Шпаргалка: Автоматизированное производство. Автоматизация технологических процессов и производств

1. Уровни автоматизации и их отличительные признаки

Автоматизация производственных процессов может осуществляться на разных уровнях.

Автоматизация имеет так называемый нулевой уровень - если в производстве участие человека исключается только при выполнении рабочих ходов (вращение шпинделя, движение подачи инструментов и др.). Такую автоматизацию назвали механизацией. Можно сказать, что механизация - это автоматизация рабочих ходов. Отсюда следует, что автоматизация предусматривает механизацию.

Автоматизация первого уровня ограничивается созданием устройств, цель применения которых - исключить участие человека при выполнении холостых ходов на отдельно взятом оборудовании. Такая автоматизация называется автоматизацией рабочего цикла в серийном и поточном производстве.

Холостые хоты в норме штучного времени, определяющем трудоемкость операции, учитываются в виде вспомогательного времени t в и времени технического обслуживания t т.об:

где t о – основное время, которое учитывает время рабочих ходов, t о =t p.x ; t в вспомогательное время, включает отвод и подвод инструмента, загрузку оборудования и контроль; t т.об время технического обслуживания, затрачиваемое на смену инструмента, наладку оборудования, устранение отходов и управление; t орг время обслуживания оборудования; t отд – время отдыха рабочего.

На первом уровне автоматизации рабочие машины еще не связаны между собой автоматической связью. Поэтому транспортировка и контроль объекта производства выполняются с участием человека. На этом уровне создаются и применяются станки-автоматы и полуавтоматы. На автоматах рабочий цикл выполняется и повторяется без участия человека. На полуавтоматах для выполнения и повторения рабочего цикла требуется участие человека.

Например, современный токарный многошпиндельный автомат выполняет обтачивание, сверление, зенкерование. развертывание и нарезание резьбы на заготовке из прутка. Такой автомат может заменить до 10 универсальных станков за счет автоматизации и совмещения холостых и рабочих ходов, высокой концентрации операций.

Автоматизация второго уровня - это автоматизация технологических процессов. На этом уровне решаются задачи автоматизации транспортировки, контроля объекта производства, удаления отходов и управления системами машин. В качестве технологического оборудования создаются и применяются автоматические линии, гибкие производственные системы (ГПС).

Автоматической линией называют автоматически действующую систему машин, установленных в технологической последовательности и объединенных средствами транспортировки, загрузки, контроля, управления и устранения отходов. Например, линия по обработке ведущей конической шестерни редуктора автомобиля высвобождает до 20 рабочих и окупается через три года при соответствующей программе выпуска.

Автоматическая линия состоит из технологического оборудования, которое компонуется под определенный вид транспорта и связывается с ним устройствами загрузки (манипуляторами, лотками, подъемниками). Линия включает кроме рабочих позиций и холостые позиции, которые необходимы для осмотра и обслуживания линии.

Если линия включает позиции с участием человека, то ока называется автоматизированной.

Третий уровень автоматизации - комплексная автоматизация, которая охватывает все этапы и звенья производственного процесса, начиная от заготовительных процессов и заканчивая испытаниями и отправкой готовых изделий.


Комплексная автоматизация требует освоения всех предшествующих уровней автоматизации. Она связана с высокой технической оснащенностью производства и большими капитальными затратами. Такая автоматизация эффективна при достаточно больших программах выпуска изделий стабильной конструкции и узкой номенклатуры (производство подшипников, отдельных агрегатов машин, элементов электрооборудования и др.).

Вместе с тем именно комплексная автоматизация позволяет обеспечить развитие производства в целом, так как имеет наибольшую эффективность капитальных затрат. Чтобы показать возможности такой автоматизации, рассмотрим в качестве примера 1зт: магический завод по выпуску автомобильных рам в США. При выпуске до 10 000 рам в сутки завод имеет штат в 160 человек, который в основном состоит из инженеров и наладчиков. При работе без применения комплексной автоматизации для выполнения той же производственной программы понадобилось бы не менее 12 000 человек.

На третьем уровне автоматизации решаются задачи автоматизации складирования и межцеховой транспортировки изделий с автоматическим адресованием, переработки отходов и управления производством на базе широкого применения ЭВМ. На этом уровне участие человека сводится к обслуживанию оборудования и поддержанию его в рабочем состоянии.

