Электрический ток в газах сообщение. Электрический ток в газах: определение, особенности и интересные факты

В газах существуют несамостоятельные и самостояг тельные электрические разряды.

Явление протекания электрического тока через газ, наблюдаемое только при условии какого-либо внешнего воздействия на газ, называется несамостоятельным электрическим разрядом. Процесс отрыва электрона от атома называется ионизацией атома. Минимальная энергия, которую необходимо затратить для отрыва электрона от атома, называется энергией ионизации. Частично или полностью ионизированный газ, в котором плотности положительных и отрицательных зарядов одинаковы, называется плазмой .

Носителями электрического тока при несамостоятельном разряде являются положительные ионы и отрицательные электроны. Вольт-амперная характеристика представлена на рис. 54. В области ОАВ - несамостоятельный разряд. В области ВС разряд становится самостоятельным.

При самостоятельном разряде одним из способов ионизации атомов является ионизация электронным ударом. Ионизация электронным ударом становится возможна тогда, когда электрон на длине свободного пробега А приобретает кинетическую энергию W k , достаточную для совершения работы по отрыву электрона от атома. Виды самостоятельных разрядов в газах - искровой, коронный, дуговой и тлеющий разряды.

Искровой разряд возникает между двумя электродами заряженными разными зарядами и имеющие большую разность потенциалов. Напряжение между разноименно заряженными телами достигает до 40 000 В. Искровой разряд кратковременный, его механизм - электронный удар. Молния - вид искрового разряда.

В сильно неоднородных электрических полях, образующихся, например, между острием и плоскостью или между проводом линии электропередачи и поверхностью Земли, возникает особая форма самостоятельного разряда в газах, называемая коронным разрядом .

Электрический дуговой разряд был открыт русским ученым В. В. Петровым в 1802 г. При соприкосновении двух электродов из углей при напряжении 40-50 В в некоторых местах возникают участки малого сечения с большим электрическим сопротивлением. Эти участки сильно разогреваются, испускают электроны, которые ионизируют атомы и молекулы между электродами. Носителями электрического тока в дуге являются положительно заряженные ионы и электроны.

Разряд, возникающий при пониженном давлении, называется тлеющим разрядом . При понижении давления увеличивается длина свободного пробега электрона, и за время между столкновениями он успевает приобрести достаточную для ионизации энергию в электрическом поле с меньшей напряженностью. Разряд осуществляется электронно-ионной лавиной.

1. Ионизация, ее сущность и виды.

Первым условием существования электрического тока является наличие свободных носителей заряда. В газах они возникают в результате ионизации. Под действием факторов ионизации от нейтральной частицы отделяется электрон. Атом становится положительным ионом. Таким образом, возникает 2 типа носителей заряда: положительный ион и свободный электрон. Если электрон присоединится к нейтральному атому, то возникает отрицательный ион, т.е. третий тип носителей заряда. Ионизированный газ называют проводником третьего рода. Здесь возможно 2 типа проводимости: электронная и ионная. Одновременно с процессами ионизации идет обратный процесс- рекомбинация. Для отделения электрона от атома надо затратить энергию. Если энергия поводится извне, то факторы способствующие ионизации, называются внешними (высокая температура, ионизирующее излучение, у/ф излучение, сильные магнитные поля). В зависимости от факторов ионизации, ее называют термоионизацией, фотоионизацией. Также ионизация может быть вызвана механическим ударом. Факторы ионизации делятся на естественные и искусственные. Естественная вызвана излучением Солнца, радиоактивным фоном Земли. Кроме внешней ионизацией есть внутренняя. Ее делят на ударную и ступенчатую.

Ударная ионизация.

При достаточно высоком напряжении, электроны разогнанные полем до больших скоростей, сами становятся источником ионизации. При ударе такого электрона о нейтральный атом происходит выбивание электрона из атома. Это происходит, когда энергия электрона, вызывающего ионизацию, превышает энергию ионизации атома. Напряжение между электродами должно быть достаточным для приобретения электроном нужной энергии. Это напряжение называется ионизационным. Для каждого имеет свое значение.

Если энергия движущегося электрона меньше, чем это необходимо, то при ударе происходит лишь возбуждение нейтрального атома. Если движущийся электрон сталкивается с предварительно возбужденным атомом, то происходит ступенчатая ионизация.

2. Несамостоятельный газовый разряд и его вольт-амперная характеристика.

Ионизация приводит к выполнению первого условия существования тока, т.е. к появлению свободных зарядов. Для возникновения тока необходимо наличие внешней силы, которая заставит заряды двигаться направленно, т.е. необходимо электрическое поле. Электрический ток в газах сопровождаются рядом явлений: световых, звуковых, образование озона, окислов азота. Совокупность явлений сопровождающих прохождением тока через газ- газовый разряд . Часто газовым разрядом называют сам процесс прохождения тока.

Разряд называется несамостоятельным, если он существует только во время действия внешнего ионизатора. В этом случае после прекращения действия внешнего ионизатора не образуются новые носители заряда, и ток прекращается. При несамостоятельном разряде токи имеют по величине небольшое значение, а свечение газа отсутствует.

Самостоятельный газовый разряд, его виды и характеристика.

