Коэффициент стехиометрии. Определение стехиометрических коэффициентов в уравнениях окислительно-восстановительных реакций

Все количественные соотношения при расчете химических процессов основаны на стехиометрии реакций. Количество вещества при таких расчетах удобнее выражать в молях, или производных единицах (кмоль, ммоль, и т.д.). Моль является одной из основных единиц СИ. Один моль любого вещества соответствует его количеству, численно равному молекулярной массе. Поэтому молекулярную массу в этом случае следует считать величиной размерной с единицами: г/моль, кг/кмоль, кг/моль. Так, например, молекулярная масса азота 28 г/моль, 28 кг/кмоль, но 0,028 кг/моль.

Массовые и мольные количества вещества связаны известными соотношениями

N А = m А /М А; m А = N А М А,

где N А - количество компонента А, моль; m A - масса этого компонента, кг;

М А - молекулярная масса компонента А, кг/моль.

При непрерывных процессах поток вещества А можно выражать его моль-

ным количеством в единицу времени

где W A - мольный поток компонента А, моль/с; τ - время, с.

Для простой реакции, протекающей практически необратимо, обычно стехиомет

рическое уравнение записывается в виде

v A А + v B В = v R R + v S S.

Однако удобнее записывать стехиометрическое уравнение в виде алгебраическо

го, принимая при этом, что стехиометрические коэффициенты реагентов отрицательны, а продуктов реакции положительны:

Тогда для каждой простой реакции можно записать следующие равенства:

Индекс «0» относится к начальному количеству компонента.

Эти равенства дают основание получить следующие уравнения материального баланса по компоненту для простой реакции:

Пример 7.1. Реакция гидрирования фенола до циклогексанола протекает по урав-

С 6 Н 5 ОН + ЗН 2 = С 6 Н 11 ОН, или А + ЗВ = R.

Вычислить количество образовавшегося продукта, если начальное количество компонента А было 235 кг, а конечное - 18,8 кг

Решение: Запишем реакцию в виде

R - А - ЗВ = 0.

Молекулярные массы компонентов: М А = 94 кг/кмоль, М В = 2 кг/кмоль и

М R = 100 кг/кмоль. Тогда мольные количества фенола в начале и в конце реакции будут:

N A 0 = 235/94 = 2,5; N A 0 = 18,8/94 =0,2; n = (0,2 - 2,5)/(-1) = 2,3.

Количество образовавшегося циклогексанола будет равно

N R = 0 +1∙2,3 = 2,3 кмоль или m R = 100∙2,3 = 230 кг.

Определение стехиометрически независимых реакций в их системе при материальных и тепловых расчётах реакционных аппаратов необходимо для исключения реакций, являющихся суммой или разностью некоторых из них. Такую оценку наиболее просто можно осуществить по критерию Грама.

Чтобы не проводить излишних расчетов, следует оценить, является ли система стехиометрически зависимой. Для этих целей необходимо:


Транспонировать исходную матрицу системы реакций;

Умножить исходную матрицу на транспонированную;

Вычислить определитель полученной квадратной матрицы.

Если этот определитель равен нулю, то система реакций стехиометрически зависима.

Пример 7.2. Имеем систему реакций:

FеО + Н 2 = Fе + Н 2 O;

Fе 2 О 3 + 3Н 2 = 2Fе + 3Н 2 O;

FеО + Fе 2 O 3 + 4Н 2 = 3Fе + 4Н 2 O.

Эта система стехиометрически зависима, так как третья реакция является суммой двух других. Составим матрицу

Для каждого вещества реакции существуют следующие количества вещества:

Начальное количество i-го вещества (количество вещества до начала реакции);

Конечное количество i-го вещества (количество вещества по окончании реакции);

Количество прореагировавшего (для исходных веществ) или образовавшегося вещества (для продуктов реакции).

Так как количество вещества не может быть отрицательно, то для исходных веществ

Так как >.

Для продуктов реакции >, следовательно, .

Стехиометрические соотношения - соотношения между количествами, массами или объемами (для газов) реагирующих веществ или продуктов реакции, рассчитанные на основе уравнения реакции. В основе расчетов по уравнениям реакций лежит основной закон стехиометрии: отношение количеств реагирующих или образовавшихся веществ (в молях) равно отношению соответствующих коэффициентов в уравнении реакции (стехиометрических коэффициентов).

Для реакции алюмотермии, описываемой уравнением:

3Fe 3 O 4 + 8Al = 4Al 2 O 3 + 9Fe,

количества прореагировавших веществ и продуктов реакции относятся как

Для расчетов удобнее применять другую формулировку этого закона: отношение количества прореагировавшего или образовавшегося вещества в результате реакции к своему стехиометрическому коэффициенту - есть константа для данной реакции.

В общем случае для реакции вида

аА + bB = cC + dD,

где маленькие буквы обозначают коэффициенты, а большие - химические вещества, количества реагирующих веществ связаны соотношением:

Любые два члена этого соотношения, связанные равенством, образуют пропорцию химической реакции: например,

Если для реакции известна масса образовавшегося или прореагировавшего вещества реакции, то можно найти его количество по формуле

а затем, используя пропорцию химической реакции, можно найти для остальных веществ реакции. Вещество, по массе или количеству которого находят массы, количества или объемы других участников реакции, иногда называют опорным веществом.

Если даны массы нескольких реагентов, то расчет масс остальных веществ ведут по тому из веществ, которое находится в недостатке, т. е. полностью расходуется в реакции. Количества веществ, которые точно соответствуют уравнению реакции без избытка или недостатка, называют стехиометрическими количествами.

Таким образом, в задачах, связанных со стехиометрическими расчетами, основным действием является нахождение опорного вещества и расчет его количества, которое вступило или образовалось в результате реакции.

Расчет количества индивидуального твердого вещества

где - количество индивидуального твердого вещества А;

Масса индивидуального твердого вещества А, г;

Молярная масса вещества А, г/моль.

