Дефект массы и энергия связи ядра. Атомное ядро

Нуклоны в атомном ядре связаны между собой ядерными силами; поэтому чтобы разделить ядро на составляющие его отдельные протоны и нейтроны, необходимо затратить большую энергию. Эта энергия называется энергией связи ядра.

Такая же по величине энергия освобождается, если свободные протоны и нейтроны соединяются и образуют ядро. Следовательно, согласно специальной теории относительности Эйнштейна масса атомного ядра должна быть меньше суммы масс свободных протонов и нейтронов, из которых оно образовалось. Эта разность масс Δm, соответствующая энергии связи ядра Eсв, определяется соотношением Эйнштейна:

Есв = с 2 Δm. (37.1)

Энергия связи атомных ядер настолько велика, что эта разность масс вполне доступна непосредственному измерению. С помощью масс-спектрографов такая разность масс действительно обнаружена для всех атомных ядер.

Разность между суммой масс покоя свободных протонов и нейтронов, из которых образовано ядро, и массой ядра называется дефектом массы ядра. Энергию связи обычно выражают в мегаэлектронвольтах (МэВ) (1 МэВ=10 6 эВ). Поскольку атомная единица массы (а. е. м.) равна 1,66*10 -27 кг, можно определить соответствующую ей энергию:

Е = mс 2 , E а.е.м = 1.66*10 -27 *9*10 16 Дж,

E а.е.м = (1.66*10 -27 *9*10 16 Дж)/(1,6*10 -13 Дж/МэВ) = 931,4 МэВ.

Энергию связи можно измерять непосредственно по балансу энергии в реакции расщепления ядра. Так впервые была определена энергия связи дейтрона при его расщеплении γ-квантами. Однако из формулы (37.1) энергию связи можно определить гораздо точнее, поскольку с помощью масс-спектрографа можно измерить массы изотопов с точностью 10 -4 %.

Подсчитаем, например, энергию связи ядра гелия 4 2 Не (α-частицы). Его масса в атомных единицах равна М (4 2 Не) =4,001523; масса протона mр=1,007276, масса нейтрона mn=1,008665. Отсюда дефект массы ядра гелия

Δm = 2/mp + 2mn - М (4 2 Не),

Δm = 2*1,007276 + 2*1,008665-4,001523 = 0,030359.

Умножив на E а.е.м = 931,4 МэВ, получим

Есв = 0,030359*931,4 МэВ ≈ 28,3 МэВ.

С помощью масс-спектрографа были измерены массы всех изотопов и определены значения дефекта массы и энергии связи ядер. Значения энергии связи ядер некоторых изотопов приведены в табл. 37.1. С помощью таких таблиц выполняют энергетические расчеты ядерных реакций.

Если суммарная масса ядер и частиц, образовавшихся в какой-либо ядерной реакции, меньше суммарной массы исходных ядер и частиц, то в такой реакции освобождается энергия, соответствующая этому уменьшению массы. Когда общее число протонов и общее число нейтронов сохраняется, уменьшение суммарной массы означает, что в результате реакции увеличивается общий дефект массы и в новых ядрах нуклоны еще сильнее связаны друг с другом, чем в исходных ядрах. Освобождающаяся энергия равна разности между суммарной энергией связи образовавшихся ядер и суммарной энергией связи исходных ядер, и ее можно найти с помощью таблицы, не вычисляя изменение общей массы. Эта энергия может выделяться в окружающую среду в виде кинетической энергии ядер и частиц или в виде γ-квантов. Примером реакции, сопровождающейся выделением энергии, может служить любая самопроизвольная реакция.

Проведем энергетический расчет ядерной реакции превращения радия в радон:

226 88 Ra → 222 86 Rn + 4 2 He.

Энергия связи исходного ядра составляет 1731,6 МэВ (табл. 37.1), а суммарная энергия связи образовавшихся ядер равна 1708,2 + 28,3 = 1736,5 МэВ и больше энергии связи исходного ядра на 4,9 МэВ.

Следовательно, в этой реакции освобождается энергия 4,9 МэВ, которая в основном составляет кинетическую энергию α-частицы.

