Свет как электромагнитная волна. Скорость света

Свет – электромагнитная волна. В конце XVII века возникли две научные гипотезы о природе света - корпускулярная и волновая . Согласно корпускулярной теории, свет представляет собой поток мельчайших световых частиц (корпускул), которые летят с огромной скоростью. Ньютон считал, что движение световых корпускул подчиняется законам механики. Так, отражение света понималось аналогично отражению упругого шарика от плоскости. Преломление света объяснялось изменением скорости частиц при переходе из одной среды в другую. Волновая теория рассматривала свет как волновой процесс, подобный механическим волнам. Согласно современным представлениям, свет имеет двоякую природу, т.е. он одновременно характеризуется и корпускулярными, и волновыми свойствами. В таких явлениях, как интерференция и дифракция, на первый план выступают волновые свойства света, а в явлении фотоэффекта, - корпускулярные. Под светом в оптике понимают электромагнитные волны достаточно узкого диапазона. Нередко, под светом понимают не только видимый свет, но и примыкающие к нему широкие области спектра. Исторически появился термин «невидимый свет» - ультрафиолетовый свет, инфракрасный свет, радиоволны. Длины волн видимого света лежат в диапазоне от 380 до 760 нанометров. Одной из характеристик света является его цвет , который определяется частотой световой волны. Белый свет представляет собой смесь волн различных частот. Он может быть разложен на цветные волны, каждая из которых характеризуется определенной частотой. Такие волны называются монохроматическими. Согласно самым новым измерениям скорость света в вакууме Отношение скорости света в вакууме к скорости света в веществе называется абсолютным показателем преломления вещества.

При переходе световой волны из вакуума в вещество частота остается постоянной (цвет не изменяется). Длина волны в среде с показателем преломления n изменяется:

Интерференция света - опыт Юнга. Свет от лампочки со светофильтpом, котоpый создает пpактически монохpоматический свет, пpоходит чеpез две узкие, pядом pасположенные щели, за котоpыми установлен экpан. На экpане будет наблюдаться система светлых и темных полос - полос интеpфеpенции. В данном случае единая световая волна pазбивается на две, идущие от pазличных щелей. Эти две волны когеpентны между собой и пpи наложении дpуг на дpуга дают систему максимумов и минимумов интенсивности света в виде темных и светлых полос соответствующего цвета.

Интерференция света - условия max и min. Условие максимума : Если в оптической разности хода волн укладывается четное число полуволн или целое число волн, то в данной точке экрана наблюдается усиление интенсивности света (max). , где - pазность фаз складываемых волн. Условие минимума: Если в оптической разности хода волн укладывается нечетное число полуволн, то в точке минимум.

Согласно волновой теории свет представляет собой электромагнитную волну.

Видимое излучение (видимый свет) – электромагнитное излучение, непосредственно воспринимаемое человеческим глазом, характеризующееся длинами волн в диапазоне 400 – 750 нм, что соответствует диапазону частот 0,75·10 15 – 0,4·10 15 Гц. Световые излучения различных частот воспринимаются человеком как разные цвета.

Инфракрасное излучение – электромагнитное излучение, занимающее спектральную область между красным концом видимого света (с длиной волны около 0,76 мкм) и коротковолновым радиоизлучением (с длиной волны 1-2 мм). Инфракрасное излучение создает ощущение тепла, поэтому его часто называют тепловым.

Ультрафиолетовое излучение – невидимое глазом электромагнитное излучение, занимающее спектральную область между видимым и рентгеновским излучениями в пределах длин волн от 400 до 10 нм.

Электромагнитные волны электромагнитные колебания (электромагнитное поле) распространяющиеся в пространстве с конечной скоростью, зависящей от свойств среды (в вакууме - 3∙10 8 м/с). Особенности электромагнитных волн, законы их возбуждения и распространения описываются уравнениями Максвелла. На характер распространения электромагнитных волн влияет среда, в которой они распространяются. Электромагнитные волны могут испытывать преломление, дисперсию, дифракцию, интерференцию, полное внутреннее отражение и другие явления, свойственные волнам любой природы. В однородной и изотропной среде вдали от зарядов и токов, создающих электромагнитное поле, волновые уравнения для электромагнитных (в т.ч. и для световых) волн имеют вид:

где и – соответственно электрическая и магнитная проницаемости среды, и – соответственно электрическая и магнитная постоянные, и – напряжённости электрического и магнитного поля, – оператор Лапласа. В изотропной среде фазовая скорость распространения электромагнитных волн равна Распространение плоских монохроматических электромагнитных (световых) волн описывается уравнениями:

kr ; kr (6.35.2)

где и – соответственно амплитуды колебаний электрического и магнитного полей, k – волновой вектор, r – радиус-вектор точки, – круговая частота колебаний, – начальная фаза колебаний в точке с координатой r = 0. Векторы E и H колеблются в одинаковой фазе. Электромагнитная (световая) волна поперечна. Векторы E , H , k ортогональны друг другу и образуют правую тройку векторов. Мгновенные значения и в любой точке связаны соотношением Учитывая, что физиологическое воздействие на глаз оказывает электрическое поле, уравнение плоской световой волны, распространяющейся в направлении оси можно записать следующим образом:


Скорость света в вакууме равна

. (6.35.4)

Отношение скорости света в вакууме к скорости света в среде называется абсолютным показателем преломления среды :

(6.35.5)

При переходе из одной среды в другую изменяются скорость распространения волны и длина волны , частота остается неизменной. Относительным показателем преломления второй среды относительно первой называется отношение

где и – абсолютные показатели преломления первой и второй среды, и – скорость света в первой и второй среде соответственно.