Самостоятельный газовый разряд - это разряд, который может существовать после прекращения действия внешнего ионизатора, т.е. за счет ударной ионизации. В этом случае наблюдается световые и звуковые явления, сила тока может значительно увеличиваться.

Виды самостоятельного разряда:

1. тихий разряд -следует непосредственно за несамостоятельным, сила тока не превышает 1 мА, звуковых и световых явлений нет. Применяется в физиотерапии, счетчиках Гейгера - Мюллера.

2. тлеющий разряд . При увеличении напряжения тихий переходит в тлеющий. Он возникает при определенном напряжении - напряжении зажигания. Оно зависит от вида газа. У неона 60-80 В. Также зависит от давления газа. Тлеющий разряд сопровождается свечением, оно связано с рекомбинацией, идущей с выделением энергии. Цвет также зависит от вида газа. Применяется в индикаторных лампах (неоновых, у/ф бактерицидных, осветительных, люминесцентных).

3. дуговой разряд. Сила тока 10 - 100 А. Сопровождается интенсивным свечением, температура в газоразрядном промежутке достигает нескольких тысяч градусов. Ионизация достигает почти 100%. 100% ионизированный газ - холодная газовая плазма. У нее хорошая проводимость. Применяется в ртутных лампах высокого и сверхвысокого давления.

4. Искровой разряд - это разновидность дугового. Это разряд импульсно - колебательного характера. В медицине применяется воздействие высокочастотных колебаний.При большой плотности тока наблюдаются интенсивные звуковые явления.

5. коронный разряд . Это разновидность тлеющего разряда Он наблюдается в местах где происходит резкое изменение напряженности электрического поля. Здесь возникает лавина зарядов и свечение газов - корона.

Реферат по физике

на тему:

«Электрический ток в газах».

Электрический ток в газах.

1. Электрический разряд в газах.

Все газы в естественном состоянии не проводят электрического тока. В чем можно убедиться из следующего опыта:

Возьмем электрометр с присоединенными к нему дисками плоского конденсатора и зарядим его. При комнатной температуре, если воздух достаточно сухой, конденсатор заметно не разряжается – положение стрелки электрометра не изменяется. Чтобы заметить уменьшение угла отклонения стрелки электрометра, требуется длительное время. Это показывает, что электрический ток в воздухе между дисками очень мал. Данный опыт показывает, что воздух является плохим проводником электрического тока.

Видоизменим опыт: нагреем воздух между дисками пламенем спиртовки. Тогда угол отклонения стрелки электрометра быстро уменьшается, т.е. уменьшается разность потенциалов между дисками конденсатора – конденсатор разряжается. Следовательно, нагретый воздух между дисками стал проводником, и в нем устанавливается электрический ток.

Изолирующие свойства газов объясняются тем, что в них нет свободных электрических зарядов: атомы и молекулы газов в естественном состоянии являются нейтральными.

2. Ионизация газов.

Вышеописанный опыт показывает, что в газах под влиянием высокой температуры появляются заряженные частицы. Они возникают вследствие отщепления от атомов газа одного или нескольких электронов, в результате чего вместо нейтрального атома возникают положительный ион и электроны. Часть образовавшихся электронов может быть при этом захвачена другими нейтральными атомами, и тогда появятся еще отрицательные ионы. Распад молекул газа на электроны и положительные ионы называется ионизацией газов.

Нагревание газа до высокой температуры не является единственным способом ионизации молекул или атомов газа. Ионизация газа может происходить под влиянием различных внешних взаимодействий: сильного нагрева газа, рентгеновских лучей, a-, b- и g-лучей, возникающих при радиоактивном распаде, космических лучей, бомбардировки молекул газа быстро движущимися электронами или ионами. Факторы, вызывающие ионизацию газа называются ионизаторами. Количественной характеристикой процесса ионизации служит интенсивность ионизации, измеряемая числом пар противоположных по знаку заряженных частиц, возникающих в единице объема газа за единицу времени.

Ионизация атома требует затраты определенной энергии – энергии ионизации. Для ионизации атома (или молекулы) необходимо совершить работу против сил взаимодействия между вырываемым электроном и остальными частицами атома (или молекулы). Эта работа называется работой ионизации A i . Величина работы ионизации зависит от химической природы газа и энергетического состояния вырываемого электрона в атоме или молекуле.

После прекращения действия ионизатора количество ионов в газе с течением времени уменьшается и в конце концов ионы исчезают вовсе. Исчезновение ионов объясняется тем, что ионы и электроны участвуют в тепловом движении и поэтому соударяются друг с другом. При столкновении положительного иона и электрона они могут воссоединиться в нейтральный атом. Точно также при столкновении положительного и отрицательного ионов отрицательный ион может отдать свой избыточный электрон положительному иону и оба иона превратятся в нейтральные атомы. Этот процесс взаимной нейтрализации ионов называется рекомбинацией ионов. При рекомбинации положительного иона и электрона или двух ионов освобождается определенная энергия, равная энергии, затраченной на ионизацию. Частично она излучается в виде света, и поэтому рекомбинация ионов сопровождается свечением (свечение рекомбинации).