Если в результате реакции образуются ядра и частицы, суммарная масса которых больше, чем у исходных ядер и частиц, то такая реакция может протекать только с поглощением энергии, соответствующей этому увеличению массы, и самопроизвольно никогда не произойдет. Величина поглощенной энергии равна разности между суммарной энергией связи исходных ядер и суммарной энергией связи образовавшихся в реакции ядер. Таким путем можно рассчитать, какой кинетической энергией должна обладать при столкновении с ядром-мишенью частица или другое ядро, чтобы осуществить такого рода реакцию, или вычислить необходимую величину γ-кванта для расщепления какого-либо ядра.

Так, минимальная величина γ-кванта, необходимая для расщепления дейтрона, равна энергии связи дейтрона 2,2 МэВ, поскольку в этой реакции:

2 1 H + γ → 1 1 H + 0 n 1

образуются свободные протон и нейтрон (Есв = 0).

Хорошее совпадение подобного рода теоретических расчетов с результатами опытов показывает правильность приведенного выше объяснения дефекта массы атомных ядер и подтверждает установленный теорией относительности принцип, пропорциональности массы и энергии.

Следует заметить, что реакции, в которых происходит превращение элементарных частиц (например, β-распад), также сопровождаются выделением или поглощением энергии, соответствующей изменению общей массы частиц.

Важной характеристикой ядра служит средняя энергия связи ядра, приходящаяся на один нуклон, Eсв/A (табл. 37.1). Чем она больше, тем сильнее связаны между собой нуклоны, тем прочнее ядро. Из табл. 37.1 видно, что для большинства ядер величина Есв/А равна примерно 8 МэВ на нуклон и уменьшается для очень легких и тяжелых ядер. Среди легких ядер выделяется ядро гелия.

Зависимость величины Есв/А от массового числа ядра А показана на рис. 37.12. У легких ядер большая доля нуклонов находится на поверхности ядра, где они не полностью используют свои связи, и величина Есв/А невелика. По мере увеличения массы ядра отношение поверхности к объему уменьшается и уменьшается доля нуклонов, находящихся на поверхности . Поэтому Есв/А растет. Однако по мере увеличения числа нуклонов в ядре возрастают кулоновские силы отталкивания между протонами, ослабляющие связи в ядре, и величина Есв/А у тяжелых ядер уменьшается. Таким образом, величина Есв/А максимальна у ядер средней массы (при А = 50-60), следовательно, они отличаются наибольшей прочностью.

Отсюда следует важный вывод. В реакциях деления тяжелых ядер на два средних ядра, а также при синтезе среднего или легкого ядра из двух более легких ядер получаются ядра прочнее исходных (с большей величиной Есв/А). Значит, при таких реакциях освобождается энергия. На этом основано получение атомной энергии при делении тяжелых ядер и термоядерной энергии - при синтезе ядер.

Нуклоны в атомном ядре связаны между собой ядерными силами; поэтому чтобы разделить ядро на составляющие его отдельные протоны и нейтроны, необходимо затратить большую энергию. Эта энергия называется энергией связи ядра.

Такая же по величине энергия освобождается, если свободные протоны и нейтроны соединяются и образуют ядро. Следовательно, согласно специальной теории относительности Эйнштейна масса атомного ядра должна быть меньше суммы масс свободных протонов и нейтронов, из которых оно образовалось. Эта разность масс соответствующая энергии связи ядра определяется соотношением Эйнштейна (§ 36.7):

Энергия связи атомных ядер настолько велика, что эта разность масс вполне доступна непосредственному измерению. С помощью масс-спектрографов такая разность масс действительно обнаружена для всех атомных ядер.

Разность между суммой масс покоя свободных протонов и нейтронов, из которых образовано ядро, и массой ядра называется дефектом массы ядра.

Энергию связи обычно выражают в мегаэлектронвольтах (МэВ) . Поскольку атомная единица массы (а. е. м.) равна кг, можно определить соответствующую ей энергию:

Энергию связи можно измерять непосредственно по балансу энергии в реакиии расщепления ядра. Так впервые была определена энергия связи дейтрона при его расщеплении у-квантами. Однако из формулы (37.1) энергию связи можно определить гораздо точнее, поскольку с помощью масс-спектрографа можно измерить массы изотопов с точностью .

Подсчитаем, например, энергию связи ядра гелия Его масса в атомных единицах равна масса протона масса нейтрона . Отсюда дефект массы ядра гелия

Умножив на МэВ, получим

С помощью масс-спектрографа были измерены массы всех изотопов и определены значения дефекта массы и энергии связи ядер. Значения энергии связи ядер некоторых изотопов приведены в табл. 37.1. С помощью таких таблиц выполняют энергетические расчеты ядерных реакций.