2. Развитие автоматизации в направлении технологической гибкости и широкого применения ЭВМ

Гибкие производственные системы представляют собой совокупность технологического оборудования и систем обеспечения его работы в автоматическом режиме при изготовлении изделий изменяющиеся номенклатурой. Развитие ГПС происходит в направлении к безлюдной технологии, обеспечивающей работу оборудования в течение заданного времени без участия опратора.

Для каждого изделия при заданных требованиях к количеству и качеству продукции могут быть разработаны различные варианты ГПС, отличающиеся методами и маршрутами обработки, контроля и сборки, степенью дифференциации и концентрации операций технологического процесса, типами транспортно – загрузочных систем, числом обслуживающих транспортных средств (ОТС), характером межагрегатных и межучастковых связей, конструктивными решениями основных и вспомогательных механизмов и устройств, принципами построения системы управления.

Технический уровень и эффективность ГПС определяется такими показателями, как качество изделий, производительность ГПС и её надежность, структура потоков компонентов, поступающих на ее вход. Именно с учетом этих критериев должны решаться такие задачи, как выбор типа и количества технологического оборудования, межоперационных накопителей, их вместимости и мест их расположения, числа обслуживающих операторов, структуры и параметров транспортно-складской системы и т.п.

Гибкие производственные системы могут быть построены из взаимозаменяемых, из взаимодополняющих ячеек или же смешанным образом.

На рисунке показана схема гибкой системы из двух однотипных взаимозаменяемых обрабатывающих центров (ОЦ). Обрабатывающие центры обслуживаются двумя транспортными тележками (робокарами), поддерживающими движение материальных потоков (деталей, заготовок, инструментов). Обычным является управление в автоматизированном режиме. Если допускаются ручные операции, то оператору должна быть предоставлена определенная свобода действий. Управление совместной работой ОЦ и транспортной системой осуществляется от центральной ЭВМ.

В общем случае управлением робокарами осуществляется от центральной ЭВМ через промежуточное устройство или же от локальной системы управления (ЛСУ). Передача команд на робокары может осуществляться только на остановках, которые делят трассы движения на зоны. ЭВМ разрешает пребывание в конкретной зоне только одного робокара. Максимальная скорость движения может достигать 1 м/с.

Верхняя часть робокара для выполнения операций перегрузки, разгрузки и загрузки может подниматься и опускаться с помощью гидропривода. При отказе или отключении управления от ЭВМ робокар может управляться Л СУ.

Существуют различные варианты робокаров, используемых в качестве транспортных средств в ГПС. Наиболее распространен вариант, когда робокар перемещается вдоль трека (маршрута, трассы) или иной конструкции, уложенной в полу или на его поверхности. Один из вариантов трассирования заключается в том, что на поверхность пола наносят трек в виде полосы (флюоресцентной, светоотражающей, белой с черной окантовкой), а маршрутослежение осуществляется оптоэлектронными методами. Недостатком является необходимость следить за чистотой полосы. Поэтому более распространенным является трассирование робокаров индуктивным проводником, уложенным в канавке на небольшой глубине (порядка 20 мм). Известны и другие интересные решения - с применением, например, телевизионного навигационного оборудования для свободного перемещения в пространстве под управлением ЭВМ.

Источником снабжения робокаров материальными потоками является автоматизированный склад со штабелерами, осуществляющими адресуемый доступ к любой ячейке склада. Склад сам по себе является достаточно сложным объектом управления.


В качестве его системы управления используют программируемые контроллеры, ЭВМ или же специализированного устройства.

Наиболее распространенные робокары с индуктивным маршрутослежением имеют следующие характеристики: грузоподъемность - 500 кг; скорость перемещения - 70 м/мин; ускорения при разгоне и торможении соответственно - 0,5 и 0,7 м/с 2 ; ускорение при аварийном торможении 2,5 м\с 2 ; величина подъема палеты - 130 мм; точность остановки робокара - 30 мм; время цикла перегрузки - 3 с; радиус поворота на максимальной скорости - 0,9 м; время работы без подзарядки аккумуляторов - 6 ч; напряжение аккумуляторной батареи - 24В; мощность каждого из двух приводных двигателей - 600 Вт; собственная масса робокара - 425 кг.

Важным преимуществом робокаров как транспортных средств является отсутствие сколько-нибудь серьезных ограничений на расстановку оборудования, которая может быть осуществлена из соображений наибольшей эффективности по любым критериям. Маршрут робокаров нередко оказывается достаточно сложным, с параллельными ветвями и петлями.