Расчет количества природного минерала или смеси твердых веществ

Пусть дан природный минерал пирит, основной компонент которого FeS 2 . Кроме него в состав пирита входят примеси. Содержание основного компонента или примесей указывается в массовых процентах, например, .

Если известно содержание основного компонента, то

Если известно содержание примесей, то

где - количество индивидуального вещества FeS 2 , моль;

Масса минерала пирита, г.

Аналогично рассчитывается количество компонента в смеси твердых веществ, если известно его содержание в массовых долях.

Расчет количества вещества чистой жидкости

Если известна масса, то расчет аналогичен расчету для индивидуального твердого вещества.

Если известен объем жидкости, то

1. Найти массу этого объема жидкости:

m ж = V ж ·с ж,

где m ж - масса жидкости г;

V ж - объем жидкости, мл;

с ж - плотность жидкости, г/мл.

2. Найти число молей жидкости:

Эта методика подходит для любого агрегатного состояния вещества.

Определить количества вещества Н 2 О в 200 мл воды.

Решение: если температура не оговаривается, то плотность воды принимается 1 г/мл, тогда:

Расчет количества растворенного вещества в растворе, если известна его концентрация

Если известна массовая доля растворенного вещества, плотность раствора и его объем, то

m р-ра = V р-ра ·с р-ра,

где m р-ра - масса раствора, г;

V р-ра - объем раствора, мл;

с р-ра - плотность раствора, г/мл.

где - масса растворенного вещества, г;

Массовая доля растворенного вещества, выраженная в %.

Определить количество вещества азотной кислоты в 500 мл 10 % раствора кислоты плотностью 1,0543 г/мл.

Определить массу раствора

m р-ра = V р-ра ·с р-ра = 500·1,0543 = 527,150 г.

Определить массу чистой HNO 3

Определить число молей HNO 3

Если известна молярная концентрация растворенного вещества и вещества и объем раствора, то

где - объем раствора, л;

Молярная концентрация i-го вещества в растворе, моль/л.

Расчет количества индивидуального газообразного вещества

Если дана масса газообразного вещества, то рассчитывается по формуле (1).

Если дан объем, измеренный при нормальных условиях, - то по формуле (2), если объем газообразного вещества измерен при любых других условиях, - то по формуле (3),формулы приведены на страницах 6-7.

Одним из важнейших химических понятий, на котором основываются стехио­метрические расчёты, является химическое количество вещества . Количество некоторого вещества X обозначается n(X). Единицей измерения количества вещества является моль .

Моль – это количество вещества, в котором содержится 6,02·10 23 молекул, атомов, ионов или других структурных единиц, из которых состоит вещество .

Масса одного моля некоторого вещества Х называется молярной массой M(X) этого вещества. Зная массу m(X) некоторого вещества X и его молярную массу, можно рассчитать количество этого вещества по формуле:

Число 6,02·10 23 называется числом Авогадро (N a); его размерность моль –1 .

Умножая число Авогадро N a на количество вещества n(X), можно рассчитать число структурных единиц, например, молекул N(X) некоторого вещества X:

N(X) = N a · n(X) .

По аналогии с понятием молярной массы ввели понятие молярного объёма: молярный объём V m (X) некоторого вещества X – это объём одного моля этого вещества. Зная объём вещества V(X) и его молярный объём, можно рассчитать химическое количество вещества:

В химии особенно часто приходится иметь дело с молярным объёмом газов. Согласно закону Авогадро в равных объёмах любых газов, взятых при одной и той же температуре и равном давлении, содержится одно и тоже число молекул . При равных условиях 1 моль любого газа занимает один и тот же объём. При нормальных условиях (н.у.) – температура 0°С и давление 1 атмосфера (101325 Па) – этот объём равен 22,4 л. Таким образом, при н.у. V m (газа) = 22,4 л/моль . Следует особо подчеркнуть, что величина молярного объёма 22,4 л/моль применяется только для газов.

Знание молярных масс веществ и числа Авогадро позволяет выразить массу молекулы любого вещества в граммах. Ниже приводится пример расчёта массы молекулы водорода.



1 моль газообразного водорода содержит 6,02·10 23 молекул H 2 и имеет массу 2 г (т.к. M(H 2) = 2 г/моль). Следовательно,

6,02·10 23 молекул H 2 имеют массу 2 г;

1 молекула H 2 имеет массу x г; x = 3,32·10 –24 г.

Понятие «моль» широко используется для проведения расчётов по уравнениям химических реакций, поскольку стехиометрические коэффициенты в уравнении реакции показывают, в каких молярных соотношениях вещества реагируют друг с другом и образуются в результате реакции.

Например, уравнение реакции 4 NH 3 + 3 O 2 → 2 N 2 + 6 H 2 O содержит следующую информацию: 4 моль аммиака реагируют без избытка и недостатка с 3 моль кис­лорода, при этом образуется 2 моль азота и 6 моль воды.


Пример 4.1 Рассчитайте массу осадка, образующегося при взаимодействии растворов, содержащих 70,2 г дигидрофосфата кальция и 68 г гидроксида кальция. Какое вещество останется в избытке? Чему равна его масса?

3 Ca(H 2 PO 4) 2 + 12 KOH ® Ca 3 (PO 4) 2 ¯ + 4 K 3 PO 4 + 12 H 2 O

Из уравнения реакции видно, что 3 моль Ca(H 2 PO 4) 2 реагирует с 12 моль KOH. Рассчитаем количества реагирующих веществ, которые даны по условию задачи:

n(Ca(H 2 PO 4) 2) = m(Ca(H 2 PO 4) 2) / M(Ca(H 2 PO 4) 2) = 70,2 г: 234 г/моль = 0,3 моль;

n(KOH) = m(KOH) / M(KOH) = 68 г: 56 г/моль = 1,215 моль.

на 3 моль Ca(H 2 PO 4) 2 требуется 12 моль KOH

на 0,3 моль Ca(H 2 PO 4) 2 требуется х моль KOH

х = 1,2 моль – столько KOH потребуется, для того чтобы реакция прошла без избытка и недостатка. А по условию задачи имеется 1,215 моль KOH. Следовательно, KOH – в избытке; количество оставшегося после реакции KOH:

n(KOH) = 1,215 моль – 1,2 моль = 0,015 моль;

его масса m(KOH) = n(KOH) × M(KOH) = 0,015 моль × 56 г/моль = 0,84 г.