Из теории электромагнитного поля, разработанной Дж. Максвеллом, следовало: электромагнитные волны распространяются со скоростью света - 300 000 км/с, что эти волны поперечны, так же как и световые волны. Максвелл предположил, что свет - это электромагнитная волна. В дальнейшем это предсказание нашло экспериментальное подтверждение.

Как и электромагнитные волны, распространение света подчиняется тем же законам:

Закон прямолинейного распространения света. В прозрачной однородной среде свет распространяется по прямым линиям. Этот закон позволяет объяснить, как возникают солнечные и лунные затмения.

При падении света на границу раздела двух сред часть света отражается в первую среду, а часть проходит во вторую среду, если она прозрачна, изменяя при этом направление своего распространения, т. е. преломляется.

ИНТЕРФЕРЕНЦИЯ СВЕТА

Предположим, что две монохроматические световые волны, накладываюсь друг на друга, возбуждают в определенной точке пространства колебания одинакового направления: х 1 = А 1 cos(t +  1) и x 2 = A 2 cos(t +  2). Под х понимают напряженность электрического Е или магнитного Н полей волны; векторы Е и Н колеблются во взаимно перпендикулярных плоскостях (см. § 162). Напряженности электрического и магнитного полей подчиняются принципу суперпозиции (см. § 80 и 110). Амплитуда результирующего колебания в данной точке A 2 = A 2 l + A 2 2 + 2A 1 A 2 cos( 2 - 1) (см. 144.2)). Так как волны когерентны, то cos( 2 -  1) имеет постоянное во времени (но свое для каждой точки пространства) значение, поэтому интенсивность результирующей волны (1~А 2)

В точках пространства, где cos( 2 -  1) > 0, интенсивность I > I 1 + I 2 , где cos( 2 -  1) < О, интенсивность I < I 1 +I 2 . Следовательно, при наложении двух (или нескольких) когерентных световых волн происходит пространственное перераспределение светового потока, в результате чего в одних местах возникают максимумы, а в других - минимумы интенсивности. Это явление называется интерференцией света.

Для некогерентных волн разность ( 2 -  1) непрерывно изменяется, поэтому среднее во времени значение cos( 2 - 1) равно нулю, и интенсивность результирующей волны всюду одинакова и при I 1 = I 2 равна 2I 1 (для когерентных волн при данном условии в максимумах I = 4I 1 в минимумах I = 0).

Как можно создать условия, необходимые для возникновения интерференции световых волн? Для получения когерентных световых волн применяют метод разделения волны, излучаемой одним источником, на две части, которые после прохождения разных оптических путей накладываются друг на друга, и наблюдается интерференционная картина.

Пусть разделение на две когерентные волны происходит в определенной точке О. До точки М, в которой наблюдается интерференционная картина, одна волна в среде с показателем преломления n 2 прошла путь s 1 , вторая - в среде с показателем преломления n 2 - путь s 2 . Если в точке О фаза колебаний равна t, то в точке М первая волна возбудит колебание А 1 cos(t – s 1 /v 1), вторая волна - колебание А 2 cos(t – s 2 /v 2), где v 1 = c/n 1 , v 2 = c/n 2 - соответственно фазовая скорость первой и второй волны. Разность фаз колебаний, возбуждаемых волнами в точке М, равна

(учли, что /с = 2v/с = 2 0 где  0 - длина волны в вакууме). Произведение геометрической длины s пути световой волны в данной среде на показатель n преломления этой среды называется оптической длиной пути L, a  = L 2 – L 1 - разность оптических длин проходимых волнами путей - называется оптической разностью хода. Если оптическая разность хода равна целому числу длин волн в вакууме

то  = ± 2m, М обеими волнами, будут происходить в одинаковой фазе. Следовательно, (172.2) является условием интерференционного максимума.

Если оптическая разность хода

то  = ±(2m + 1), и колебания, возбуждаемые в точке М обеими волнами, будут происходить в противофазе. Следовательно, (172.3) является условием интерференционного минимума.

ПРИМЕНЕНИЕ ИНТЕРФЕРЕНЦИИ СВЕТА

Явление интерференции обусловлено волновой природой света; его количественные закономерности зависят от длины волны До- Поэтому это явление применяется для подтверждения волновой природы света и для измерения длин волн (интерференционная спектроскопии).

Явление интерференции применяется также для улучшения качества оптических приборов (просветление оптики) и получения высокоотражающих покрытий. Прохождение света через каждую преломляющую поверхность линзы, например через границу стекло - воздух, сопровождается отражением 4% падающего потока (при показа теле преломления стекла 1,5). Так как современные объективы содержат большое количество линз, то число отражений в них велико, а поэтому велики и потери светового потока. Таким образом, интенсивность прошедшего света ослабляется и светосила оптического прибора уменьшается. Кроме того, отражения от поверхностей линз приводят к возникновению бликов, что часто (например, в военной технике) демаскирует положение прибора.



Для устранения указанных недостатков осуществляют так называемое просветление оптики. Для этого на свободные поверхности линз наносят тонкие пленки с показателем преломления, меньшим, чем у материала линзы. При отражении света от границ раздела воздух - пленка и пленка - стекло возникает интерференция когерентных лучей 1 и 2"(рис. 253).