В явлениях электрического разряда в газах большую роль играет ионизация атомов электронными ударами. Этот процесс заключается в том, что движущийся электрон, обладающий достаточной кинетической энергией, при соударении с нейтральным атомом выбивает из него один или несколько атомных электронов, в результате чего нейтральный атом превращается в положительный ион, а в газе появляются новые электроны (об этом будет рассмотрено позднее).

В таблице ниже даны значения энергии ионизации некоторых атомов.

3. Механизм электропроводности газов.

Механизм проводимости газов похож на механизм проводимости растворов и расплавов электролитов. При отсутствии внешнего поля заряженные частицы, как и нейтральные молекулы движутся хаотически. Если ионы и свободные электроны оказываются во внешнем электрическом поле, то они приходят в направленное движение и создают электрический ток в газах.

Таким образом, электрический ток в газе представляет собой направленное движение положительных ионов к катоду, а отрицательных ионов и электронов к аноду . Полный ток в газе складывается из двух потоков заряженных частиц: потока, идущего к аноду, и потока, направленного к катоду.

На электродах происходит нейтрализация заряженных частиц, как и при прохождении электрического тока через растворы и расплавы электролитов. Однако в газах отсутствует выделение веществ на электродах, как это имеет место в растворах электролитов. Газовые ионы, подойдя к электродам, отдают им свои заряды, превращаются в нейтральные молекулы и диффундируют обратно в газ.

Еще одно различие в электропроводности ионизованных газов и растворов (расплавов) электролитов состоит в том, что отрицательный заряд при прохождении тока через газы переносится в основном не отрицательными ионами, а электронами, хотя проводимость за счет отрицательных ионов также может играть определенную роль.

Таким образом в газах сочетается электронная проводимость, подобная проводимости металлов, с ионной проводимостью, подобной проводимости водных растворов и расплавов электролитов.

4. Несамостоятельный газовый разряд.

Процесс прохождения электрического тока через газ называется газовым разрядом. Если электропроводность газа создается внешними ионизаторами, то электрический ток, возникающий в нем, называется несамостоятельным газовым разрядом. С прекращением действия внешних ионизаторов несамостоятельный разряд прекращается. Несамостоятельный газовый разряд не сопровождается свечением газа.

Ниже изображен график зависимости силы тока от напряжения при несамостоятельном разряде в газе. Для построения графика использовалась стеклянная трубка с двумя впаянными в стекло металлическими электродами. Цепь собрана как показано на рисунке ниже.


При некотором определенном напряжении наступает такой момент, при котором все заряженные частицы, образующиеся в газе ионизатором за секунду, достигают за это же время электродов. Дальнейшее увеличение напряжения уже не может привести к увеличению числа переносимых ионов. Ток достигает насыщения (горизонтальный участок графика 1).

5. Самостоятельный газовый разряд.

Электрический разряд в газе, сохраняющийся после прекращения действия внешнего ионизатора, называется самостоятельным газовым разрядом . Для его осуществления необходимо, чтобы в результате самого разряда в газе непрерывно образовывались свободные заряды. Основным источником их возникновения является ударная ионизация молекул газа.

Если после достижения насыщения продолжать увеличивать разность потенциалов между электродами, то сила тока при достаточно большом напряжении станет резко возрастать (график 2).

Это означает, что в газе появляются дополнительные ионы, которые образуются за счет действия ионизатора. Сила тока может возрасти в сотни и тысячи раз, а число заряженных частиц, возникающих в процессе разряда, может стать таким большим, что внешний ионизатор будет уже не нужен для поддержания разряда. Поэтому ионизатор теперь можно убрать.

Каковы же причины резкого увеличения силы тока при больших напряжениях? Рассмотрим какую либо пару заряженных частиц (положительный ион и электрон), образовавшуюся благодаря действию внешнего ионизатора. Появившийся таким образом свободный электрон начинает двигаться к положительному электроду – аноду, а положительный ион – к катоду. На своем пути электрон встречает ионы и нейтральные атомы. В промежутках между двумя последовательными столкновениями энергия электрона увеличивается за счет работы сил электрического поля.


Чем больше разность потенциалов между электродами, тем больше напряженность электрического поля. Кинетическая энергия электрона перед очередным столкновением пропорциональна напряженности поля и длине свободного пробега электрона: MV 2 /2=eEl. Если кинетическая энергия электрона превосходит работу A i , которую нужно совершить, чтобы ионизировать нейтральный атом (или молекулу), т.е. MV 2 >A i , то при столкновении электрона с атомом (или молекулой) происходит его ионизация. В результате вместо одного электрона возникают два (налетающий на атом и вырванный из атома). Они, в свою очередь, получают энергию в поле и ионизуют встречные атомы и т.д.. Вследствие этого число заряженных частиц быстро нарастает, возникает электронная лавина. Описанный процесс называют ионизацией электронным ударом.

Но одна ионизация электронным ударом не может обеспечить поддержания самостоятельного заряда. Действительно, ведь все возникающие таким образом электроны движутся по направлению к аноду и по достижении анода «выбывают из игры». Для поддержания разряда необходима эмиссия электронов с катода («эмиссия» означает «испускание»). Эмиссия электрона может быть обусловлена несколькими причинами.