Расчёт образующегося продукта реакции (осадок Ca 3 (PO 4) 2) следует вести по веществу, которое находится в недостатке (в данном случае – Ca(H 2 PO 4) 2), так как это вещество прореагирует полностью. Из уравнения реакции видно, что число моль образующегося Ca 3 (PO 4) 2 в 3 раза меньше числа моль прореагировавшего Ca(H 2 PO 4) 2:

n(Ca 3 (PO 4) 2) = 0,3 моль: 3 = 0,1 моль.

Следовательно, m(Ca 3 (PO 4) 2) = n(Ca 3 (PO 4) 2)×M(Ca 3 (PO 4) 2) = 0,1 моль×310 г/моль = 31 г.

Задание №5

а) Рассчитайте химические количества реагирующих веществ, приведённых в таблице 5 (объёмы газообразных веществ даны при нормальных условиях);

б) расставьте коэффициенты в заданной схеме реакции и по уравнению реакции определите, какое из веществ находится в избытке, а какое в недостатке;

в) найдите химическое количество продукта реакции, указанного в таблице 5;

г) рассчитайте массу или объём (см. таблицу 5) этого продукта реакции.

Таблица 5 – Условия задания № 5

№ варианта Реагирующие вещества Схема реакции Рассчитать
m(Fe)=11,2 г; V(Cl 2)=5,376 л Fe+Cl 2 ® FeCl 3 m(FeCl 3)
m(Al)=5,4 г; m(H 2 SO 4)=39,2 г Al+H 2 SO 4 ® Al 2 (SO 4) 3 +H 2 V(H 2)
V(CO)=20 л; m(O 2)=20 г CO+O 2 ® CO 2 V(CO 2)
m(AgNO 3)=3,4 г; m(Na 2 S)=1,56 г AgNO 3 +Na 2 S®Ag 2 S+NaNO 3 m(Ag 2 S)
m(Na 2 CO 3)=53 г; m(HCl)=29,2 г Na 2 CO 3 +HCl®NaCl+CO 2 +H 2 O V(CO 2)
m(Al 2 (SO 4) 3)=34,2 г;m(BaCl 2)=52 г Al 2 (SO 4) 3 +BaCl 2 ®AlCl 3 +BaSO 4 m(BaSO 4)
m(KI)=3,32 г; V(Cl 2)=448 мл KI+Cl 2 ® KCl+I 2 m(I 2)
m(CaCl 2)=22,2 г; m(AgNO 3)=59,5 г CaCl 2 +AgNO 3 ®AgCl+Ca(NO 3) 2 m(AgCl)
m(H 2)=0,48 г; V(O 2)=2,8 л H 2 +O 2 ® H 2 O m(H 2 O)
m(Ba(OH) 2)=3,42г; V(HCl)=784мл Ba(OH) 2 +HCl ® BaCl 2 +H 2 O m(BaCl 2)

Продолжение таблицы 5

№ варианта Реагирующие вещества Схема реакции Рассчитать
m(H 3 PO 4)=9,8 г; m(NaOH)=12,2 г H 3 PO 4 +NaOH ® Na 3 PO 4 +H 2 O m(Na 3 PO 4)
m(H 2 SO 4)=9,8 г; m(KOH)=11,76 г H 2 SO 4 +KOH ® K 2 SO 4 +H 2 O m(K 2 SO 4)
V(Cl 2)=2,24 л; m(KOH)=10,64 г Cl 2 +KOH ® KClO+KCl+H 2 O m(KClO)
m((NH 4) 2 SO 4)=66 г;m(KOH)=50 г (NH 4) 2 SO 4 +KOH®K 2 SO 4 +NH 3 +H 2 O V(NH 3)
m(NH 3)=6,8 г; V(O 2)=7,84 л NH 3 +O 2 ® N 2 +H 2 O V(N 2)
V(H 2 S)=11,2 л; m(O 2)=8,32 г H 2 S+O 2 ® S+H 2 O m(S)
m(MnO 2)=8,7 г; m(HCl)=14,2 г MnO 2 +HCl ® MnCl 2 +Cl 2 +H 2 O V(Cl 2)
m(Al)=5,4 г; V(Cl 2)=6,048 л Al+Cl 2 ® AlCl 3 m(AlCl 3)
m(Al)=10,8 г; m(HCl)=36,5 г Al+HCl ® AlCl 3 +H 2 V(H 2)
m(P)=15,5 г; V(O 2)=14,1 л P+O 2 ® P 2 O 5 m(P 2 O 5)
m(AgNO 3)=8,5 г;m(K 2 CO 3)=4,14 г AgNO 3 +K 2 CO 3 ®Ag 2 CO 3 +KNO 3 m(Ag 2 CO 3)
m(K 2 CO 3)=69 г; m(HNO 3)=50,4 г K 2 CO 3 +HNO 3 ®KNO 3 +CO 2 +H 2 O V(CO 2)
m(AlCl 3)=2,67 г; m(AgNO 3)=8,5 г AlCl 3 +AgNO 3 ®AgCl+Al(NO 3) 3 m(AgCl)
m(KBr)=2,38 г; V(Cl 2)=448 мл KBr+Cl 2 ® KCl+Br 2 m(Br 2)
m(CaBr 2)=40 г; m(AgNO 3)=59,5 г CaBr 2 +AgNO 3 ®AgBr+Ca(NO 3) 2 m(AgBr)
m(H 2)=1,44 г; V(O 2)=8,4 л H 2 +O 2 ® H 2 O m(H 2 O)
m(Ba(OH) 2)=6,84 г;V(HI)=1,568 л Ba(OH) 2 +HI ® BaI 2 +H 2 O m(BaI 2)
m(H 3 PO 4)=9,8 г; m(KOH)=17,08 г H 3 PO 4 +KOH ® K 3 PO 4 +H 2 O m(K 3 PO 4)
m(H 2 SO 4)=49 г; m(NaOH)=45 г H 2 SO 4 +NaOH ® Na 2 SO 4 +H 2 O m(Na 2 SO 4)
V(Cl 2)=2,24 л; m(KOH)=8,4 г Cl 2 +KOH ® KClO 3 +KCl+H 2 O m(KClO 3)
m(NH 4 Cl)=43 г; m(Ca(OH) 2)=37 г NH 4 Cl+Ca(OH) 2 ®CaCl 2 +NH 3 +H 2 O V(NH 3)
V(NH 3)=8,96 л; m(O 2)=14,4 г NH 3 +O 2 ® NO+H 2 O V(NO)
V(H 2 S)=17,92 л; m(O 2)=40 г H 2 S+O 2 ® SO 2 +H 2 O V(SO 2)
m(MnO 2)=8,7 г; m(HBr)=30,8 г MnO 2 +HBr ® MnBr 2 +Br 2 +H 2 O m(MnBr 2)
m(Ca)=10 г; m(H 2 O)=8,1 г Ca+H 2 O ® Ca(OH) 2 +H 2 V(H 2)