Просветляющий слой

Толщину пленки d и показатели преломления стекла n с и пленки n можно подобрать так, чтобы волны, отраженные от обеих поверхностей пленки, гасили друг друга. Для этого их амплитуды должны быть равны, а оптическая разность хода равна - (см. (172.3)). Расчет показывает, что амплитуды отраженных лучей равны, если

(175.1)

Так как n с, n и показатель преломления воздуха n 0 удовлетворяют условиям n с > n > n 0 , то потеря полуволны происходит на обеих поверхностях; следовательно, условие минимума (предполагаем, что свет падает нормально, т. е. I = 0)

где nd - оптическая толщина пленки . Обычно принимают m = 0, тогда

Таким образом, если выполняется условие (175.1) и оптическая толщина пленки равна  0 /4, то в результате интерференции наблюдается гашение отраженных лучей. Так как добиться одновременного гашения для всех длин волн невозможно, то это обычно делается для наиболее восприимчивой глазом длины волны  0  0,55 мкм. Поэтому объективы с просветленной оптикой имеют синевато-красный оттенок.

Создание высокоотражающих покрытий стало возможным лишь на основе многолучевой интерференции . В отличие от двухлучевой интерференции, которую мы рассматривали до сих пор, многолучевая интерференция возникает при наложении большого числа когерентных световых пучков. Распределение интенсивности в интерференционной картине существенно различается; интерференционные максимумы значительно уже и ярче, чем при наложении двух когерентных световых пучков. Так, результирующая амплитуда световых колебаний одинаковой амплитуды в максимумах интенсивности, где сложение происходит в одинаковой фазе, в N раз больше, а интенсивность в N 2 раз больше, чем от одного пучка (N - число интерферирующих пучков). Отметим, что для нахождения результирующей амплитуды удобно пользоваться графическим методом, используя метод вращающегося вектора амплитуды (см. § 140). Многолучевая интерференция осуществляется в дифракционной решетке (см. § 180).

Многолучевую интерференцию можно осуществить в многослойной системе чередующихся пленок с разными показателями преломления (но одинаковой оптической толщиной, равной  0 /4), нанесенных на отражающую поверхность (рис. 254). Можно показать, что на границе раздела пленок (между двумя слоями ZnS с большим показателем преломления n 1 находится пленка криолита с меньшим показателем преломления n 2) возникает большое число отраженных интерферирующих лучей, которые при оптической толщине пленок  0 /4 будут взаимно усиливаться, т. е. коэффициент отражения возрастает. Характерной особенностью такой высокоотражательной системы является то, что она действует в очень узкой спектральной области, причем чем больше коэффициент отражения, тем уже эта область. Например, система из семи пленок для области 0,5 мкм дает коэффициент отражения   96% (при коэффициенте пропускания  3,5% и коэффициенте поглощения <0,5%). Подобные отражатели применяются в лазерной технике, а также используются для создания интерференционных светофильтров (узкополосных оптических фильтров).

Явление интерференции также применяется в очень точных измерительных приборах, называемых интерферометрами. Все интерферометры основаны на одном и том же принципе и различаются лишь конструкционно. На рис. 255 представлена упрощенная схема интерферометра Майкельсона.

Монохроматический свет от источника S падает под углом 45° на плоскопараллельную пластинку Р 1 . Сторона пластинки, удаленная от S, посеребренная и полупрозрачная, разделяет луч на две части: луч 1 (отражается от посеребренного слоя) и луч 2 (проходит через вето). Луч 1 отражается от зеркала М 1 и, возвращаясь обратно, вновь проходит через пластинку Р 1 (луч l"). Луч 2 идет к зеркалу М 2 , отражается от него, возвращается обратно и отражается от пластинки Р 1 (луч 2). Так как первый из лучей проходит сквозь пластинку Р 1 дважды, то для компенсации возникающей разности хода на пути второго луча ставится пластинка Р 2 (точно такая же, как и Р 1 , только не покрытая слоем серебра).

Лучи 1 и 2" когерентны; следовательно, будет наблюдаться интерференция, результат которой зависит от оптической разности хода луча 1 от точки О до зеркала М 1 и луча 2 от точки О до зеркала М 2 . При перемещении одного из зеркал на расстояние  0 /4 разность хода обоих лучей увеличится на  0 /2 и произойдет смена освещенности зрительного поля. Следовательно, по незначительному смещению интерференционной картины можно судить о малом перемещении одного из зеркал и использовать интерферометр Майкельсона для точного (порядка 10 -7 м) измерения длин (измерения длины тел, длины волны света, изменения длины тела при изменении температуры (интерференционный дилатометр)).

Российский физик В. П. Линник (1889-1984) использовал принцип действия интерферометра Майкельсона для создания микроинтерферометра (комбинация интерферометра и микроскопа), служащего для контроля чистоты обработки поверхности.

Интерферометры - очень чувствительные оптические приборы, позволяющие определять незначительные изменения показателя преломления прозрачных тел (газов, жидких и твердых тел) в зависимости от давления, температуры, примесей и т. д. Такие интерферометры получили название интерференционных рефрактометров. На пути интерферирующих лучей располагаются две одинаковые кюветы длиной l , одна из которых заполнена, например, газом с известным (n 0), а другая - с неизвестным (n z) показателями преломления. Возникшая между интерферирующими лучами дополнительная оптическая разность хода  = (n z – n 0)l . Изменение разности хода приведет к сдвигу интерференционных полос. Этот сдвиг можно характеризовать величиной

где m 0 показывает, на какую часть ширины интерференционной полосы сместилась интерференционная картина. Измеряя величину m 0 при известных l , m 0 и , можно вычислить n z , или изменение n z - n 0 . Например, при смещении интерференционной картины на 1/5 полосы при l = 10 см и  = 0,5 мкм (n z – n 0) = 10 -6 , т.е. интерференционные рефрактометры позволяют измерять изменение показателя преломления с очень высокой точностью (до 1/1 000 000).