Положительные ионы, образовавшиеся при столкновении электронов с нейтральными атомами, при своем движении к катоду приобретают под действием поля большую кинетическую энергию. При ударах таких быстрых ионов о катод с поверхности катода выбиваются электроны.

Кроме того, катод может испускать электроны при нагревании до большой температуры. Этот процесс называется термоэлектронной эмиссией. Его можно рассматривать как испарение электронов из металла. Во многих твердых веществах термоэлектронная эмиссия происходит при температурах, при которых испарение самого вещества еще мало. Такие вещества и используются для изготовления катодов.

При самостоятельном разряде нагрев катода может происходить за счет бомбардировки его положительными ионами. Если энергия ионов не слишком велика, то выбивания электронов с катода не происходит и электроны испускаются вследствие термоэлектронной эмиссии.

6. Различные типы самостоятельного разряда и их техническое применение.

В зависимости от свойств и состояния газа, характера и расположения электродов, а также от приложенного к электродам напряжения возникают различные виды самостоятельного разряда. Рассмотрим несколько из них.

A. Тлеющий разряд.

Тлеющий разряд наблюдается в газах при низких давлениях порядка нескольких десятков миллиметров ртутного столба и меньше. Если рассмотреть трубку с тлеющим разрядом, то можно увидеть, что основными частями тлеющего разряда являются катодное темное пространство, резко отдаленное от него отрицательное, или тлеющее свечение, которое постепенно переходит в область фарадеева темного пространства. Эти три области образуют катодную часть разряда, за которой следует основная светящаяся часть разряда, определяющая его оптические свойства и называемая положительным столбом.

Основную роль в поддержании тлеющего разряда играют первые две области его катодной части. Характерной особенностью этого типа разряда является резкое падение потенциала вблизи катода, которое связано с большой концентрацией положительных ионов на границе I и II областей, обусловленной сравнительно малой скоростью движения ионов у катоду. В катодном темном пространстве происходит сильное ускорение электронов и положительных ионов, выбивающих электроны из катода. В области тлеющего свечения электроны производят интенсивную ударную ионизацию молекул газа и теряют свою энергию. Здесь образуются положительные ионы, необходимые для поддержания разряда. Напряженность электрического поля в этой области мала. Тлеющее свечение в основном вызывается рекомбинацией ионов и электронов. Протяженность катодного темного пространства определяется свойствами газа и материала катода.

В области положительного столба концентрация электронов и ионов приблизительно одинакова и очень велика, что обуславливает большую электропроводность положительного столба и незначительное падение в нем потенциала. Свечение положительного столба определяется свечением возбужденных молекул газа. Вблизи анода вновь наблюдается сравнительно резкое изменение потенциала, связанное с процессом генерации положительных ионов. В ряде случаев положительный столб распадается на отдельные светящиеся участки – страты, разделенные темными промежутками.

Положительный столб не играет существенной роли в поддержании тлеющего разряда, поэтому при уменьшении расстояния между электродами трубки длина положительного столба сокращается и он может исчезнуть совсем. Иначе обстоит дело с длиной катодного темного пространства, которая при сближении электродов не изменяется. Если электроды сблизились настолько, что расстояние между ними станет меньше длины катодного темного пространства, то тлеющий разряд в газе прекратится. Опыты показывают, что при прочих равных условиях длина d катодного темного пространства обратно пропорциональна давлению газа. Следовательно, при достаточно низких давлениях электроны, выбиваемые из катода положительными ионами, проходят через газ почти без столкновений с его молекулами, образуя электронные , или катодные лучи .

Тлеющий разряд используется в газосветных трубках, лампах дневного света, стабилизаторах напряжения, для получения электронных и ионных пучков. Если в катоде сделать щель, то сквозь нее в пространство за катодом проходят узкие ионные пучки, часто называемые каналовыми лучами. Широко используется явление катодного распыления , т.е. разрушение поверхности катода под действием ударяющихся о него положительных ионов. Ультрамикроскопические осколки материала катода летят во все стороны по прямым линиям и покрывают тонким слоем поверхность тел (особенно диэлектриков), помещенных в трубку. Таким способом изготовляют зеркала для ряда приборов, наносят тонкий слой металла на селеновые фотоэлементы.

B. Коронный разряд.

Коронный разряд возникает при нормальном давлении в газе, находящемся в сильно неоднородном электрическом поле (например, около остриев или проводов линий высокого напряжения). При коронном разряде ионизация газа и его свечение происходят лишь вблизи коронирующих электродов. В случае коронирования катода (отрицательная корона) электроны, вызывающие ударную ионизацию молекул газа, выбиваются из катода при бомбардировке его положительными ионами. Если коронируют анод (положительная корона), то рождение электронов происходит вследствие фотоионизации газа вблизи анода. Корона – вредное явление, сопровождающееся утечкой тока и потерей электрической энергии. Для уменьшения коронирования увеличивают радиус кривизны проводников, а их поверхность делают возможно более гладкой. При достаточно высоком напряжении между электродами коронный разряд переходит в искровой.

При повышенном напряжении коронный разряд на острие приобретает вид исходящих из острия и перемежающихся во времени светлых линий. Эти линии, имеющие ряд изломов и изгибов, образуют подобие кисти, вследствие чего такой разряд называют кистевым .