КОНЦЕНТРАЦИЯ РАСТВОРОВ

В рамках курса общей химии студенты изучают 2 способа выражения концентрации растворов – массовая доля и молярная концентрация.

Массовая доля растворённого вещества Х рассчитывается как отношение массы этого вещества к массе раствора:

,

где ω(X) – массовая доля растворённого вещества X;

m(X) – масса растворённого вещества X;

m раствора – масса раствора.

Массовая доля вещества, рассчитанная по приведённой выше формуле –безразмерная величина, выраженная в долях единицы (0 < ω(X) < 1).


Массовую долю можно выразить не только в долях единицы, но и в процентах. В этом случае расчётная формула имеет вид:

Массовую долю, выраженную в процентах, часто называют процентной концентрацией . Очевидно, что процентная концентрация растворённого вещества 0% < ω(X) < 100%.

Процентная концентрация показывает, сколько массовых частей растворённого вещества содержится в 100 массовых частях раствора . Если в качестве единицы массы выбрать грамм, то это определение можно также записать следующим образом: процентная концентрация показывает, сколько граммов растворённого вещества содержится в 100 граммах раствора .

Понятно, что, например, 30% раствору соответствует массовая доля растворённого вещества, равная 0,3.

Другим способом выражения содержания растворённого вещества в растворе является молярная концентрация (молярность).

Молярная концентрация вещества, или молярность раствора, показывает, сколько моль растворённого вещества содержится в 1 литре (1 дм 3) раствора

где C(X) – молярная концентрация растворённого вещества X (моль/л);

n(X) – химическое количество растворённого вещества Х (моль);

V раствора – объём раствора (л).

Пример 5.1 Рассчитайте, молярную концентрацию H 3 PO 4 в растворе, если известно, что массовая доля H 3 PO 4 равна 60%, а плотность раствора – 1,43 г/мл.

По определению процентной концентрации

в 100 г раствора содержится 60 г фосфорной кислоты.

n(H 3 PO 4) = m(H 3 PO 4) : M(H 3 PO 4) = 60 г: 98 г/моль = 0,612 моль;

V раствора = m раствора: ρ раствора = 100 г: 1,43 г/см 3 = 69,93 см 3 = 0,0699 л;

С(H 3 PO 4) = n(H 3 PO 4) : V раствора = 0,612 моль: 0,0699 л = 8,755 моль/л.

Пример 5.2 Имеется 0,5 М раствор H 2 SO 4 . Чему равна массовая доля серной кислоты в этом растворе? Плотность раствора принять равной 1 г/мл.

По определению молярной концентрации

в 1 л раствора содержится 0,5 моль H 2 SO 4

(запись «0,5 М раствор» означает, что С(H 2 SO 4) = 0,5 моль/л).

m раствора = V раствора × ρ раствора = 1000 мл × 1 г/мл = 1000 г;

m(H 2 SO 4) = n(H 2 SO 4) × M(H 2 SO 4) = 0,5 моль × 98 г/моль = 49 г;

ω(H 2 SO 4) = m(H 2 SO 4) : m раствора = 49 г: 1000 г = 0,049 (4,9%).


Пример 5.3 Какие объёмы воды и 96% раствора H 2 SO 4 плотностью 1,84 г/мл необходимо взять для приготовления 2 л 60% раствора H 2 SO 4 плотностью 1,5 г/мл.

При решении задач на приготовление разбавленного раствора из концентриро­ванного следует учитывать, что исходный раствор (концентрированный), вода и полученный раствор (разбавленный) имеют различные плотности. В этом случае следует иметь в виду, что V исходного раствора + V воды ≠ V полученного раствора,

потому что в ходе смешивания концентрированного раствора и воды происходит изменение (увеличение или уменьшение) объёма всей системы.

Решение подобных задач нужно начинать с выяснения параметров разбавленного раствора (т.е. того раствора, который нужно приготовить): его массы, массы растворённого вещества, если необходимо, то и количества растворённого вещества.

M 60% р-ра = V 60% р-ра ∙ ρ 60% р-ра = 2000 мл × 1,5 г/мл = 3000 г.

m(H 2 SO 4) в 60% р-ре = m 60% р-ра · w(H 2 SO 4) в 60% р-ре = 3000 г · 0,6 = 1800 г.

Масса чистой серной кислоты в приготовленном растворе должна быть равна массе серной кислоты в той порции 96%-го раствора, которую необходимо взять для приготовления разбавленного раствора. Таким образом,

m(H 2 SO 4) в 60% р-ре = m(H 2 SO 4) в 96% р-ре = 1800 г.

m 96% р-ра = m (H 2 SO 4) в 96% р-ре: w(H 2 SO 4) в 96% р-ре = 1800 г: 0,96 = 1875 г.

m (H 2 O) = m 40% р-ра – m 96% р-ра = 3000 г – 1875 г = 1125 г.