Применение интерферометров очень многообразно. Кроме перечисленного, они применяются для изучения качества изготовления оптических деталей, измерения углов, исследования быстропротекающих процессов, происходящих в воздухе, обтекающем летательные аппараты, и т. д. Применяя интерферометр, Майкельсон впер вые провел сравнение международного эталона метра с длиной стандартной световой волны. С помощью интерферометров исследовалось также распространение света в движущихся телах, что привело к фундаментальным изменениям представлений о пространстве и времени.

Гимназия 144

Реферат

Скорость света.

Интерференция света.

Стоячие волны.

ученика 11 а класса

Корчагина Сергея

Санкт-Петербург 1997.

Свет – электромагнитная волна.

В XVII веке возникло две теории света: волновая и корпускулярная. Корпускулярную 1 теорию предложил Ньютон, а волновую – Гюйгенс. Согласно представлениям Гюйгенса свет – волны, распространяющиеся в особой среде – эфире, заполняющем все пространство. Две теории длительное время существовали параллельно. Когда одна из теорий не объясняла какого-то явления, то оно объяснялось другой теорией. Например, прямолинейное распространение света, приводящее к образованию резких теней нельзя было объяснить исходя из волновой теории. Однако в начале XIX века были открыты такие явления как дифракция 2 и интерференция 3 , что дало повод для мыслей, что волновая теория окончательно победила корпускулярную. Во второй половине XIX века Максвелл показал, что свет – частный случай электромагнитных волн. Эти работы послужили фундаментом для электромагнитной теории света. Однако в начале XX века было обнаружено, что при излучении и поглощении свет ведет себя подобно потоку частиц.

Скорость света.

Существует несколько способов определения скорости света: астрономический и лабораторные методы.

Впервые скорость света измерил датский ученый Ремер в 1676 г., используя астрономический метод. Он засекал время которое самый большой из спутников Юпитера Ио находился в тени этой огромной планеты. Ремер провел измерения в момент, когда наша планета была ближе всего к Юпитеру, и в момент, когда мы находились немного (по астрономическим понятиям) дальше от Юпитера. В первом случае промежуток между вспышками составил 48 часов 28 минут. Во втором случае спутник опоздал на 22 минуты. Из этого был сделан вывод, что свету необходимо 22 минуты, чтобы пройти расстояние от места предыдущего наблюдения до места настоящего наблюдения. Зная расстояние и время запаздывания Ио он вычислил скорость света, которая оказалась огромной, примерно 300 000 км/с 4 .

Впервые скорость света лабораторным методом удалось измерить французскому физику Физо в 1849 г. Он получил значение скорости света равное 313 000 км/с.

По современным данным, скорость света равна 299 792 458 м/с ±1.2 м/с.

Интерференция света.

Получить картину интерференции световых волн достаточно трудно. Причина этого в том, что световые волны, излучаемые различными источниками, не согласованы друг с другом. Они должны иметь одинаковые длины волн и постоянную разность фаз в любой точке пространства 5 . Равенства длин волн достичь нетрудно, используя светофильтры. Но осуществить постоянную разность фаз невозможно, из-за того, что атомы разных источников излучают свет независимо друг от друга 6 .

Тем не менее интерференцию света удается наблюдать. Например, радужный перелив цветов на мыльном пузыре или на тонкой пленке керосина или нефти на воде. Английский ученый Т.Юнг первым пришел к гениальной мысли, что цвет объясняется сложением волн, одна из которых отражается от наружней поверхности, а другая ѕ от внутренней. При этом происходит интерференция 7 световых волн. Результат интерфе­ренции зависит от угла падения света на пленку, ее толщины и длины волны.

Стоячие волны.

Было замечено, что если раскачивать один конец веревки с правильно подобранной частотой (другой ее конец закреплен), то к закрепленному концу побежит непрерывная волна, которая затем отразится с потерей полуволны. Интерференция падающей и отраженной волны приведет к возникновению стоячей волны, которая будет выглядеть неподвижно. Устойчивость этой волны удовлетворякт условию:

L=nl/2, l=u/n, L=nu/n,

Где L ѕ длина веревки; n ѕ 1,2,3 и т.д.; u ѕ скорость рапространения волны, которая зависит от натяжения веревки.

Стоячие волны возбуждаются во всех телах способных совершать колебания.

Образование стоячих волн является резонансным явлением, которое происходит на резонансных или собственных частотах тела. Точки, где интерференция гасится, называют узлами, а точки, где интерференция усиливается, ѕ пучностями.

Свет ѕ электромагнитная волна……………………………………..2

Скорость света…………………………………………………………2

Интерференция света………………………………………………….3

Стоячие волны…………………………………………………………3

    Физика 11 (Г.Я.Мякишев Б.Б.Ьуховцев)

    Физика 10 (Н.М.Шахмаев С.Н.Шахмаев)

    Опорные конспекты и тестовые задания (Г.Д.Луппов)

1 Латинское слово “корпускула” в переводе на русский язык означает “частица”.

2 Огибание светом препятствий.

3 Явление усиления или ослабления света при наложении световых пучков.

4 Сам Ремер получил значение 215 000 км/с.