Заряженное грозовое облако индуцирует на поверхности Земли под собой электрические заряды противоположного знака. Особенно большой заряд скапливается на остриях. Поэтому перед грозой или во время грозы нередко на остриях и острых углах высоко поднятых предметов вспыхивают похожие на кисточки конусы света. С давних времен это свечение называют огнями святого Эльма.

Особенно часто свидетелями этого явления становятся альпинисты. Иногда лаже не только металлические предметы, но и кончики волос на голове украшаются маленькими светящимися кисточками.

С коронным разрядом приходится считаться, имея дело с высоким напряжением. При наличии выступающих частей или очень тонких проводов может начаться коронный разряд. Это приводит к утечке электроэнергии. Чем выше напряжение высоковольтной линии, тем толще должны быть провода.

C. Искровой разряд.

Искровой разряд имеет вид ярких зигзагообразных разветвляющихся нитей-каналов, которые пронизывают разрядный промежуток и исчезают, сменяясь новыми. Исследования показали, что каналы искрового разряда начинают расти иногда от положительного электрода, иногда от отрицательного, а иногда и от какой-нибудь точки между электродами. Это объясняется тем, что ионизация ударом в случае искрового разряда происходит не по всему объему газа, а по отдельным каналам, проходящим в тех местах, в которых концентрация ионов случайно оказалась наибольшей. Искровой разряд сопровождается выделением большого количества теплоты, ярким свечением газа, треском или громом. Все эти явления вызываются электронными и ионными лавинами, которые возникают в искровых каналах и приводят к огромному увеличению давления, достигающему 10 7 ¸10 8 Па, и повышению температуры до 10000 °С.

Характерным примером искрового разряда является молния. Главный канал молнии имеет диаметр от 10 до 25 см., а длина молнии может достигать нескольких километров. Максимальная сила тока импульса молнии достигает десятков и сотен тысяч ампер.

При малой длине разрядного промежутка искровой разряд вызывает специфическое разрушение анода, называемое эрозией . Это явление было использовано в электроискровом методе резки, сверления и других видах точной обработки металла.

Искровой промежуток применяется в качестве предохранителя от перенапряжения в электрических линиях передач (например, в телефонных линиях). Если вблизи линии проходит сильный кратковременный ток, то в проводах этой линии индуцируются напряжении и токи, которые могут разрушить электрическую установку и опасны для жизни людей. Во избежание этого используются специальные предохранители, состоящие из двух изогнутых электродов, один из которых присоединен к линии, а другой заземлен. Если потенциал линии относительно земли сильно возрастает, то между электродами возникает искровой разряд, который вместе с нагретым им воздухом поднимается вверх, удлиняется и обрывается.

Наконец, электрическая искра применяется для измерения больших разностей потенциалов с помощью шарового разрядника , электродами которого служат два металлических шара с полированной поверхностью. Шары раздвигают, и на них подается измеряемая разность потенциалов. Затем шары сближают до тех пор, пока между ними не проскочит искра. Зная диаметр шаров, расстояние между ними, давление, температуру и влажность воздуха, находят разность потенциалов между шарами по специальным таблицам. Этим методом можно измерять с точностью до нескольких процентов разности потенциалов порядка десятков тысяч вольт.

D. Дуговой разряд.

Дуговой разряд был открыт В. В. Петровым в 1802 году. Этот разряд представляет собой одну из форм газового разряда, осуществляющуюся при большой плотности тока и сравнительно небольшом напряжении между электродами (порядка нескольких десятков вольт). Основной причиной дугового разряда является интенсивное испускание термоэлектронов раскаленным катодом. Эти электроны ускоряются электрическим полем и производят ударную ионизацию молекул газа, благодаря чему электрическое сопротивление газового промежутка между электродами сравнительно мало. Если уменьшить сопротивление внешней цепи, увеличить силу тока дугового разряда, то проводимость газового промежутка столь сильно возрастет, что напряжение между электродами уменьшается. Поэтому говорят, что дуговой разряд имеет падающую вольт-амперную характеристику. При атмосферном давлении температура катода достигает 3000 °C. Электроны, бомбардируя анод, создают в нем углубление (кратер) и нагревают его. Температура кратера около 4000 °С, а при больших давлениях воздуха достигает 6000-7000 °С. Температура газа в канале дугового разряда достигает 5000-6000 °С, поэтому в нем происходит интенсивная термоионизация.

В ряде случаев дуговой разряд наблюдается и при сравнительно низкой температуре катода (например, в ртутной дуговой лампе).

В 1876 году П. Н. Яблочков впервые использовал электрическую дугу как источник света. В «свече Яблочкова» угли были расположены параллельно и разделены изогнутой прослойкой, а их концы соединены проводящим «запальным мостиком». Когда ток включался, запальный мостик сгорал и между углями образовывалась электрическая дуга. По мере сгорания углей изолирующая прослойка испарялась.

Дуговой разряд применяется как источник света и в наши дни, например в прожекторах и проекционных аппаратах.