V 96% р-ра = m 96% р-ра: ρ 96% р-ра = 1875 г: 1,84 г/мл = 1019 мл » 1,02 л.

V воды = m воды: ρ воды = 1125г: 1 г/мл = 1125 мл = 1,125 л.

Пример 5.4 Смешали 100 мл 0,1 M раствора CuCl 2 и 150 мл 0,2 М раствора Cu(NO 3) 2 Рассчитать молярную концентрацию ионов Cu 2+ , Cl – и NO 3 – в полученном растворе.

При решении подобной задачи на смешивание разбавленных растворов, важно понимать что разбавленные растворы имеют приблизительно одинаковую плотность, примерно равную плотности воды. При их смешивании общий объём системы практически не изменяется: V 1 разбавленного раствора + V 2 разбавленного раствора +…» V полученного раствора.

В первом растворе:

n(CuCl 2) = C(CuCl 2) · Vраствора CuCl 2 = 0,1 моль/л × 0,1 л = 0,01 моль;

CuCl 2 – сильный электролит: CuCl 2 ® Cu 2+ + 2Cl – ;

Поэтому n(Cu 2+) = n(CuCl 2) = 0,01 моль; n(Cl –) = 2 × 0,01 = 0,02 моль.

Во втором растворе:

n(Cu(NO 3) 2) = C(Cu(NO 3) 2)×Vраствора Cu(NO 3) 2 = 0,2 моль/л × 0,15 л = 0,03 моль;

Cu(NO 3) 2 – сильный электролит: CuCl 2 ® Cu 2+ + 2NO 3 – ;

Поэтому n(Cu 2+) = n(Cu(NO 3) 2) = 0,03 моль; n(NO 3 –) = 2×0,03 = 0,06 моль.

После смешивания растворов:

n(Cu 2+) общ. = 0,01 моль + 0,03 моль = 0,04 моль;

V общ. » Vраствора CuCl 2 + Vраствора Cu(NO 3) 2 = 0,1 л + 0,15 л = 0,25 л;

C(Cu 2+) = n(Cu 2+) : V общ. = 0,04 моль: 0,25 л = 0,16 моль/л;

C(Cl –) = n(Cl –) : V общ. = 0,02 моль: 0,25 л = 0,08 моль/л;

C(NO 3 –) = n(NO 3 –) : V общ. = 0,06 моль: 0,25 л = 0,24 моль/л.


Пример 5.5 В колбу внесли 684 мг сульфата алюминия и 1 мл 9,8% раствора серной кислоты плотностью 1,1 г/мл. Образовавшуюся смесь растворили в воде; объём раствора довели водой до 500 мл. Рассчитать молярные концентрации ионов H + , Al 3+ SO 4 2– в полученном растворе.

Рассчитаем количества растворяемых веществ:

n(Al 2 (SO 4) 3)=m(Al 2 (SO 4) 3) : M(Al 2 (SO 4) 3)=0,684 г: 342 г моль=0,002 моль;

Al 2 (SO 4) 3 – сильный электролит: Al 2 (SO 4) 3 ® 2Al 3+ + 3SO 4 2– ;

Поэтому n(Al 3+)=2×0,002 моль=0,004 моль; n(SO 4 2–)=3×0,002 моль=0,006 моль.

m раствора H 2 SO 4 = V раствора H 2 SO 4 × ρ раствора H 2 SO 4 = 1 мл × 1,1 г/мл = 1,1 г;

m(H 2 SO 4) = m раствора H 2 SO 4 × w(H 2 SO 4) = 1,1 г · 0,098 = 0,1078 г.

n(H 2 SO 4) = m(H 2 SO 4) : M(H 2 SO 4) = 0,1078 г: 98 г/моль = 0,0011 моль;

H 2 SO 4 – сильный электролит: H 2 SO 4 ® 2H + + SO 4 2– .

Поэтому n(SO 4 2–) = n(H 2 SO 4) = 0,0011 моль; n(H +) = 2 × 0,0011 = 0,0022 моль.

По условию задачи объём полученного раствора равен 500 мл (0,5 л).

n(SO 4 2–) общ. = 0,006 моль + 0,0011 моль = 0,0071 моль.

С(Al 3+) = n(Al 3+) : V раствора = 0,004 моль: 0,5 л = 0,008 моль/л;

С(H +) = n(H +) : V раствора = 0,0022 моль: 0,5 л = 0,0044 моль/л;

С(SO 4 2–) = n(SO 4 2–) общ. : V раствора = 0,0071 моль: 0,5 л = 0,0142 моль/л.

Пример 5.6 Какую массу железного купороса (FeSO 4 ·7H 2 O) и какой объём воды необходимо взять для приготовления 3 л 10% раствора сульфата железа (II). Плотность раствора принять равной 1,1 г/мл.

Масса раствора, который необходимо приготовить, равна:

m раствора = V раствора ∙ ρ раствора = 3000 мл ∙ 1,1 г/мл = 3300 г.

Масса чистого сульфата железа (II) в этом растворе равна:

m(FeSO 4) = m раствора × w(FeSO 4) = 3300 г × 0,1 = 330 г.

Такая же масса безводного FeSO 4 должна содержаться в том количестве кристаллогидрата, которое необходимо взять для приготовления раствора. Из сопоставления молярных масс М(FeSO 4 ·7H 2 O) = 278 г/моль и М(FeSO 4) = 152 г/моль,

получаем пропорцию:

в 278 г FeSO 4 ·7H 2 O содержится 152 г FeSO 4 ;

в х г FeSO 4 ·7H 2 O содержится 330 г FeSO 4 ;

x = (278·330) : 152 = 603,6 г.

m воды = m раствора – m железного купороса = 3300 г – 603,6 г = 2696,4 г.

Т.к. плотность воды равна 1 г/мл, то объём воды, который необходимо взять для приготовления раствора равен: V воды = m воды: ρ воды = 2696,4 г: 1 г/мл = 2696,4 мл.

Пример 5.7 Какую массу глауберовой соли (Na 2 SO 4 ·10H 2 O) нужно растворить в 500 мл 10% раствора сульфата натрия (плотность раствора 1,1 г/мл), чтобы получить 15%-ый раствор Na 2 SO 4 ?