1. Особенности проектирования технологических процессов в условиях автоматизированного производства

Основой автоматизации производства являются технологические процессы (ТП), которые должны обеспечивать высокую производительность, надежность, качество и эффективность изготовления изделий.

Характерной особенностью ТП обработки и сборки является строгая ориентация деталей и инструмента относительно друг друга в рабочем процессе (первый класс процессов). Термообработка, сушка, окраска и прочее в отличие от обработки и сборки не требуют строгой ориентации детали (второй класс процессов).

ТП классифицируют по непрерывности на дискретные и непрерывные.

Разработка ТП АП по сравнению с технологией неавтоматизированного производства имеет свою специфику:

1.Автоматизированные ТП включают не только разнородные операции механической обработки резанием, но и обработку давлением, термообработку, сборку, контроль, упаковку, а также транспортно-складские и другие операции.

2.Требования к гибкости и автоматизации производственных процессов диктуют необходимость комплексной и детальной проработки технологии, тщательного анализа объектов производства, проработки маршрутной и операционной технологии, обеспечения надежности и гибкости процесса изготовления изделий с заданным качеством.

3.При широкой номенклатуре изделий технологические решения многовариантны.

4.Возрастает степень интеграции работ, выполняемых различными технологическими подразделениями.

Основные принципы построения технологии механообработки в АПС

1.Принцип завершенности . Следует стремиться к выполнению всех операций в пределах одной АПС без промежуточной передачи полуфабрикатов в другие подразделения или вспомогательные отделения.

2.Принцип малооперационной технологии. Формирование ТП с максимально возможным укрупнением операций, с минимальным числом операций и установок в операциях.

3.Принцип «малолюдной» технологии. Обеспечение автоматической работы АПС в пределах всего производственного цикла.

4.Принцип «безотладочной» технологии . Разработка ТП, не требующих отладки на рабочих позициях.

5.Принцип активно-управляемой технологии. Организация управления ТП и коррекция проектных решений на основе рабочей информации о ходе ТП. Корректироваться могут как технологические параметры, формируемые на этапе управления, так и исходные параметры технологической подготовки производства (ТПП).

6.Принцип оптимальности . Принятие решения на каждом этапе ТПП и управления ТП на основе единого критерия оптимальности.

Помимо рассмотренных для технологии АПС характерны и др. принципы: компьютерной технологии, информационной обеспеченности, интеграции, безбумажной документации, групповой технологии.

2. Типовые и групповые ТП

Типизация технологических процессов для сходных по конфигурации и технологическим особенностям групп деталей предусматривает их изготовление по одинаковым ТП, основанным на применении наиболее совершенных методов обработки и обеспечивающим достижение наивысшей производительности, экономичности и качества. Основа типизации - правила обработки отдельных элементарных поверхностей и правила назначения очередности обработки этих поверхностей. Типовые ТП находят применение, главным образом, в крупносерийном и массовом производстве.

Принцип групповой технологии лежит в основе технологии переналаживаемого производства - мелко- и среднесерийного. В отличие от типизации ТП при групповой технологии общим признаком является общность обрабатываемых поверхностей и их сочетаний. Поэтому групповые методы обработки характерны для обработки деталей с широкой номенклатурой.

И типизация ТП, и метод групповой технологии являются основными направлениями унификации технологических решений, повышающей эффективность производства.

Классификация деталей

Классификацию производят в целях определения групп технологически однородных деталей для их совместной обработки в условиях группового производства. Выполняют ее в два этапа: первичная классификация, т. е. кодирование деталей обследуемого производства по конструктивно-технологическим признакам; вторичная классификация, т. е. группирование деталей с одинаковыми или несущественно отличающимися признаками классификации.

При классификации деталей нужно учитывать следующие признаки: конструктивные - габаритные размеры, массу, материал, вид обработки и заготовки; число операций обработки; точностные и другие показатели.

Группирование деталей выполняют в такой последовательности: выбор совокупности деталей на уровне классов, например тела вращения для механообрабатывающего производства; выбор совокупности деталей на уровне подкласса, например детали типа вала; классификация деталей по комбинации поверхностей, например валы с комбинацией гладких цилиндрических поверхностей; группирование по габаритным размерам с выделением областей с максимальной плотностью распределения размеров; определение по диаграмме областей с наибольшим числом наименований деталей.