Таблица 37.1. (см. скан) Энергия связи атомных ядер

Если суммарная масса ядер и частиц, образовавшихся в какой-либо ядерной реакции, меньше суммарной массы исходных ядер и частиц, то в такой реакции освобождается энергия, соответствующая этому уменьшению массы. Когда общее число протонов и общее число нейтронов сохраняется, уменьшение суммарной массы означает, что в результате реакции увеличивается общий дефект массы и в новых ядрах нуклоны еще сильнее связаны друг с другом, чем в исходных ядрах. Освобождающаяся энергия равна разности между суммарной энергией связи образовавшихся ядер и суммарной энергией связи исходных ядер, и ее можно найти с помощью таблицы, не вычисляя изменение общей массы. Эта энергия может выделяться в окружающую среду в виде кинетической энергии ядер и частиц или в виде у-квантов. Примером реакции, сопровождающейся выделением энергии, может служить любая самопроизвольная реакция.

Проведем энергетический расчет ядерной реакции превращения радия в радон:

Энергия связи исходного ядра составляет 1731,6 МэВ (табл. 37.1), а суммарная энергия связи образовавшихся ядер равна МэВ и больше энергии связи исходного ядра на 4,9 МэВ.

Следовательно, в этой реакции освобождается энергия 4,9 МэВ, которая в основном составляет кинетическую энергию а-частицы.

Если в результате реакции образуются ядра и частицы, суммарная масса которых больше, чем у исходных ядер и частиц, то такая реакция может протекать только с поглоще нием энергии, соответствующей этому увеличению массы, и самопроизвольно никогда не произойдет. Величина поглощенной энергии равна разности между суммарной энергией связи исходных ядер и суммарной энергией связи образовавшихся в реакции ядер. Таким путем можно рассчитать, какой кинетической энергией должна обладать при столкновении с ядром-мишенью частица или другое ядро, чтобы осуществить такого рода реакцию, или вычислить необходимую величину -кванта для расщепления какого-либо ядра.

Так, минимальная величина -кванта, необходимая для расщепления дейтрона, равна энергии связи дейтрона 2,2 МэВ, поскольку

в этой реакции:

образуются свободные протон и нейтрон

Хорошее совпадение подобного рода теоретических расчетов с результатами опытов показывает правильность приведенного выше объяснения дефекта массы атомных ядер и подтверждает установленный теорией относительности принцип пропорциональности массы и энергии.

Следует заметить, что реакции, в которых происходит превращение элементарных частиц (например, -распад), также сопровождаются выделением или поглощением энергии, соответствующей изменению общей массы частиц.

Важной характеристикой ядра служит средняя энергия связи ядра, приходящаяся на один нуклон, (табл. 37.1). Чем она больше, тем сильнее связаны между собой нуклоны, тем прочнее ядро. Из табл. 37.1 видно, что для большинства ядер величина равна примерно 8 МэВ на. нуклон и уменьшается для очень легких и тяжелых ядер. Среди легких ядер выделяется ядро гелия.

Зависимость величины от массового числа ядра А показана на рис. 37.12. У легких ядер большая доля нуклонов находится на поверхности ядра, где они не полностью используют свои связи, и величина невелика. По мере увеличения массы ядра отношение поверхности к объему уменьшается и уменьшается доля нуклонов, находящихся на поверхности. Поэтому растет. Однако по мере увеличения числа нуклонов в ядре возрастают кулоновские силы отталкивания между протонами, ослабляющие связи в ядре, и величина тяжелых ядер уменьшается. Таким образом, величина максимальна у ядер средней массы (при следовательно, они отличаются наибольшей прочностью.

Отсюда следует важный вывод. В реакциях деления тяжелых ядер на два средних ядра, а также при синтезе среднего или легкого ядра из двух более легких ядер получаются ядра прочнее исходных (с большей величиной Значит, при таких реакциях освобождается энергия. На этом основано получение атомной энергии при делении тяжелых ядер (§ 39.2) и термоядерной энергии - при синтезе ядер (§ 39.6).

Нуклоны внутри ядра удерживаются ядерными силами. Их удерживает определенная энергия. Измерить эту энергию напрямую довольно сложно, однако можно сделать это косвенно. Логично предположить, что энергия, требующаяся для разрыва связи нуклонов в ядре, будет равна либо больше той энергии, которая удерживает нуклоны вместе.