Высокая температура дугового разряда позволяет использовать его для устройства дуговой печи. В настоящее время дуговые печи, питаемые током очень большой силы, применяются в ряде областей промышленности: для выплавки стали, чугуна, ферросплавов, бронзы, получения карбида кальция, окиси азота и т.д.

В 1882 году Н. Н. Бенардосом дуговой разряд впервые был использован для резки и сварки металла. Разряд между неподвижным угольным электродом и металлом нагревает место соединения двух металлических листов (или пластин) и сваривает их. Этот же метод Бенардос применил для резания металлических пластин и получения в них отверстий. В 1888 году Н. Г. Славянов усовершенствовал этот метод сварки, заменив угольный электрод металлическим.

Дуговой разряд нашел применение в ртутном выпрямителе, преобразующем переменный электрический ток в ток постоянного направления.

E. Плазма.

Плазма – это частично или полностью ионизованный газ, в котором плотности положительных и отрицательных зарядов практически одинаковы. Таким образом, плазма в целом является электрически нейтральной системой.

Количественной характеристикой плазмы является степень ионизации. Степенью ионизации плазмы a называют отношение объемной концентрации заряженных частиц к общей объемной концентрации частиц. В зависимости от степени ионизации плазма подразделяется на слабо ионизованную (a составляет доли процентов), частично ионизованную (a порядка нескольких процентов) и полностью ионизованную (a близка к 100%). Слабо ионизованной плазмой в природных условиях являются верхние слои атмосферы – ионосфера. Солнце, горячие звезды и некоторые межзвездные облака – это полностью ионизованная плазма, которая образуется при высокой температуре.

Средние энергии различных типов частиц, составляющих плазму, могут значительно отличаться одна от другой. Поэтому плазму нельзя охарактеризовать одним значением температуры Т; различают электронную температуру Т е, ионную температуру Т i (или ионные температуры, если в плазме имеются ионы нескольких сортов) и температуру нейтральных атомов Т a (нейтральной компоненты). Подобная плазма называется неизотермической, в отличие от изотермической плазмы, в которой температуры всех компонентов одинаковы.

Плазма также разделяется на высокотемпературную (Т i »10 6 -10 8 К и более) и низкотемпературную!!! (Т i <=10 5 К). Это условное разделение связано с особой влажностью высокотемпературной плазмы в связи с проблемой осуществления управляемого термоядерного синтеза.

Плазма обладает рядом специфических свойств, что позволяет рассматривать ее как особое четвертое состояние вещества.

Из-за большой подвижности заряженный частицы плазмы легко перемещаются под действием электрических и магнитных полей. Поэтому любое нарушение электрической нейтральности отдельных областей плазмы, вызванное скоплением частиц одного знака заряда, быстро ликвидируется. Возникающие электрические поля перемещают заряженные частицы до тех пор, пока электрическая нейтральность не восстановится и электрическое поле не станет равным нулю. В отличие от нейтрального газа, между молекулами которого существуют короткодействующие силы, между заряженными частицами плазмы действуют кулоновские силы, сравнительно медленные убывающие с расстоянием. Каждая частица взаимодействует сразу с большим количеством окружающих частиц. Благодаря этому наряду с хаотическим тепловым движением частицы плазмы могут участвовать в разнообразных упорядоченных движениях. В плазме легко возбуждаются разного рода колебания и волны.

Проводимость плазмы увеличивается по мере роста степени ионизации. При высокой температуре полностью ионизованная плазма по своей проводимости приближается к сверхпроводникам.

Низкотемпературная плазма применяется в газоразрядных источниках света – в светящихся трубках рекламных надписей, в лампах дневного света. Газоразрядную лампу используют во многих приборах, например, в газовых лазерах – квантовых источниках света.

Высокотемпературная плазма применяется в магнитогидродинамических генераторах.

Недавно был создан новый прибор – плазмотрон. В плазмотроне создаются мощные струи плотной низкотемпературной плазмы, широко применяемые в различных областях техники: для резки и сварки металлов, бурения скважин в твердых породах и т.д.

Список использованной литературы:

1) Физика: Электродинамика. 10-11 кл.: учеб. для углубленного изучения физики/Г. Я. Мякишев, А. З. Синяков, Б. А. Слободсков. – 2-е издание – М.: Дрофа, 1998. – 480 с.

2) Курс физики (в трех томах). Т. II. Электричество и магнетизм. Учеб. пособие для втузов./Детлаф А.А., Яворский Б. М., Милковская Л. Б. Изд. 4-е, перераб. – М.: Высшая школа, 1977. – 375 с.

3) Электричество./Э. Г. Калашников. Изд. «Наука», Москва, 1977.

4) Физика./Б. Б. Буховцев, Ю. Л. Климонтович, Г. Я. Мякишев. Издание 3-е, перераб. – М.: Просвещение, 1986.

Образуется направленным движением свободных электронов и что при этом никаких изменений вещества, из которого проводник сделан, не происходит.

Такие проводники, в которых прохождение электрического тока не сопровождается химическими изменениями их вещества, называются проводниками первого рода . К ним относятся все металлы, уголь и ряд других веществ.

Но есть в природе и такие проводники электрического тока, в которых во время прохождения тока происходят химические явления. Эти проводники называются проводниками второго рода . К ним относятся главным образом различные растворы в воде кислот, солей и щелочей.

