейшего взаимодействия.

Современный метод получения, процесс Холла-Эру. Он заключается в растворении оксида алюминия Al2O3 в расплаве криолита Na3AlF6 с последующим электролизом с использованием расходуемых коксовых илиграфитовых анодных электродов. Такой метод получения требует очень больших затрат электроэнергии, и поэтому получил промышленное применение только в XX веке.

Лабораторный способ получения алюминия: восстановлением металлическим калием безводного хлорида алюминия (реакция протекает при нагревании без доступа воздуха):

Металл серебристо-белого цвета, лёгкий, плотность - 2,7 г/см³, температура плавления у технического алюминия - 658 °C, у алюминия высокой чистоты - 660 °C, высокая пластичность: у технического - 35 %, у чистого - 50 %, прокатывается в тонкий лист и даже фольгу. Алюминий обладает высокой электропроводностью (37·106 См/м) и теплопроводностью (203,5 Вт/(м·К)), 65 %, обладает высокой светоотражательной способностью.

Алюминий образует сплавы почти со всеми металлами. Наиболее известны сплавы с медью и магнием (дюралюминий) и кремнием(силумин).

По распространённости в земной коре Земли занимает 1-е место среди металлов и 3-е место среди элементов, уступая только кислороду и кремнию. Массовая концентрация алюминия в земной коре по данным различных исследователей оценивается от 7,45 до 8,14 %. В природе алюминий, в связи с высокой химической активностью, встречается почти исключительно в виде соединений.

Природный алюминий состоит практически полностью из единственного стабильного изотопа 27Al с ничтожными следами 26Al, наиболее долгоживущего радиоактивного изотопа с периодом полураспада 720 тыс. лет, образующегося в атмосфере при расщеплении ядер аргона 40Ar протонами космических лучей с высокими энергиями.

При нормальных условиях алюминий покрыт тонкой и прочной оксидной плёнкой и потому не реагирует с классическими окислителями: с H2O (t°), O2, HNO3 (без нагревания). Благодаря этому алюминий практически не подвержен коррозии и потому широко востребован современной промышленностью. Однако при разрушении оксидной плёнки (например, при контакте с растворами солей аммония NH4+, горячими щелочами или в результате амальгамирования), алюминий выступает как активный металл-восстановитель. Не допустить образования оксидной пленки можно, добавляя к алюминию такие металлы как галлий,индий или олово. При этом поверхность алюминия смачивают легкоплавкие эвтектики на основе этих металлов.


Легко реагирует с простыми веществами:

с кислородом, образуя оксид алюминия:

с галогенами (кроме фтора), образуя хлорид, бромид или иодид алюминия:

с другими неметаллами реагирует при нагревании:

со фтором, образуя фторид алюминия:

с серой, образуя сульфид алюминия:

с азотом, образуя нитрид алюминия:

с углеродом, образуя карбид алюминия:

Сульфид и карбид алюминия полностью гидролизуются:

Со сложными веществами:

с водой (после удаления защитной оксидной пленки, например, амальгамированием или растворами горячей щёлочи):

со щелочами (с образованием тетрагидроксоалюминатов и других алюминатов):

Легко растворяется в соляной и разбавленной серной кислотах:

При нагревании растворяется в кислотах - окислителях, образующих растворимые соли алюминия:

восстанавливает металлы из их оксидов (алюминотермия):

44.Соединения алюминия, их амфотерные свойства

Электронная конфигурация внешнего уровня алюминия … 3s23p1.

В возбужденном состоянии один из s-электронов переходит на свободную ячейку p-подуровня, такое состояние отвечает валентности III и степени окисления +3. Во внешнем электронном слое атома алюминия существуют свободные d-подуровни.

Важнейшие природные соединения – алюмосиликаты:

белая глина Al2O3 ∙ 2SiO2 ∙ 2H2O, полевой шпат K2O ∙ Al2O3 ∙ 6SiO2, слюда K2O ∙ Al2O3 ∙ 6SiO2 ∙ H2O

Из других природных форм нахождения алюминия наибольшее значение имеют бокситы А12Оз ∙ nН2О, минералы корунд А12Оз и криолит А1Fз ∙3NaF.

Легкий, серебристо-белый, пластичный металл, хорошо проводит электрический ток и тепло.

На воздухе алюминий покрывается тончайшей (0,00001 мм), но очень плотной пленкой оксида, предохраняющей металл от дальнейшего окисления и придающей ему матовый вид.

Оксид алюминия А12О3

Белое твердое вещество, нерастворимое в воде, температура плавления 20500С.

Природный А12О3 - минерал корунд. Прозрачные окрашенные кристаллы корунда - красный рубин – содержит примесь хрома - и синий сапфир - примесь титана и железа - драгоценные камни. Их получают так же искусственно и используют для технических целей, например, для изготовления деталей точных приборов, камней в часах и т.п.