Пусть требуется x граммов глауберовой соли Na 2 SO 4 ·10H 2 O. Тогда масса образующегося раствора равна:

m 15% раствора = m исходного (10%) раствора + m глауберовой соли = 550 + x (г);

m исходного (10%) раствора = V 10% раствора × ρ 10% раствора = 500 мл × 1,1 г/мл = 550 г;

m(Na 2 SO 4) в исходном (10%) растворе = m 10% раствор a · w(Na 2 SO 4) = 550 г · 0,1 = 55 г.


Выразим через икс массу чистого Na 2 SO 4 , содержащегося в х граммах Na 2 SO 4 ·10H 2 O.

М(Na 2 SO 4 ·10H 2 O) = 322 г/моль; М(Na 2 SO 4) = 142 г/моль; следовательно:

в 322 г Na 2 SO 4 ·10H 2 O содержится 142 г безводного Na 2 SO 4 ;

в х г Na 2 SO 4 ·10H 2 O содержится m г безводного Na 2 SO 4 .

m(Na 2 SO 4) = 142·x: 322 = 0,441×x .

Общая масса сульфата натрия в полученном растворе будет равна:

m(Na 2 SO 4) в 15% растворе = 55 + 0,441×x (г).

В полученном растворе: = 0,15

, откуда x = 94,5 г.

Задание №6

Таблица 6 – Условия задания № 6

№ варианта Текст условия
В воде растворили 5 г Na 2 SO 4 ×10H 2 O и объём образовавшегося раствора довели водой до 500 мл. Рассчитайте массовую долю Na 2 SO 4 в этом растворе (ρ = 1 г/мл) и молярные концентрации ионов Na + и SO 4 2– .
Смешали растворы: 100 мл 0,05М Cr 2 (SO 4) 3 и 100 мл 0,02М Na 2 SO 4 . Рассчитайте молярные концентрации ионов Cr 3+ , Na + и SO 4 2– в полученном растворе.
Какие объёмы воды и 98%-ного раствора (плотность 1,84 г/мл) серной кислоты нужно взять для приготовления 2 литров 30%-го раствора, плотностью 1,2 г/мл?
В 400 мл воды растворили 50 г Na 2 CO 3 ×10H 2 O. Каковы молярные концентрации ионов Na + и CO 3 2– и массовая доля Na 2 CO 3 в полученном растворе (ρ=1,1 г/мл)?
Смешали растворы: 150 мл 0,05 М Al 2 (SO 4) 3 и 100 мл 0,01 М NiSO 4 . Рассчитайте молярные концентрации ионов Al 3+ , Ni 2+ , SO 4 2- в полученном растворе.
Какие объёмы воды и 60%-го раствора (плотность 1,4 г/мл) азотной кислоты потребуются для приготовления 500 мл 4 М раствора (плотностью 1,1 г/мл)?
Какая масса медного купороса (CuSO 4 ×5H 2 O) необходима для приготовления 500 мл 5% раствора сульфата меди плотностью 1,05 г/мл?
В колбу внесли 1 мл 36%-ного раствора (ρ = 1,2 г/мл) HCl и 10 мл 0,5 М раствора ZnCl 2 . Объём образовавшегося раствора довели водой до 50 мл. Каковы молярные концентрации ионов H + , Zn 2+ , Cl – в полученном растворе?
Какова массовая доля Cr 2 (SO 4) 3 в растворе (ρ » 1 г/мл), если известно, что молярная концентрация сульфат ионов в этом растворе равна 0,06 моль/л?
Какие объёмы воды и 10 М раствора (ρ=1,45 г/мл) гидроксида натрия потребуются для приготовления 2 л 10% раствора NaOH (ρ= 1,1 г/мл)?
Сколько граммов железного купороса FeSO 4 ×7H 2 O можно получить, выпарив воду из 10 л 10%-го раствора сульфата железа (II) (плотность раствора 1,2 г/мл)?
Смешали растворы: 100 мл 0,1 М Cr 2 (SO 4) 3 и 50 мл 0,2 М CuSO 4 . Рассчитать молярные концентрации ионов Cr 3+ , Сu 2+ , SO 4 2- в полученном растворе.