Технологичность конструкций изделий для условий АП

Конструкция изделия считается технологичной, если для его изготовления и эксплуатации требуются минимальные затраты материалов, времени и средств. Оценка технологичности проводится по качественным и количественным критериям отдельно для заготовок, обрабатываемых деталей, сборочных единиц.

Детали, подлежащие обработке в АП, должны быть технологичны, т. е. просты по форме, габаритам, состоять из стандартных поверхностей и иметь максимальный коэффициент использования материала.

Детали, подлежащие сборке, должны иметь как можно больше стандартных поверхностей соединений, простейших элементов ориентации сборочных единиц и деталей.

3. Особенности проектирования технологических процессов изготовления деталей на автоматических линиях и станках с ЧПУ

Автоматическая линия - это непрерывно действующий комплекс взаимосвязанного оборудования и системы управления, где необходима полная временная синхронизация операций и переходов. Наиболее эффективными методами синхронизации являются концентрация и дифференциация ТП.

Дифференциация технологического процесса, упрощение и синхронизация переходов - необходимые условия надежности и производительности. Чрезмерная дифференциация приводит к усложнению обслуживающего оборудования, увеличению площадей и объема обслуживания. Целесообразная концентрация операций и переходов, не снижая практически производительность, может быть осуществлена путем агрегатирования, применением многоинструментальных наладок.

Для синхронизации работы в автоматической линии (АЛ) определяется лимитирующий инструмент, лимитирующий станок и лимитирующий участок, по которым устанавливается реальный такт выпуска АЛ (мин) по формуле

где Ф - действительный фонд работы оборудования, ч; N -программа выпуска, шт.

Для обеспечения высокой надежности АЛ разделяют на участки, которые связаны друг с другом через накопители, осуществляющие так называемую гибкую связь между участками, обеспечивая независимую работу смежных участков в случае отказа на одном из них. Внутри участка сохраняется жесткая связь. Для оборудования с жесткой связью важно планировать время и длительность плановых остановок.

Станки с ЧПУ дают высокую точность и качество изделий и могут использоваться при обработке сложных деталей с точными ступенчатыми или криволинейными контурами. При этом снижается себестоимость обработки, квалификация и число обслуживающего персонала. Особенности обработки деталей на станках с ЧПУ определяются особенностями самих станков и в первую очередь их системами ЧПУ, которые обеспечивают:

1)сокращение времени наладки и переналадки оборудования; 2)увеличение сложности циклов обработки; 3) возможность реализации ходов цикла со сложной криволинейной траекторией; 4) возможность унификации систем управления (СУ) станков с СУ другого оборудования; 5) возможность использования ЭВМ для управления станками с ЧПУ, входящими в состав АПС.

Основные требования к технологии и организации механической обработки в переналаживаемых АПС на примере изготовления основных типовых деталей

Для разработки технологии в АПС характерен комплексный подход - детальная проработка не только основных, но и вспомогательных операций и переходов, включая транспортировку изделий, их контроль, складирование, испытания, упаковку.

Для стабилизации и повышения надежности обработки применяют два основных метода построения ТП:

1)использование оборудования, обеспечивающего надежную обработку почти без участия оператора;

2)регулирование параметров ТП на основе контроля изделий в ходе самого процесса.

Для повышения гибкости и эффективности в АПС используют принцип групповой технологии.

4. Особенности разработки ТП автоматизированной и роботизированной сборки

Автоматизированная сборка изделий выполняется на сборочных автоматах и АЛ. Важным условием разработки рационального ТП автоматизированной сборки является унификация и нормализация соединений, т. е. приведение их к определенной номенклатуре видов и точностей.

Главным отличием роботизированного производства является замена сборщиков сборочными роботами и выполнение контроля контрольными роботами или автоматическими контрольными устройствами.

Роботизированная сборка должна выполняться по принципу полной взаимозаменяемости или (реже) по принципу групповой взаимозаменяемости. Исключается возможность подгонки, регулировки.

Выполнение операций сборки должно проходить от простого к сложному. В зависимости от сложности и габаритов изделий выбирают форму организации сборки: стационарную или конвейерную. Состав РТК - это сборочное оборудование и приспособления, транспортная система, операционные сборочные роботы, контрольные роботы, система управления.

Есть все основания полагать, что именно ближайшее десятилетие станет переломным этапом в развитии новых подходов к производству, рубежом между эпохами неавтоматизированного и автоматизированного производства.