Химические свойства

Оксид алюминия проявляет амфотерные свойства

1. взаимодействие с кислотами

А12О3 +6HCl = 2AlCl3 + 3H2O

2. взаимодействие со щелочами

А12О3 + 2NaOH – 2NaAlO2 + H2O

Al2O3 + 2NaOH + 5H2O = 2Na

3. при накаливании смеси оксида соответствующего металла с порошком алюминия происходит бурная реакция, ведущая к выделению из взятого оксида свободного металла. Метод восстановления при помощи Al (алюмотермия) часто применяют для получения ряда элементов (Cr, Мп, V, W и др.) в свободном состоянии

2А1 + WO3 = А12Оз + W

4. взаимодействие с солями, имеющими сильнощелочную среду, вследствие гидролиза

Al2O3 + Na2CO3 = 2 NaAlO2 + CO2

Гидроксид алюминия А1(ОН)3

А1(ОН)3 представляет собой объемистый студенистый осадок белого цвета, практически нерастворимый в воде, но легко растворяющийся в кислотах и сильных щелочах. Он имеет, следовательно, амфотерный характер.

Получают гидроксид алюминия реакцией обмена растворимых солей алюминия со щелочами

AlCl3 + 3NaOH = Al(OH)3↓ + 3NaCl

Al3+ + 3OH- = Al(OH)3↓

Данную реакцию можно использовать как качественную на ион Al3+

Химические свойства

1. взаимодействие с кислотами

Al(OH)3 +3HCl = 2AlCl3 + 3H2O

2. при взаимодействии с сильными щелочами образуются соответствующие алюминаты:

NaOH + А1(ОН)з = Na

3. термическое разложение

2Al(OH)3 = Al2О3 + 3H2O

Соли алюминияподвергаются гидролизу по катиону, среда кислая (рН < 7)

Al3+ + Н+ОН- ↔ AlОН2+ + Н+

Al(NO3)3 + H2O↔ AlOH(NO3)2 + HNO3

Растворимые соли алюминия и слабых кислот подвергаются полному (необратимому гидролизу)

Al2S3+ 3H2O = 2Al(OH)3 +3H2S

Оксид алюминия Al2O3 – входит в состав некоторых антацидных средств (например, Almagel), используется при повышенной кислотности желудочного сока.

КAl(SO4)3 12H2О – алюмокалиевые квасцы применяются в медицине для лечения кожных заболеваний, как кровоостанавливающие средство. А также используют как дубильное вещество в кожевенной промышленности.

(CH3COO)3Al - Жидкость Бурова- 8% раствор ацетата алюминия оказывает вяжущее и противовоспалительное действие, в больших концентрациях обладает умеренными антисептическими свойствами. Применяется в разведенном виде для полоскания, примочек, при воспалительных заболеваниях кожи и слизистых оболочек.

AlCl3 - применяется в качестве катализатора в органическом синтезе.

Al2(SO4)3 · 18 H20 – применяется при очистки воды.

Этот легкий металл с серебристо-белым оттенком в современной жизни встречается почти повсеместно. Физические и химические свойства алюминия позволяют широко использовать его в промышленности. Самые известные месторождения - в Африке, Южной Америке, в Карибском регионе. В России места добычи бокситов имеются на Урале. Мировыми лидерами по производству алюминия являются Китай, РФ, Канада, США.

Добыча Al

В природе этот серебристый металл в силу своей высокой химической активности встречается лишь в виде соединений. Наиболее известные геологические породы, содержащие алюминий, - это бокситы, глиноземы, корунды, полевые шпаты. Промышленное значение имеют бокситы и глиноземы, именно месторождения этих руд позволяют добывать алюминий в чистом виде.

Свойства

Физические свойства алюминия позволяют легко вытягивать заготовки этого металла в проволоку и прокатывать в тонкие листы. Этот металл не является прочным, для повышения данного показателя при выплавке его легируют различными добавками: медью, кремнием, магнием, марганцем, цинком. Для промышленного назначения важно еще одно физическое свойство вещества алюминия - это его способность быстро окисляться на воздухе. Поверхность изделия из алюминия в естественных условиях обычно покрыта тонкой оксидной пленкой, которая эффективно защищает металл и препятствует его коррозии. При уничтожении этой пленки серебристый металл быстро окисляется, при этом его температура заметно повышается.

Внутреннее строение алюминия

Физические и химические свойства алюминия во многом зависят от его внутреннего строения. Кристаллическая решетка этого элемента является разновидностью гранецентрированного куба.

Данный тип решетки присущ многим металлам, таким, как медь, бром, серебро, золото, кобальт и другие. Высокая теплопроводность и способность проводить электричество сделали этот металл одним из самых востребованных в мире. Остальные физические свойства алюминия, таблица которых представлена ниже, раскрывают полностью его свойства и показывают сферы их применения.

Легирование алюминия

Физические свойства меди и алюминия таковы, что при добавлении к алюминиевому сплаву некоторого количества меди его кристаллическая решетка искривляется, и прочность самого сплава повышается. На этом свойстве Al основано легирование легких сплавов для повышения их прочности и стойкости к воздействию агрессивной среды.

Объяснение процесса упрочнения лежит в поведении атомов меди в кристаллической решетке алюминия. Частицы Cu стремятся выпасть из кристаллической решетки Al, группируются на ее особых участках.