5 Волны, имеющие одинаковые длины и постоянную разность фаз называются когерентными.

6 Исключением являются лишь квантовые источники света ѕ лазеры.

7 Сложение двух волн, вследствие которого наблюдается устойчивая во времени усиления или ослабления результирующих световых колебаний в различных точках пространства.

Природа света

Первые представления о природе света возникли у древних греков и египтян. По мере изобретения и совершенствования различных оптических приборов (параболических зеркал, микроскопа, зрительной трубы) эти представления развивались и трансформировались. В конце XVII века возникли две теории света: корпускулярная (И. Ньютон) и волновая (Р. Гук и Х. Гюйгенс).

Волновая теория рассматривала свет как волновой процесс, подобный механическим волнам. В основу волновой теории был положен принцип Гюйгенса . Большая заслуга в развитии волновой теорий принадлежит английскому физику Т. Юнгу и французскому физику О. Френелю, исследовавшим явления интерференции и дифракции. Исчерпывающее объяснение этих явлений могло быть дано только на основе волновой теории. Важное экспериментальное подтверждение справедливости волновой теории было получено в 1851 году, когда Ж. Фуко (и независимо от него А. Физо) измерил скорость распространения света в воде и получил значение υ < c .

Хотя к середине XIX века волновая теория была общепризнана, вопрос о природе световых волн оставался нерешенным.

В 60-е годы XIX века Максвеллом были установлены общие законы электромагнитного поля, которые привели его к заключению, что свет – это электромагнитные волны . Важным подтверждением такой точки зрения послужило совпадение скорости света в вакууме с электродинамической постоянной:

\(~c = \dfrac{1}{\sqrt{\varepsilon_0 \mu_0}}\) .

Электромагнитная природа света получила признание после опытов Г. Герца (1887–1888 гг.) по исследованию электромагнитных волн. В начале XX века после опытов П. Н. Лебедева по измерению светового давления (1901 г.) электромагнитная теория света превратилась в твердо установленный факт.

Важнейшую роль в выяснении природы света сыграло опытное определение его скорости. Начиная с конца XVII века предпринимались неоднократные попытки измерения скорости света различными методами (астрономический метод А. Физо, метод А. Майкельсона). Современная лазерная техника позволяет измерять скорость света с очень высокой точностью на основе независимых измерений длины волны λ и частоты света ν (c = λ · ν ). Таким путем было найдено значение c = 299792458 ± 1,2 м/с превосходящее по точности все ранее полученные значения более чем на два порядка.

Свет играет чрезвычайно важную роль в нашей жизни. Подавляющее количество информации об окружающем мире человек получает с помощью света. Однако в оптике как разделе физике под светом понимают не только видимый свет , но и примыкающие к нему широкие диапазоны спектра электромагнитного излучения – инфракрасный (ИК) и ультрафиолетовый (УФ). По своим физическим свойством свет принципиально неотличим от электромагнитного излучения других диапазонов – различные участки спектра отличаются друг от друга только длиной волны λ и частотой ν .

Для измерения длин волн в оптическом диапазоне используются единицы длины 1 нанометр (нм) и 1 микрометр (мкм):

1 нм = 10 -9 м = 10 -7 см = 10 -3 мкм.

Видимый свет занимает диапазон приблизительно от 400 нм до 780 нм или от 0,40 мкм до 0,78 мкм.

Распространяющееся в пространстве периодически изменяющееся электромагнитное поле и представляет собой электромагнитную волну .

Наиболее существенные свойства света как электромагнитной волны

  1. При распространении света в каждой точке пространства происходят периодически повторяющиеся изменения электрического и магнитного полей. Эти изменения удобно изображать в виде колебаний векторов напряженности электрического поля \(~\vec E\) и индукции магнитного поля \(~\vec B\) в каждой точке пространства. Свет - поперечная волна, так как \(~\vec E \perp \vec \upsilon\) и \(~\vec B \perp \vec \upsilon\) .
  2. Колебания векторов \(~\vec E\) и \(~\vec B\) в каждой точке электромагнитной волны происходят в одинаковы фазах и по двум взаимно перпендикулярным направлениям \(~\vec E \perp \vec B\) в каждой точке пространства.
  3. Период света как электромагнитной волны (частота) равен периоду (частоте) колебаний источника электромагнитных волн. Для электромагнитных волн справедливо соотношение \(~\lambda = \upsilon \cdot T = \dfrac{\upsilon}{\nu}\) . В вакууме \(~\lambda_0 = c \cdot T = \dfrac{c}{\nu}\) – длина волны наибольшая по сравнению с λ в другой среде, так как ν = const и изменяется только υ и λ при переходе от одной среды к другой.
  4. Свет является носителем энергии, причем перенос энергии совершается в направлении распространения волны. Объемная плотность энергии электромагнитной поля определяется выражением \(~\omega_{em} = \dfrac{\varepsilon \cdot \varepsilon_0 \cdot E^2}{2} + \dfrac{B^2}{2 \cdot \mu \cdot \mu_0}\)
  5. Свет, как и другие волны, распространяются прямолинейно в однородной среде, испытывают преломление при переходе из одной среды во вторую, отражаются от металлических преград. Для них характерны явления дифракции и интерференции.

Интерференция света

Для наблюдений интерференции волн на поверхности воды использовались два источника волн (два шарика, закрепленные на колеблющемся стерженьке). Получить интерференционную картину (чередование минимумов и максимумов освещенности) с помощью двух обычных независимых источников света, например двух электрических лампочек, невозможно. Включение еще одной лампочки лишь увеличивает освещенность поверхности, но не создает чередования минимумов и максимумов освещенности.