Если в стеклянный сосуд налить воды и прибавить в нее несколько капель серной кислоты (или какой-либо другой кислоты или щелочи), а затем взять две металлические пластины и присоединить к ним проводники опустив эти пластины в сосуд, а к другим концам проводников подключить источник тока через выключатель и амперметр, то произойдет выделение газа из раствора, причем оно будет продолжаться непрерывно, пока замкнута цепь т.к. подкисленная вода действительно является проводником. Кроме того, пластины начнут покрываться пузырьками газа. Затем эти пузырьки будут отрываться от пластин и выходить наружу.

При прохождении по раствору электрического тока происходят химические изменения, в результате которых выделяется газ.

Проводники второго рода называются электролитами , а явление, происходящее в электролите при прохождении через него электрического тока, - .

Металлические пластины, опущенные в электролит, называются электродами; одна из них, соединенная с положительным полюсом источника тока, называется анодом , а другая, соединенная с отрицательным полюсом,- катодом .

Чем же обусловливается прохождение электрического тока в жидком проводнике? Оказывается, в таких растворах (электролитах) молекулы кислоты (щелочи, соли) под действием растворителя (в данном случае воды) распадаются на две составные части, причем одна частица молекулы имеет положительный электрический заряд, а другая отрицательный.

Частицы молекулы, обладающие электрическим зарядом, называются ионами . При растворении в воде кислоты, соли или щелочи в растворе возникает большое количество как положительных, так и отрицательных ионов.

Теперь должно стать понятным, почему через раствор прошел электрический ток, ведь между электродами, соединенными с источником тока, создана , иначе говоря, один из них оказался заряженным положительно, а другой отрицательно. Под действием этой разности потенциалов положительные ионы начали перемешаться по направлению к отрицательному электроду - катоду, а отрицательные ионы - к аноду.

Таким образом, хаотическое движение ионов стало упорядоченным встречным движением отрицательных ионов в одну сторону и положительных в другую. Этот процесс переноса зарядов и составляет течение электрического тока через электролит и происходит до тех пор, пока имеется разность потенциалов на электродах. С исчезновением разности потенциалов прекращается ток через электролит, нарушается упорядоченное движение ионов, и вновь наступает хаотическое движение.

В качестве примера рассмотрим явление электролиза при пропускании электрического тока через раствор медного купороса CuSO4 с опущенными в него медными электродами.

Явление электролиза при прохождении тока через раствор медного купороса: С - сосуд с электролитом, Б - источник тока, В - выключатель

Здесь также будет встречное движение ионов к электродам. Положительным ионом будет ион меди (Си), а отрицательным - ион кислотного остатка (SO4). Ионы меди при соприкосновении с катодом будут разряжаться (присоединяя к себе недостающие электроны), т. е. превращаться в нейтральные молекулы чистой меди, и в виде тончайшего (молекулярного) слоя отлагаться на катоде.

Отрицательные ионы, достигнув анода, также разряжаются (отдают излишние электроны). Но при этом они вступают в химическую реакцию с медью анода, в результате чего к кислотному остатку SO4 присоединяется молекула меди Сu и образуется молекула медного купороса СuS О4 , возвращаемая обратно электролиту.

Так как этот химический процесс протекает длительное время, то на катоде отлагается медь, выделяющаяся из электролита. При этом электролит вместо ушедших на катод молекул меди получает новые молекулы меди за счет растворения второго электрода - анода.

Тот же самый процесс происходит, если вместо медных взяты цинковые электроды, а электролитом служит раствор цинкового купороса Zn SO4. Цинк также будет переноситься с анода на катод.

Таким образом, разница между электрическим током в металлах и жидких проводниках заключается в том, что в металлах переносчиками зарядов являются только свободные электроны, т. е. отрицательные заряды, тогда как в электролитах переносится разноименно заряженными частицами вещества - ионами, двигающимися в противоположных направлениях. Поэтому говорят, что электролиты обладают ионном проводимостью.

Явление электролиза было открыто в 1837 г. Б. С. Якоби, который производил многочисленные опыты по исследованию и усовершенствованию химических источников тока. Якоби установил, что один из электродов, помещенных в раствор медного купороса, при прохождении через него электрического тока покрывается медью.

Это явление, названное гальванопластикой , находит сейчас чрезвычайно большое практическое применение. Одним из примеров тому может служить покрытие металлических предметов тонким слоем других металлов, т. е. никелирование, золочение, серебрение и т. д.

Газы (в том числе и воздух) в обычных условиях не проводят электрический ток. Например, голые , будучи подвешены параллельно друг другу, оказываются изолированными один от другого слоем воздуха.

Однако под воздействием высокой температуры, большой разности потенциалов и других причин газы, подобно жидким проводникам, ионизируются , т. е. в них появляются в большом количестве частицы молекул газа, которые, являясь переносчиками электричества, способствуют прохождению через газ электрического тока.

Но вместе с тем ионизация газа отличается от ионизации жидкого проводника. Если в жидкости происходит распад молекулы на две заряженные части, то в газах под действием ионизации от каждой молекулы всегда отделяются электроны и остается ион в виде положительно заряженной части молекулы.