Там, где атомы меди образуют скопления, образуется кристаллическая решетка смешанного типа CuAl 2 , в которой частицы серебристого металла одновременно входят в состав и общей кристаллической решетки алюминия, и в состав решетки смешанного типа CuAl 2. Силы внутренних связей в искаженной решетке гораздо больше, чем в обычной. А значит, и прочность новообразованного вещества гораздо выше.

Химические свойства

Известно взаимодействие алюминия с разбавленными серной и соляной кислотой. При нагревании этот металл в них легко растворяется. Холодная концентрированная или сильно разбавленная азотная кислота не растворяет этот элемент. Водные растворы щелочей активно воздействуют на вещество, в процессе реакции образуя алюминаты - соли, в составе которых имеются ионы алюминия. Например:

Al 2 O 3 +3H2O+2NaOH=2Na

Получившееся в результате реакции соединение носит название тетрагидроксоалюминат натрия.

Тонкая пленка на поверхности алюминиевых изделий защищает этот металл не только от воздуха, но и от воды. Если эту тонкую преграду убрать, элемент станет бурно взаимодействовать с водой, выделяя из нее водород.

2AL+6H 2 O= 2 AL (OH) 3 +3Н 2

Образовавшееся вещество называется гидроксидом алюминия.

AL (OH) 3 реагирует с щелочью, образуя кристаллы гидроксоалюмината:

Al(OH) 2 +NaOH=2Na

Если это химическое уравнение сложить с предыдущим, получим формулу растворения элемента в щелочном растворе.

Al(OH) 3 +2NaOH+6H 2 O=2Na +3H 2

Горение алюминия

Физические свойства алюминия позволяют ему вступать в реакцию с кислородом. Если порошок этого металла или алюминиевую фольгу нагреть, то она вспыхивает и горит белым ослепительным пламенем. В конце реакции образуется оксид алюминия Al 2 O 3.

Глинозем

Полученный оксид алюминия имеет геологическое название глинозем. В естественных условиях он встречается в виде корунда - твердых прозрачных кристаллов. Корунд отличается высокой твердостью, в шкале твердых веществ его показатель составляет 9. Сам корунд бесцветен, но различные примеси могут окрасить его в красный и синий цвет, так получаются драгоценные камни, которые в ювелирном деле называются рубинами и сапфирами.

Физические свойства оксида алюминия позволяют выращивать эти драгоценные камни в искусственных условиях. Технические драгоценные камни используются не только для ювелирных украшений, они применяются в точном приборостроении, для изготовления часов и прочего. Широко используются искусственные кристаллы рубина и в лазерных устройствах.

Мелкозернистая разновидность корунда с большим количеством примесей, нанесенная на специальную поверхность, известна всем как наждак. Физические свойства оксида алюминия объясняют высокие абразивные свойства корунда, а также его твердость и устойчивость к трению.

Гидроксид алюминия

Al 2 (OH) 3 является типичным амфотерным гидроксидом. В соединении с кислотой это вещество образует соль, содержащую положительно заряженные ионы алюминия, в щелочах образует алюминаты. Амфотерность вещества проявляется в том, что он может вести себя и как кислота, и как щелочь. Это соединение может существовать и в желеобразном, и в твердом виде.

В воде практически не растворяется, но вступает в реакцию с большинством активных кислот и щелочей. Физические свойства гидроксида алюминия используются в медицине, это популярное и безопасное средство снижения кислотности в организме, его применяют при гастритах, дуоденитах, язвах. В промышленности Al 2 (OH) 3 используется в качестве адсорбента, он прекрасно очищает воду и осаждает растворенные в ней вредные элементы.

Промышленное использование

Алюминий был открыт в 1825 году. Поначалу данный металл ценился выше золота и серебра. Это объяснялось сложностью его извлечения из руды. Физические свойства алюминия и его способность быстро образовывать защитную пленку на своей поверхности затрудняли исследование этого элемента. Лишь в конце 19 века был открыт удобный способ плавки чистого элемента, пригодный для использования в промышленных масштабах.

Легкость и способность сопротивляться коррозии - уникальные физические свойства алюминия. Сплавы этого серебристого металла применяются в ракетной технике, в авто-, судо-, авиа- и приборостроении, в производстве столовых приборов и посуды.

Как чистый металл Al используется при изготовлении деталей для химической аппаратуры, электропроводов и конденсаторов. Физические свойства алюминия таковы, что его электропроводность не так высока, как у меди, но этот недостаток компенсируется легкостью рассматриваемого металла, что позволяет делать провода из алюминия более толстыми. Так, при одинаковой электропроводности алюминиевый провод весит в два раза меньше медного.

Не менее важным является применение Al в процессе алитирования. Так называется реакция насыщения поверхности чугунного или стального изделия алюминием с целью защиты основного металла от коррозии при нагревании.

В настоящее время изведанные запасы алюминиевых руд вполне сопоставимы с потребностями людей в этом серебристом металле. Физические свойства алюминия могут преподнести еще немало сюрпризов его исследователям, а сферы применения этого металла гораздо шире, чем можно представить.

Loading...Loading...