Энергия связи и энергия ядра

Эту приложенную энергию уже легче измерить. Понятно, что эта величина будет очень точно отражать величину энергии, удерживающей нуклоны внутри ядра. Поэтому минимальная энергия, необходимая для расщепления ядра на отдельные нуклоны, называется энергией связи ядра .

Связь массы и энергии

Мы знаем, что любая энергия связана с массой тела прямо пропорционально. Поэтому естественно, что и энергия связи ядра будет зависеть от массы частиц, составляющих это ядро. Эту зависимость установил Альберт Эйнштейн в 1905 году. Она носит название закона о взаимосвязи массы и энергии. В соответствии с этим законом внутренняя энергия системы частиц или энергия покоя связана прямо пропорционально с массой частиц, составляющих эту систему:

где E – энергия, m – масса,
c – скорость света в вакууме.

Эффект дефекта масс

Теперь предположим, что мы разбили ядро атома на составляющие его нуклоны или же забрали некоторое количество нуклонов из ядра. На преодоление ядерных сил мы затратили некоторую энергию, так как совершали работу. В случае же обратного процесса – синтеза ядра, либо же добавления нуклонов к уже существующему ядру, энергия, по закону сохранения , наоборот, выделится. При изменении энергии покоя системы частиц вследствие каких-либо процессов, соответственно, изменяется их масса. Формулы в данном случае будут следующими:

∆m=(∆E_0)/c^2 или ∆E_0=∆mc^2,

где ∆E_0 – изменение энергии покоя системы частиц,
∆m – изменение массы частиц.

Например, в случае слияния нуклонов и образования ядра у нас происходит выделение энергии и уменьшение общей массы нуклонов. Масса и энергия уносятся выделяющимися фотонами. В этом заключается эффект дефекта масс . Масса ядра всегда меньше суммы масс нуклонов, составляющих это ядро. Численно дефект масс выражается следующим образом:

∆m=(Zm_p+Nm_n)-M_я,

где M_я – масса ядра,
Z – число протонов в ядре,
N – число нейтронов в ядре,
m_p – масса свободного протона,
m_n – масса свободного нейтрона.

Величина ∆m в двух приведенных выше формулах – это величина, на которую меняется суммарная масса частиц ядра при изменении его энергии вследствие разрыва или синтеза. В случае синтеза эта величина будет являться дефектом масс.

Наименование параметра Значение
Тема статьи: Дефект массы и энергия связи ядра
Рубрика (тематическая категория) Радио

Исследования показывают, что атомные ядра являются устойчивыми образованиями. Это означает, что в ядре между нуклонами существует определœенная связь.

Массу ядер очень точно можно определить с помощью масс-спектрометров – измерительных приборов, разделяющих с помощью электрических и магнитных полей пучки заряженных частиц (обычно ионов) с разными удельными зарядами Q/т. Масс-спектрометрические измерения показали, что масса ядра меньше, чем сумма масс составляющих его нуклонов. Но так как всякому изменению массы (см. §40) должно соответствовать изменение энергии, то, следовательно, при образовании ядра должна выделяться определœенная энергия. Из закона сохранения энергии вытекает и обратное: для разделœения ядра на составные части крайне важно затратить такое же количество энергии, ĸᴏᴛᴏᴩᴏᴇ выделяется при его образовании. Энергия, которую крайне важно затратить. чтобы расщепить ядро на отдельные нуклоны, принято называть энергией связи ядра (см. § 40).

Согласно выражению (40.9), энергия связи нуклонов и ялре

E св = [Zm p + (A Z )m n m я ] c 2 , (252.1)

где m p , m n , m я – соответственно массы протона, нейтрона и ядра. В таблицах обычно приводятся не массы m я ядер, а массы т атомов. По этой причине для энергии связи ядра пользуются формулой

E св = [Zm Н + (A Z )m n m ] c 2 , (252.2)

где m Н - масса атома водорода. Так как m Н больше m p , на величину m e , то первый член в квадратных скобках включает в себя массу Z электронов. Но так как масса атома т отличаемся от массы ядра m я как раз на массу электронов, то вычисления по формулам (252 1) и (252.2) приводят к одинаковым результатам. Величина

Δ т = [Zm p + (A Z )m n ] – m я (252.3)