Стоит только прекратить ионизацию газа, как он перестанет быть проводящим, тогда как жидкость всегда остается проводником электрического тока. Следовательно, проводимость газа - явление временное, зависящее от действия внешних причин.

Однако есть и другой , называемый дуговым разрядом или просто электрической дугой. Явление электрической дуги было открыто в начале 19-го столетия первым русским электротехником В. В. Петровым.

В. В. Петров, проделывая многочисленные опыты, обнаружил, что между двумя древесными углями, соединенными с источником тока, возникает непрерывный электрический разряд через воздух, сопровождаемый ярким светом. В своих трудах В. В. Петров писал, что при этом "темный покой достаточно ярко освещен быть может". Так впервые был получен электрический свет, практически применил который еще один русский ученый-электротехник Павел Николаевич Яблочков.

"Свеча Яблочкова", работа которой основана на использовании электрической дуги, совершила в те времена настоящий переворот в электротехнике.

Дуговой разряд применяется как источник света и в наши дни, например в прожекторах и проекционных аппаратах. Высокая температура дугового разряда позволяет использовать его для . В настоящее время дуговые печи, питаемые током очень большой силы, применяются в ряде областей промышленности: для выплавки стали, чугуна, ферросплавов, бронзы и т.д. А в 1882 году Н. Н. Бенардосом дуговой разряд впервые был использован для резки и сварки металла.

В газосветных трубках, лампах дневного света, стабилизаторах напряжения, для получения электронных и ионных пучков используется так называемый тлеющий газовый разряд .

Искровой разряд применяется для измерения больших разностей потенциалов с помощью шарового разрядника, электродами которого служат два металлических шара с полированной поверхностью. Шары раздвигают, и на них подается измеряемая разность потенциалов. Затем шары сближают до тех пор, пока между ними не проскочит искра. Зная диаметр шаров, расстояние между ними, давление, температуру и влажность воздуха, находят разность потенциалов между шарами по специальным таблицам. Этим методом можно измерять с точностью до нескольких процентов разности потенциалов порядка десятков тысяч вольт.

Электрический ток в газах в нормальных условиях невозможен. То есть при атмосферной влажности давлении и температуре в газе отсутствуют носители зарядов. Это свойство газа, в частности воздуха, используется в воздушных линиях передач выключателях реле для обеспечения электрической изоляции.

Но при определенных условиях в газах может наблюдутся ток. Проведем опыт. Для него нам понадобится воздушный конденсатор электрометр и соединительные провода. Для начала соединим электрометр с конденсатором. Потом сообщим заряд пластинам конденсатора. Электрометр при этом покажет наличие этого самого заряда. Воздушный конденсатор некоторое время будет хранить заряд. То есть тока между его пластинами не будет. Это говорит о том что воздух между обкладками конденсатора обладает диэлектрическими свойствами.

Рисунок 1 — Заряженный конденсатор подключенный к электрометру

Далее внесем в промежуток между пластинами пламя свечи. При этом увидим, что электрометр покажет уменьшение заряда на пластинах конденсатора. То есть в зазоре между пластинами протекает ток. Почему же это происходит.

Рисунок 2 — Внесение свечи в зазор между обкладками заряженного конденсатора

В нормальных условиях молекулы газа электрически нейтральны. И не способны обеспечивать ток. Но при повышении температуры наступает так называемая ионизация газа, и он становится проводником. В газе появляются положительные и отрицательные ионы.

Чтобы от атома газа оторвался электрон необходимо совершить работу против Кулоновских сил. Для этого необходима энергия. Эту энергию атом получает с увеличением температуры. Так как кинетическая энергия теплового движения прямо пропорционально температуре газа. То с ее увеличение молекулы и атомы получают достаточно энергии, чтобы при соударении от атомов отрывались электроны. Такой атом становится положительным ионом. Оторванный электрон может прицепиться к другому атому тогда он станет отрицательным ионом.

В итоге в зазоре между пластинами появляются положительные и отрицательные ионы, а также электроны. Все они начинают двигаться под действием поля созданного зарядами на обкладках конденсатора. Положительные ионы движутся к катоду. Отрицательные ионы и электроны стремятся к аноду. Таким образом, в воздушном зазоре обеспечивается ток.

Зависимость тока от напряжения не на всех участках подчиняется закону Ома. На первом участке это так с увеличением напряжения увеличивается количество ионов а, следовательно, и ток. Далее на втором участке наступает насыщение, то есть с увеличением напряжения ток не увеличивается. Потому что концентрация ионов максимальна и новым появляется просто неоткуда.

Рисунок3 — вольтамперная характеристика воздушного зазора

На третьем участке вновь наблюдается рост тока с увеличением напряжения. Этот участок называется самостоятельным разрядом. То есть для поддержания тока в газе уже не нужны сторонние ионизаторы. Происходит это из за того что, электроны при высоком напряжении, получают достаточную энергию для того чтобы выбивать другие электроны из атомов самостоятельно. Эти электроны в свою очередь выбивают другие и так далее. Процесс идет лавинообразно. И основную проводимость в газе обеспечивают уже электроны.

Loading...Loading...