Для того чтобы при наложении световых волн наблюдалась устойчивая интерференционная картина, необходимо, чтобы волны были когерентны, т. е. имели одинаковую длину волны и постоянную разность фаз.

Почему световые волны от двух источников не когерентны?

Интерференционная картина от двух источников, которую мы описали, возникает только при сложении монохроматических волн одинаковых частот. У монохроматических волн разность фаз колебаний в любой точке пространства постоянна.

Волны с одинаковой частотой и постоянной разностью фаз называются когерентными .

Только когерентные волны, налагаясь друг на друга, дают устойчивую интерференционную картину с неизменным расположением в пространстве максимумов и минимумов колебаний. Световые же волны от двух независи-мых источников не являются когерентными. Атомы источников излучают свет независимо друг от друга отдельными «обрывками» (цугами) синусоидальных волн. Длительность непрерывного излучения атома около 10 с. За это время свет проходит путь длиной около 3 м (рис. 1).

Эти цуги волн от обоих источников налагаются друг на друга. Разность фаз колебаний в любой точке пространства хаотически меняется со временем в зависимости от того, как в данный момент времени цуги от различных источников сдвинуты друг относительно друга. Волны от различных источников света некогерентны из-за того, что разность начальных фаз не остается постоянной. Фазы φ 01 и φ 02 меняются случайным образом, и из-за этого случайным образом меняется разность фаз результирующих колебаний в любой точке пространства.

При случайных обрывах и возникновениях колебаний разность фаз меняется беспорядочно, принимая за время наблюдения τ всевозможные значения от 0 до 2π . В результате за время τ много большее времени нерегулярных изменений фазы (порядка 10 -8 с), среднее значение cos (φ 1 – φ 2) в формуле

\(~I = 4 I_0 \cos^2 \dfrac{\varphi_1 - \varphi_2}{2} = 2 I_0 \) .

равно нулю. Интенсивность света оказывается равной сумме интенсивностей от отдельных источников, и никакой интерференционной картины наблюдаться не будет. В некогерентности световых волн заключается главная причина того, что свет от двух источников не дает интерференционной картины. Это главная, но не единственная причина. Другая причина заключается в том, что длина световой волны, как мы скоро увидим, очень мала. Это сильно затрудняет наблюдение интерференции, если даже располагать когерентными источниками волн.

Условия максимумов и минимумов интерференционной картины

В результате наложения двух или более когерентных волн в пространстве возникает интерференционная картина , представляющая собой чередование максимумов и минимумов интенсивности света, а значит, и освещенности экрана.

Интенсивность света в данной точке пространства определяется разностью фаз колебаний φ 1 – φ 2 . Если колебания источников синфазны, то φ 01 – φ 02 = 0 и

\(~\Delta \varphi = \varphi_1 - \varphi_2 = 2 \pi \dfrac{r_2 - r_1}{\lambda}\) . (1)

Разность фаз определяется разностью расстояний от источников до точки наблюдения Δr = r 1 – r 2 (разность расстояний называется разностью хода ). В тех точках пространства, для которых выполняется условие

\(~\Delta r = r_1 - r_2 = k \lambda ; k = 0, 1, 2, \ldots\) . (2)

волны, складываясь, усиливают друг друга, и результирующая интенсивность в 4 раза превосходит интенсивность каждой из волн, т.е. наблюдается максимум . Напротив, при

\(~\Delta r = r_1 - r_2 = \dfrac{\lambda}{2} (2k + 1)\) . (3)

волны гасят друг друга (I = 0), т.е. наблюдается минимум .

Принцип Гюйгенса – Френеля

Волновая теория основывается на принципе Гюйгенса: каждая точка, до которой доходит волна, служит центром вторичных волн, а огибающая этих волн дает положение волнового фронта в следующий момент времени.

Пусть плоская волна нормально падает на отверстие в непрозрачном экране (рис. 2). Согласно Гюйгенсу, каждая точка выделяемого отверстием участка волнового фронта служит источником вторичных волн (в однородной изотропной среде они сферические). Построив огибающую вторичных волн для некоторого момента времени, видим, что фронт волны заходит в область геометрической тени, т. е. волна огибает края отверстия.

Принцип Гюйгенса решает лишь задачу о направлении распространения волнового фронта, объясняет явление дифракции, но не затрагивает вопроса об амплитуде, а, следовательно, и об интенсивности волн, распространяющихся по разным направлениям. Френель вложил в принцип Гюйгенса физический смысл, дополнив его идеей интерференции вторичных волн.

Согласно принципу Гюйгенса – Френеля , световая волна, возбуждаемая каким-либо источником S, может быть представлена как результат суперпозиции когерентных вторичных волн, «излучаемых» фиктивными источниками.

Такими источниками могут служить бесконечно малые элементы любой замкнутой поверхности, охватывающей источник S. Обычно в качестве этой поверхности выбирают одну из волновых поверхностей, поэтому все фиктивные источники действуют синфазно. Таким образом, волны, распространяющиеся от источника, являются результатом интерференции всех когерентных вторичных волн. Френель исключил возможность возникновения обратных вторичных волн и предположил, что если между источником и точкой наблюдения находится непрозрачный экран с отверстием, то на поверхности экрана амплитуда вторичных волн равна нулю, а в отверстии – такая же, как при отсутствии экрана. Учет амплитуд и фаз вторичных волн позволяет в каждом конкретном случае найти амплитуду (интенсивность) результирующей волны в любой точке пространства, т. е. определить закономерности распространения света.