принято называть дефектом массы ядра. На эту величину уменьшается масса всœех нуклонов при образовании из них атомного ядра. Часто вместо энергии связи рассматривают удельную энергию связи δE св – энергию связи, отнесенную к одному нуклону. Она характеризует устойчивость (прочность) атомных ядер, ᴛ.ᴇ. чем больше δE св , тем устойчивее ядро. Удельная энергия связи зависит от массового числа А элемента (рис. 45). Для легких ядер (А ≥ 12) удельная энергия связи круто возрастает до 6 ÷ 7МэВ, претерпевая целый ряд скачков (к примеру, для Н δE св = 1,1 МэВ, для Не – 7,1 МэВ, для Li – 5,3 МэВ), затем более медленно возрастает до максимальной величины 8,7 МэВ у элементов с А = 50 ÷ 60, а потом постепенно уменьшается у тяжелых элементов (к примеру, для U она составляет 7,6 МэВ) . Отметим для сравнения, что энергия связи валентных электронов в атомах составляет примерно 10 эВ (в 10 -6 ! раз меньше).

Уменьшение удельной энергии связи при переходе к тяжелым элементам объясняется тем, что с возрастанием числа протонов в ядре увеличивается и энергия их кулоновского отталкивания. По этой причине связь между нуклонами становится менее сильной, а сами ядра менее прочными.

Наиболее устойчивыми оказываются так называемые магические ядра, у которых число протонов или число нейтронов равно одному из магических чисел: 2, 8, 20, 28, 50, 82, 126. Особенно стабильны дважды магические ядра, у которых магическими являются и число протонов, и число нейтронов (этих ядер насчитывается всœего пять: He, O, Ca, Pb).

Из рис. 45 следует, что наиболее устойчивыми с энергетической точки зрения являются ядра средней части таблицы Менделœеева. Тяжелые и легкие ядра менее устойчивы. Это означает, что энергетически выгодны следующие процессы:

1) делœение тяжелых ядер на более легкие;

2) слияние легких ядер друг с другом в более тяжелые.

При обоих процессах выделяется огромное количество энергии; эти процессы в настоящее время осуществлены практически (реакция делœения и термоядерные реакции).

Дефект массы и энергия связи ядра - понятие и виды. Классификация и особенности категории "Дефект массы и энергия связи ядра" 2017, 2018.

Атомное ядро. Дефект массы. Энергия связи атомного ядра

Атомное ядро – это центральная часть атома, в которой сосредоточен весь положительный заряд и почти вся масса.

Ядра всех атомов состоят из частиц, которые называются нуклонами. Нуклоны могут быть в двух состояниях – в электрически заряженном состоянии и в нейтральном состоянии. Нуклон в заряженном состоянии называется протоном. Протон (р) – это ядро самого легкого химического элемента – водорода. Заряд протона равен элементарному положительному заряду, который по величине равен элементарному отрицательному заряду q e = 1,6 ∙ 10 -19 Кл., т.е. заряду электрона. Нуклон в нейтральном (незаряженном) состоянии называют нейтроном (n). Массы нуклонов в обоих состояниях мало отличаются друг от друга, т.е. m n ≈ m p .

Нуклоны не являются элементарными частицами. Они обладают сложной внутренней структурой и состоят из еще более мелких частиц материи – кварков.

Основными характеристиками атомного ядра являются заряд, масса, спин и магнитный момент.

Заряд ядра определяется количеством протонов (z), входящих в состав ядра. Заряд ядра (zq) для разных химических элементов различен. Число z называют атомным номером или зарядовым числом. Атомный номер является порядковым номером химического элемента в периодической системе элементов Д.Менделеева. Заряд ядра определяет и количество электронов в атоме. От количества электронов атома зависит их распределение по энергетическим оболочкам и подоболочкам и, следовательно, все физико-химические свойства атома. Заряд ядра определяет специфику данного химического элемента.

Масса ядра Масса ядра определяется количеством (А) нуклонов, которые входят в состав ядра. Число нуклонов в ядре (А) называется массовым числом. Число нейтронов (N) в ядре можно найти если от общего числа нуклонов (А) отнять число протонов (z), т.е N=F-z. В периодической таблице до ее середины количество протонов и нейтронов в ядрах атомов примерно одинаково, т.е. (А-z)/z= 1, к концу таблицы (А-z)/z= 1,6.

Ядра атомов принято обозначать так:

X - символ химического элемента;

Z – атомный номер;

A – массовое число.