Продолжение таблицы 6

№ варианта Текст условия
Какие объёмы воды и 40%-го раствора фосфорной кислоты с плотностью 1,35 г/мл потребуются для приготовления 1 м 3 5%-го раствора H 3 PO 4 , плотность которого равна 1,05 г/мл?
В воде растворили 16,1 г Na 2 SO 4 ×10H 2 O и объём образовавшегося раствора довели водой до 250 мл. Рассчитайте массовую долю и молярную концентрацию Na 2 SO 4 в образовавшемся растворе (плотность раствора считать равной 1 г/мл).
Смешали растворы: 150 мл 0,05 М Fe 2 (SO 4) 3 и 100 мл 0,1 М MgSO 4 . Рассчитайте молярные концентрации ионов Fe 3+ , Mg 2+ , SO 4 2– в полученном растворе.
Какие объёмы воды и 36% соляной кислоты (плотностью 1,2 г/мл) необходимы для приготовления 500 мл 10%-го раствора, плотность которого 1,05 г/мл?
В 200 мл воды растворили 20 г Al 2 (SO 4) 3 ×18H 2 O. Какова массовая доля растворённого вещества в полученном растворе, плотность которого равна 1,1 г/мл? Рассчитайте молярные концентрации ионов Al 3+ и SO 4 2– в этом растворе.
Смешали растворы: 100 мл 0,05 М Al 2 (SO 4) 3 и 150 мл 0,01 М Fe 2 (SO 4) 3 . Рассчитайте молярные концентрации ионов Fe 3+ , Al 3+ и SO 4 2– в полученном растворе.
Какие объёмы воды и 80% раствора уксусной кислоты (плотностью 1,07 г/мл) потребуются для приготовления 0,5 л столового уксуса, в котором массовая доля кислоты составляет 7%? Плотность столового уксуса принять равной 1 г/мл.
Какая масса железного купороса (FeSO 4 ×7H 2 O) необходима для приготовления 100 мл 3% раствора сульфата железа? Плотность раствора равна 1 г/мл.
В колбу внесли 2 мл 36% раствора HCl (плотность 1,2 г/см 3) и 20 мл 0,3 М раствора CuCl 2 . Объём образовавшегося раствора довели водой до 200 мл. Рассчитайте молярные концентрации ионов H + , Cu 2+ и Cl – в полученном растворе.
Чему равна процентная концентрация Al 2 (SO 4) 3 в растворе, в котором молярная концентрация сульфат-ионов равна 0,6 моль/л. Плотность раствора 1,05 г/мл.
Какие объёмы воды и 10 М раствора KOH (плотность раствора 1,4 г/мл) потребуются для приготовления 500 мл 10% раствора KOH плотностью 1,1 г/мл?
Сколько граммов медного купороса CuSO 4 ×5H 2 O можно получить, выпарив воду из 15 л 8% раствора сульфата меди, плотность которого равна 1,1 г/мл?
Смешали растворы: 200 мл 0,025 М Fe 2 (SO 4) 3 и 50 мл 0,05 М FeCl 3 . Рассчитайте молярные концентрацию ионов Fe 3+ , Cl – , SO 4 2– в полученном растворе.
Какие объёмы воды и 70% раствора H 3 PO 4 (плотностью 1,6 г/мл) потребуются для приготовления 0,25 м 3 10%-го раствора H 3 PO 4 (плотностью 1,1 г/мл)?
В 100 мл воды растворили 6 г Al 2 (SO 4) 3 ×18H 2 O. Рассчитайте массовую долю Al 2 (SO 4) 3 и молярные концентрации ионов Al 3+ и SO 4 2– в полученном растворе, плотность которого равна 1 г/мл.
Смешали растворы: 50 мл 0,1 М Cr 2 (SO 4) 3 и 200 мл 0,02 М Cr(NO 3) 3 . Рассчитайте молярные концентрации ионов Cr 3+ , NO 3 – , SO 4 2- в полученном растворе.
Какие объёмы 50% раствора хлорной кислоты (плотность 1,4 г/мл) и воды необходимы для приготовления 1 литра 8%-го раствора плотностью 1,05 г/мл?
Сколько граммов глауберовой соли Na 2 SO 4 ×10H 2 O нужно растворить в 200 мл воды, чтобы получить 5%-ый раствор сульфата натрия?
В колбу внесли 1 мл 80% раствора H 2 SO 4 (плотность раствора 1,7 г/мл) и 5000 мг Cr 2 (SO 4) 3 . Смесь растворили в воде; объём раствора довели до 250 мл. Рассчитайте молярные концентрации ионов H + , Cr 3+ и SO 4 2– в полученном растворе.

Продолжение таблицы 6

ХИМИЧЕСКОЕ РАВНОВЕСИЕ

Все химические реакции можно разделить на 2 группы: реакции необратимые, т.е. протекающие до полного израсходования хотя бы одного из реагирующих веществ, и реакции обратимые, в которых ни одно из реагирующих веществ не расходуется полностью. Это связано с тем, что обратимая реакция может протекать как в прямом, так и в обратном направлении. Классическим примером обратимой реакции может служить реакция синтеза аммиака из азота и водорода:

N 2 + 3 H 2 ⇆ 2 NH 3 .

В момент начала реакции концентрации исходных веществ в системе максимальны; в этот момент максимальна и скорость прямой реакции. В момент начала реакции в системе ещё отсутствуют продукты реакции (в данном примере – аммиак), следовательно, скорость обратной реакции равна нулю. По мере взаимодействия исходных веществ друг с другом, их концентрации уменьшаются, следовательно, уменьшается и скорость прямой реакции. Концентрация же продукта реакции постепенно возрастает, следовательно, возрастает и скорость обратной реакции. Через некоторое время скорость прямой реакции становится равна скорости обратной. Это состояние системы называется состоянием химического равновесия . Концентрации веществ в системе, находящейся в состоянии химического равновесия, называются равновесными концентрациями . Количественной характеристикой системы в состоянии химического равновесия является константа равновесия .

Для любой обратимой реакции a A + b B+ ... ⇆ p P + q Q + … выражение константы химического равновесия (К) записывается в виде дроби, в числителе которой находятся равновесные концентрации продуктов реакции, а в знаменателе – равновесные концентрации исходных веществ, причём концентрация каждого вещества должна быть возведена в степень, равную стехиометрическому коэффициенту в уравнении реакции.

Например, для реакции N 2 + 3 H 2 ⇆ 2 NH 3 .

Следует иметь в виду, что в выражение константы равновесия входят равновесные концентрации только газообразных веществ или веществ, находящихся в растворённом состоянии . Концентрация твёрдого вещества считается постоянной и не записывается в выражение константы равновесия.


CO 2 (газ) + C (тв.) ⇆ 2CO (газ)

CH 3 COOH (раствор) ⇆ CH 3 COO – (раствор) + H + (раствор)

Ba 3 (PO 4) 2 (тв.) ⇆ 3 Ba 2+ (насыщ. раствор) + 2 PO 4 3– (насыщ. раствор) К=C 3 (Ba 2+)·C 2 (PO 4 3–)

Существует два наиболее важных типа задач, связанных с расчётом параметров равновесной системы:

1) известны начальные концентрации исходных веществ; из условия задачи можно найти концентрации веществ, прореагировавших (или образовавшихся) к моменту наступления равновесия; в задаче требуется рассчитать равновесные концентрации всех веществ и численную величину константы равновесия;

2) известны начальные концентрации исходных веществ и константа равновесия. В условии нет данных о концентрациях прореагировавших или образовавшихся веществ. Требуется рассчитать равновесные концентрации всех участников реакции.

Для решения подобных задач необходимо понимать, что равновесную концентрацию любого исходного вещества можно найти, отняв от начальной концентрации концентрацию прореагировавшего вещества:

С равновесная = С начальная – С прореагировавшего вещества.