Способы получения интерференционной картины

Идея Огюстена Френеля

Для получения когерентных источников света французский физик Огю-стен Френель (1788-1827) нашел в 1815 г. простой и остроумный способ. Надо свет от одного источника разделить на два пучка и, заставив их пройти различные пути, свести вместе . Тогда цуг волн, испущенных отдельным атомом, разделится на два когерентных цуга. Так будет для цугов волн, испускаемых каждым атомом источника. Свет, испускаемый одним атомом, дает определенную интерференционную картину. При наложении этих картин друг на друга получается достаточно интенсивное распределение освещенности на экране: интерференционную картину можно наблюдать.

Имеется много способов получения когерентных источников света, но суть их одинакова. С помощью разделения пучка на две части получают два мнимых источника света, дающих когерентные волны. Для этого используют два зеркала (бизеркала Френеля), бипризму (две призмы, сложенные основаниями), билинзу (разрезанную пополам линзу с раздвинутыми половинами) и др.

Кольца Ньютона

Первый эксперимент по наблюдение интерференции света в лаборатор-ных условиях принадлежит И. Ньютону. Он наблюдал интерференционную картину, возникающую при отражении света в тонкой воздушной прослойке между плоской стеклянной пластиной и плосковыпуклой линзой большого радиуса кривизны. Интерференционная картина имела вид концентрических колец, получивших название колец Ньютона (рис. 3 а, б).

Ньютон не смог объяснить с точки зрения корпускулярной теории, почему возникают кольца, однако он понимал, что это связано с какой-то периодичностью световых процессов.

Опыт Юнга с двумя щелями

Предложенный Т. Юнгом эксперимент убедительно демонстрирует волновую природу света. Для лучшего понимания результатов опыта Юнга полезно сначала рассмотреть ситуацию, когда свет проходит через одну щель в перегородке. В опыте с одной щелью монохроматический свет от источника проходит через узкую щель и регистрируется на экране. Неожиданным является то, что при достаточно узкой щели на экране видна не узкая светящаяся полоска (изображение щели), а плавное распределение интенсивности света, имеющее максимум в центре и постепенно убывающее к краям. Это явление обусловлено дифракцией света на щели и также есть следствие волновой природы света.

Пусть теперь в перегородке сделаны две щели (рис. 4). Последовательно закрывая то одну, то другую щель, можно убедиться, что картина распределения интенсивности на экране будет такой же, как и в случае одной щели, но только положение максимума интенсивности будет каждый раз соответствовать положению открытой щели. Если же открыть обе щели, то на экране возникает чередующаяся последовательность светлых и темных полос, причем яркость светлых полос убывает с расстоянием от центра.

Некоторые применения интерференции

Применения интерференции очень важны и обширны.

Существуют специальные приборы - интерферометры - действие которых основано на явлении интерференции. Назначение их может быть различным: точное измерение длин световых волн, измерение показателя преломления газов и др. Имеются интерферометры специального назначения. Об одном из них, сконструированном Майкельсоном для фиксации очень малых изменений скорости света, будет рассказано в главе «Основы теории относительности».

Мы остановимся только на двух применениях интерференции.

Проверка качества обработки поверхностей

С помощью интерференции можно оценить качество шлифовки поверхности изделия с погрешностью до 10 -6 см. Для этого нужно создать тонкую прослойку воздуха между поверхностью образца и очень гладкой эталонной пластиной (рис. 5).

Тогда неровности поверхности до 10 -6 см вызовут заметные искривления интерференционных полос, образующихся при отражении света от проверяемой поверхности и нижней грани эталонной пластины.

В частности, качество шлифовки линзы можно проверить, наблюдая кольца Ньютона. Кольца будут правильными окружностями только в том случае, если поверхность линзы строго сферическая. Любое отступление от сферичности, большее 0,1λ будет заметно сказываться на форме колец. В том месте, где на линзе имеется выпуклость, кольца будут выгибаться к центру.

Любопытно, что итальянский физик Э. Торричелли (1608- 1647) умел шлифовать линзы с погрешностью до 10 -6 см. Его линзы хранятся в музее, и качество их проверено современными методами. Как же это ему удавалось? Ответить на этот вопрос трудно. В то время секреты мастерства обычно не выдавались. Видимо, Торричелли обнаружил интерференционные кольца задолго до Ньютона и догадался, что с их помощью можно проверять качество шлифовки. Но, разумеется, никакого представления о том, почему кольца появляются, у Торричелли быть не могло.

Отметим еще, что, используя почти строго монохроматический свет, можно наблюдать интерференционную картину при отражении от плоскостей, находящихся друг от друга на большом расстоянии (порядка нескольких метров). Это позволяет измерять расстояния в сотни сантиметров с погрешностью до 10 -6 см.

Просветление оптики

Объективы современных фотоаппаратов или кинопроекторов, перископы подводных лодок и различные другие оптические устройства состоят из большого числа оптических стекол - линз, призм и др. Проходя через такие устройства, свет отражается от многих поверхностей. Число отражающих поверхностей в современных фотообъективах превышает 10, а в перископах подводных лодок доходит до 40. При падении света перпендикулярно поверхности от каждой поверхности отражается 5-9% всей энергии. Поэтому сквозь прибор часто проходит всего 10-20% поступающего в него света. В результате этого освещенность изображения получается малой. Кроме того, ухудшается качество изображения. Часть светового пучка после многократного отражения от внутренних поверхностей все же проходит через оптический прибор, но рассеивается и уже не участвует в создании четкого изображения. На фотографических изображениях, например, по этой причине образуется «вуаль».