Совершенно очевидно, что именно сейчас для этого созрели научно-технические предпосылки, связанные с появлением и развитием новейших средств автоматизации. К ним относятся в первую очередь автоматические системы управления на основе промышленных контроллеров и, конечно же, промышленные роботы, поднявшие производство на качественно более высокий уровень.

Казалось бы, безусловная прогрессивность в сочетании с повышенным вниманием должны были обеспечить промышленным роботам триумфальное шествие, позволить им внести весомый вклад в интенсификацию производственных процессов, сокращение доли ручного труда. Однако пока этого не происходит в должной степени. По крайней мере, что касается ситуации в нашей стране.

Очевидно, что основная проблема медленного развития автоматизации и, в частности, роботизированного производства заключается в явном несоответствии затрат сил и средств с одной стороны и реальной отдачи с другой. И вызвано это не вдруг открывшимися недостатками промышленных роботов, а просчетами, допускаемыми при подготовке такого производства. Производство, с его суровыми законами, неизбежно отторгает дорогие, тихоходные и малонадежные конструкции.

Россия может и должна вернуть себе статус мировой промышленной державы. Чтобы это осуществить, необходимо обладать рядом ключевых преимуществ - перспективными направлениями и технологиями, развитым станкостроением, а главное - человеческими ресурсами, которые в состоянии воплотить задуманное в жизнь. Специфика создания любой новой продукции, будь то новейшие образцы вооружения, морских и воздушных судов или других высокотехнологичных изделий, состоит в том, что проектируется только то, что в принципе можно изготовить. Говорить о создании, например, истребителя нового поколения, не имея оборудования соответствующего уровня, бессмысленно. Таким образом, новейшее оборудование является основой для создания новейших технологий. Отказ от планомерного промышленного регулирования, прямого «взращивания» инновационных проектов приводит к отказу и от современных промышленных производств: судо- и авиастроения, космической сферы, скоростного железнодорожного транспорта, современных систем вооружений.

Поскольку автоматизация и роботизированное производство по своей сути тесно связаны с разработкой новых видов продукции, они способны определять уровень конкурентоспособности страны. Поэтому необходимо изучать и исследовать производственные циклы предприятий различных отраслей с крупносерийным, серийным и мелкосерийным выпуском продукции с целью определения областей рационального применения роботов и установления функциональных и технических требований к ним.

В мире происходит динамичное развитие робототехники. Созданы и создаются все новые высокоэффективные конструкции роботов, промышленные контроллеры для массового применения. Их количество быстро растет, так как сокращение доли ручного труда, повышение производительности и рост темпов производства являются насущной задачей эффективного промышленного производства в развитых постиндустриальных странах. При этом во многих случаях именно появление технологии является стимулом к разработке новых видов продукции. Технология, доведенная до совершенства, определяет себестоимость производства, а в конечном счете и эффективность и конкурентоспособность экономики страны в целом. Таким образом, формирование этого направления позволит придать импульс находящейся на подъеме промышленности и заложить фундамент для ее динамичного развития.

Развитие промышленного производства определяется ростом производительности труда. Производительность технологической операции в любой отрасли промышленности зависит от затрат времени на выполнение главных функциональных действий (основное время), вспомогательных действий (вспомогательное время) и потерь времени, обусловленных недостаточной организацией труда (организационные потери) и длительным выполнением некоторых дополнительных действий (собственные потери). Сокращения основного времени можно добиться путем совершенствования технологии обработки, а также конструктивными изменениями в оборудовании. Минимизация организационных потерь времени предполагает тщательную проработку условий организации производства, доставки материалов и комплектующих, налаженные кооперационные связи и многое другое, а сокращение вспомогательного времени и собственных потерь связано с механизацией и автоматизацией производства. Автоматизация производства возможна только на основе новейших достижений науки и техники, применения прогрессивной технологии и использования передового производственного опыта. Ну а гибкая автоматизация в свою очередь дает возможность быстрой перенастройки производства для выполнения технологических функций с определенной производительностью обработки на основе максимального использования вычислительной техники и электроники.

В виду того, что компьютерные технологии развиваются быстрыми темпами и ничто не мешает их применению в связке с технологическим оборудованием, можно сделать вывод, что в ближайшее время участие человека в производственных процессах будет сведено к минимуму. Предприятия недалекого будущего - это полностью автоматизированные цеха с гибкой организацией производства, обслуживаемого группами роботов с единым центром управления.