Равновесная концентрация продукта реакции равна концентрации продукта, образовавшегося к моменту наступления равновесия:

С равновесная = С образовавшегося продукта.

Таким образом, для расчёта параметров равновесной системы очень важно уметь определить, сколько к моменту наступления равновесия прореагировало исходного вещества и сколько образовалось продукта реакции. Для определения количества (или концентрации) прореагировавшего и образовавшегося веществ проводятся стехиометрические расчёты по уравнению реакции.

Пример 6.1 Начальные концентрации азота и водорода в равновесной системе N 2 + 3H 2 ⇆ 2 NH 3 соответственно равны 3 моль/л и 4 моль/л. К моменту наступления химического равновесия в системе осталось 70% водорода от его первоначального количества. Определить константу равновесия данной реакции.

Из условия задачи следует, что к моменту наступления равновесия прореагировало 30% водорода (задача 1 типа):

4 моль/л H 2 – 100%

х моль/л H 2 – 30%

х = 1,2 моль/л = С прореаг. (H 2)

Как видно из уравнения реакции, азота должно было вступить в реакцию в 3 раза меньше, чем водорода, т.е. С прореаг. (N 2) = 1,2 моль/л: 3 = 0,4 моль/л. Аммиака же образуется в 2 раза больше, чем прореагировало азота:

С образов. (NH 3) = 2 × 0,4 моль/л = 0,8 моль/л


Равновесные концентрации всех участников реакции будут таковы:

С равн. (H 2)= C нач. (H 2) - C прореаг. (H 2) = 4 моль/л – 1,2 моль/л = 2,8 моль/л;

С равн. (N 2)= C нач. (N 2) – C прореаг. (N 2) = 3 моль/л – 0,4моль/л = 2,6 моль/л;

С равн. (NH 3) = С образов. (NH 3) = 0,8 моль/л.

Константа равновесия = .

Пример 6.2 Рассчитать равновесные концентрации водорода, йода и йодоводорода в системе H 2 + I 2 ⇆ 2 HI, если известно, что начальные концентрации H 2 и I 2 равны 5 моль/л и 3 моль/л соответственно, а константа равновесия равна 1.

Следует обратить внимание, что в условии этой задачи (задача 2 типа) в условии ничего не говорится о концентрациях прореагировавших исходных веществ и образовавшихся продуктов. Поэтому при решении таких задач обычно концентрация какого-нибудь прореагировавшего вещества принимается за икс.

Пусть к моменту наступления равновесия прореагировало x моль/л H 2 . Тогда, как следует из уравнения реакции, должно прореагировать x моль/л I 2 , и образоваться 2x моль/л HI. Равновесные концентрации всех участников реакции будут таковы:

С равн. (H 2) = C нач. (H 2) – C прореаг. (H 2) = (5 – x) моль/л;

С равн. (I 2) = C нач. (I 2) – C прореаг. (I 2) = (3 – x) моль/л;

С равн. (HI) = С образов. (HI) = 2x моль/л.

4x 2 = 15 – 8x + x 2

3x 2 + 8x – 15 = 0

x 1 = –3,94 x 2 = 1,27

Физический смысл имеет только положительный корень x = 1,27.

Следовательно, С равн. (H 2) = (5 – x) моль/л = 5 – 1,27 = 3,73 моль/л;

С равн. (I 2) = (3 – x) моль/л = 3 – 1,27 = 1,73 моль/л;

С равн. (HI) = 2x моль/л = 2·1,27 = 2,54 моль/л.

Задание №7

Таблица 7 – Условия задания № 7


Продолжение таблицы 7

При составлении уравнений окислительно-восстановительных реакций необходимо соблюдать два следующих важных правила:

Правило 1: В любом ионном уравнении должно соблюдаться сохранение зарядов. Это означает, что сумма всех зарядов в левой части уравнения («слева») должна совпадать с суммой всех зарядов в правой части уравнения («справа»). Это правило относится к любым ионным уравнениям, как для полных реакций, так и для полуреакций.

Заряды слева справа

Правило 2: Число электронов, теряемых в окислительной полуреакции, должно быть равно числу электронов, приобретаемых в восстановительной полуреакции. Например, в первом примере, приведенном в начале данного раздела (реакция между железом и гидратированными ионами двухвалентной меди), число электронов, теряемых в окислительной полуреакции, равно двум:

Следовательно, число электронов, приобретаемых в восстановительной полуреакции, тоже должно быть равно двум:

Для составления уравнения полной окислительно-восстановительной рекции из уравнений двух полуреакций может использоваться следующая процедура:

1. Уравнения каждой из двух полуреакций балансируются порознь, причем для выполнения указанного выше правила 1 к левой или правой части каждого уравнения добавляется соответствующее число электронов.

2. Уравнения обеих полуреакций балансируются по отношению друг к другу, так чтобы число электронов, теряемых в одной реакции, стало равно числу электронов, приобретаемых в другой полуреакции, как этого требует правило 2.

3. Уравнения обеих полуреакций суммируют для получения полного уравнения окислительно-восстановительной реакции. Например, суммируя уравнения двух приведенных выше полуреакций и удаляя из левой и правой части полученного уравнения

равное число электронов, находим

Сбалансируем уравнения приведенных ниже полуреакций и составим уравнение окислительно-восстановительной реакции окисления водного раствора какой-либо соли двухвалентного железа в соль трехвалентного железа с помощью кислого раствора калия.

Стадия 1. Сбалансируем сначала порознь уравнение каждой из двух полуреакций. Для уравнения (5) имеем

Чтобы сбалансировать обе стороны этого уравнения, необходимо добавить к его левой части пять электронов, либо вычесть столько же электронов из правой части. После этого получим

Это позволяет записать следующее сбалансированное уравнение:

Поскольку к левой части уравнения пришлось добавлять электроны, оно описывает восстановительную полуреакцию.

Для уравнения (6) можно записать

Чтобы сбалансировать это уравнение, можно добавить один электрон к его правой части. Тогда

Loading...Loading...