Для устранения этих неприятных последствий отражения света от поверхностей оптических стекол надо уменьшить долю отраженной энергии света. Даваемое прибором изображение делается при этом ярче, «просветляется». Отсюда и происходит термин просветление оптики .

Просветление оптики основано на интерференции. На поверхность оптического стекла, например линзы, наносят тонкую пленку с показателем преломления n n , меньшим показателя преломления стекла n с. Для простоты рассмотрим случай нормального падения света на пленку (рис. 6).

Условие того, что отраженные от верхней и нижней поверхностей пленки волны гасят друг друга, запишется (для пленки минимальной толщины) следующим образом:

\(~2h = \dfrac{\lambda}{2 n_n}\) . (4)

где \(~\dfrac{\lambda}{n_n}\) - длина волны в пленке, а 2h - разность хода.

Если амплитуды обеих отраженных волн одинаковы или очень близки друг к другу, то гашение света будет полным. Чтобы добиться этого, подбирают соответствующим образом показатель преломления пленки, так как интенсивность отраженного света определяется отношением коэффициентов преломления двух граничащих сред.

На линзу при обычных условиях падает белый свет. Выражение (4) показывает, что требуемая толщина пленки зависит от длины волны. Поэтому осуществить гашение отраженных волн всех частот невозможно. Толщину пленки подбирают так, чтобы полное гашение при нормальном падении имело место для длин волн средней части спектра (зеленый цвет, λ з = 5,5·10 -7 м); она должна быть равна четверти длины волны в пленке:

\(~h = \dfrac{\lambda}{4 n_n}\) . (4)

Отражение света крайних участков спектра - красного и фиолетового - ослабляется незначительно. Поэтому объектив с просветленной оптикой в отраженном свете имеет сиреневый оттенок. Сейчас даже простые дешевые фотоаппараты имеют просветленную оптику. В заключение еще раз подчеркнем, что гашение света светом не означает превращения световой энергии в другие формы. Как и при интерференции механических волн, гашение волн друг другом в данном участке пространства означает, что световая энергия сюда просто не поступает. Гашение отраженных волн у объектива с просветленной оптикой означает, что весь свет проходит сквозь объектив.

Приложение

Сложение двух монохроматических волн

Рассмотрим более детально сложение двух гармонических волн одинаковой частоты ν в некоторой точке А однородной среды, считая, что источники этих волн S 1 и S 2 находятся от точки А на расстояниях, соответственно, l 1 и l 2 (рис. 7).

Предположим для простоты, что рассматриваемые волны - либо продольные, либо перечные плоско поляризованные, а их амплитуды равны a 1 и a 2 . Тогда, в соответствии с \(~x(s,t) = a \cdot \sin (\omega t - k s + \varphi_0)\) , уравнения этих волн в точке А имеют вид

\(~x_1(l_1,t) = a_1 \cdot \sin (\omega t - k l_1 + \varphi_{01})\) . (5) \(~x_2(l_2,t) = a_2 \cdot \sin (\omega t - k l_2 + \varphi_{02})\) . (6)

Уравнение результирующей волны, являющейся суперпозицией волн (5), (6), представляет собой их сумму:

\(~x(t) = x_1(l_1,t) + x_2(l_2,t) = a \cdot \sin (\omega t + \varphi)\) , (7)

причем, как можно доказать, используя известную из геометрии теорему косинусов, квадрат амплитуды результирующего колебания определяется формулой

\(~a^2 = a^2_1 + a^2_2 + 2 a_1 a_2 \cos \Delta \varphi\)> , (8)

где Δφ - разность фаз колебаний:

\(~\Delta \varphi = k(l_1 - l_2) - (\varphi_{01} - \varphi_{02})\) . (9)

(Выражение для начальной фазы φ 01 результирующего колебания мы приводить не будем из-за его громоздкости).

Из (8) видно, что амплитуда результирующего колебания является периодической функцией разности хода Δl . Если разность хода волн такова, что разность фаз Δφ равна

\(~\Delta \varphi = \pm 2 \pi n ; n = 0, 1, 2, \ldots\) , (10)

то в точке А амплитуда результирующей волны будет максимальной (условие максимума ), если же

\(~\Delta \varphi = \pm (2n +1) \pi\) , (11)

то амплитуда в точке А минимальна (условие минимума ).

Считая для простоты, что φ 01 = φ 02 и a 1 = a 2 , и учитывая равенство \(~k = \dfrac{\omega}{\upsilon} = \dfrac{2 \pi}{\lambda}\) , условия (10) и (11) и соответствующие выражения для амплитуды а можно записать в виде:

\(~\Delta l = \pm n \lambda\) (условие максимума ), (12)

и тогда а = a 1 + a 2 , и

\(~\Delta l = \pm (2n +1) \dfrac{\lambda}{2}\) (условие минимума ), (13)

и тогда a = 0.

Литературы

  1. Мякишев Г.Я. Физика: Оптика. Квантовая физика. 11 кл.: Учеб. для углубленного изучения физики / Г.Я. Мякишев, А.З. Синяков. – М.: Дрофа, 2002. – 464 с.
  2. Буров Л.И., Стрельченя В.М. Физика от А до Я: учащимся, абитуриентам, репетиторам. – Мн.: Парадокс, 2000. – 560 с.
Loading...Loading...