При измерении масс ядер простых веществ было обнаружено, что большинство химических элементов состоят из групп атомов. Имея одинаковый заряд, ядра различных групп отличаются массами. Разновидности атомов данного химического элемента, отличающегося массами ядер, назвали изотопами . Ядра изотопов имеют одинаковое число протонов, но разное число нейтронов ( и ; , , , ; , , ).

Кроме ядер изотопов (z – одинаково, А – различно) существуют ядра изобары (z - различно, А – одинаково). ( и ).

Массы нуклонов, ядер атомов, атомов, электронов и других частиц в ядерной физике принято измерять не в «КГ», в атомных единицах массы (а.е.м. – иначе называют углеродной единицей массы и обозначают «е»). За атомную единицу массы (1е) принята 1/12 массы атома углерода 1е=1,6603 ∙ 10 -27 кг.

Массы нуклонов: m p -1.00728 e, m n =1,00867 е.

Видим, что масса ядра выраженная в «е» будет записываться числом близким к А.

Спин ядра. Механический момент импульса (спин) ядра равен векторной сумме спинов нуклонов, составляющих ядро. Протон и нейтрон обладают спином равным L = ± 1/2ћ. В соответствии с этим спин ядер с четным числом нуклонов (А четное) является целым числом или нулем. Спин ядра с нечетными числом нуклонов (А нечетное) является полуцелым.

Магнитный момент ядра. Магнитный момент ядра(P m я) ядра по сравнению с магнитным моментом электронов, заполняющих электронные оболочки атома, очень мал. На магнитные свойства атома магнитный момент ядра не влияет. Единицей измерения магнитного момента ядер является ядерный магнетон μ я = 5,05,38 ∙ 10 -27 Дж/Тл. Он в 1836 раз меньше магнитного момента электрона – магнетона Бора μ Б = 0,927 ∙ 10 -23 Дж/Тл.

Магнитный момент протона равен 2,793 μ я и параллелен спину протона. Магнитный момент нейтрона равен 1,914 μ я и антипараллелен спину нейтрона. Магнитные моменты ядер имеют порядок ядерного магнетона.

Чтобы расщепить ядро на составляющие его нуклоны надо совершить определенную работу. Величина этой работы является мерой энергии связи ядра.

Энергия связи ядра численно равна работе, которую надо совершить для расщепления ядра на составляющие его нуклоны и без сообщения им кинетической энергии.

При обратном процессе образования ядра из составляющих нуклонов должна выделяться такая же энергия. Это следует из закона сохранения энергии. Поэтому энергия связи ядра равна разности энергии нуклонов, составляющих ядро, и энергии ядра:

ΔЕ = Е нук – Е я. (1)

Учитывая взаимосвязь массы и энергии (Е = m ∙ c 2) и состав ядра, уравнение (1) перепишем так:

ΔЕ = ∙ с 2 (2)

Величина

Δm = zm p +(A-z)m n – M я, (3)

Равная разности масс нуклонов, входящих в состав ядра, и массы самого ядра, называется дефектом массы.

Выражение (2) можно переписать в виде:

ΔЕ = Δm ∙ с 2 (4)

Т.е. дефект массы является мерой энергии связи ядра .

В ядерной физике массу нуклонов и ядер измеряют в а.е.м. (1 а.е.м.=1,6603 ∙ 10 27 кг), а энергию принято измерять в МэВ.

Учитывая, что 1 МэВ = 10 6 эВ = 1,6021 ∙ 10 -13 Дж, найдем величину энергии, соответствующей атомной единице массы

1.а.е.м. ∙ с 2 = 1,6603 ∙10 -27 ∙9 ∙10 16 = 14,9427 ∙ 10 -11 Дж = 931,48 МэВ

Таким образом, энергия связи ядра в МэВ равна

ΔЕ св = Δm ∙931,48 МэВ (5)

Учитывая, что в таблицах обычно дается не масса ядер, а масса атомов, для практического вычисления дефекта массы вместо формулы (3)

пользуются другой

Δm = zm Н +(A-z)m n – M а, (6)

Т.е массу протона заменили массой атома легкого водорода , добавив тем самым z электронных масс, а массу ядра заменили массой атома M а, этим самым вычли эти z электронных масс.

Энергию связи, приходящуюся на один нуклон в ядре, называют удельной энергией связи

(7)

Зависимость удельной энергии связи от числа нуклонов в ядре (от массового числа А) дана на рис.1.

Loading...Loading...