НОВЫЕ ЗАДАЧИ - НОВЫЕ РЕШЕНИЯ

Автоматизация производства приводит к значительному повышению его эффективности. Это связано, с одной стороны, с улучшением организации производства, ускорением оборота средств и лучшим использованием основных фондов, с другой - со снижением себестоимости обработки, расходов на заработную плату и энергозатраты. Третий немаловажный фактор - повышение уровня культуры производства, качества выпускаемой продукции и т.д.

Станки с ЧПУ стали символом движения к инновационной организации производства. Однако, несмотря на масштабы и всеохватность областей их применения, сегодня они не являются самым значительным достижением в области автоматизации. За кулисами находятся программируемые контроллеры, микропроцессоры, компьютеры, управляющие технологическими процессами, а также логические системы управления, пользующиеся даже большим успехом и шире применяющиеся в этой области. В то же время все перечисленные устройства могут рассматриваться как члены одной семьи оборудования для гибкой автоматизации, на корню меняющей сложившуюся систему промышленного производства.

Уже доказано, что использование промышленных роботов не только повышает уровень автоматизации поточного производства, но и позволяет более эффективно использовать технологическое оборудование и на этой основе значительно увеличить производительность труда. Применение роботов также решает проблему обеспечения кадрами на тяжелых и вредных операциях.

В области создания и применения промышленных роботов наша страна пока находится в начальной стадии, поэтому предстоит провести большой объем исследований и разработок, наработать собственную базу типовых решений. Наряду с освоением универсальных роботов необходимо наладить производство типовых моделей оборудования специального назначения (пневматические захваты, стационарные устройства и тому подобные приспособления), которые позволят в дальнейшем расширить возможности автоматизации. Кроме того, следует разработать упрощенные модели роботов и механических захватов для выполнения несложных операций.

Простая автоматизация рабочих мест уже перестала устраивать руководителей производства. Почему? Ведь высвобождаемое время - важнейший фактор, влияющий на эффективность деятельности промышленного предприятия. Однако экономический эффект от локальной, «кусочной» автоматизации минимален, так как процесс проектирования остается классически последовательным: конструкторы создают документацию, передают ее технологам, забирают обратно на корректировку, возвращают исправленную документацию технологам, те подготавливают технологическую документацию, согласовывают со снабженцами и экономистами и так далее. В результате ни полной экономической отдачи, ни действительно значимого сокращения срока подготовки производства автоматизация не приносит, хотя положительный эффект достигается в любом случае.

Не следует забывать, что разработка и подготовка производства сложной, высокотехнологичной продукции - это коллективный и взаимоувязанный процесс, в который вовлечены десятки и сотни специалистов предприятия или даже группы предприятий. В процессе разработки изделия возникает ряд затруднений, влияющих на общий успех. В первую очередь это отсутствие возможности видеть ключевые ресурсы, вовлеченные в процесс разработки в их фактическом состоянии на данный момент времени. Это также организация совместной работы коллектива специалистов с привлечением компаний, поставляющих какие-либо компоненты для разрабатываемого изделия. Существенно сократить сроки подготовки такого производства можно только одним способом - за счет параллельного выполнения работ и тесного взаимодействия всех участников процесса. Подобную задачу можно решить за счет создания единого информационного пространства предприятия, своеобразного массива цифровых данных о продукции.

С ЧЕГО НАЧИНАТЬ АВТОМАТИЗАЦИЮ

Ниже приведен краткий алгоритм, позволяющий понять, что же нужно выяснить, чтобы приступить к реализации проекта автоматизации производства.

1. Для начала необходимо провести оценку объекта автоматизации - что требуется заменить, какое оборудование нужно приобрести и что сможет увеличить производительность предприятия.

2. На основе разработанного технического задания нужно выбрать наиболее оптимальные элементы для решения поставленных задач. Это могут быть специальные датчики и инструменты контроля, например, за работой оборудования, а также различные комплекты для дальнейшего сбора и обработки всей полученной информации, специальные устройства для обеспечения интерфейса - пульт контроля для нормальной деятельности диспетчеров производства и т. п.

3. Составить проектную документацию - схему автоматизации, желательно в виде циклограмм, электрическую принципиальную схему, описание контроля управления систем.

4. Следующим этапом идет разработка программ, которые помогут реализовать алгоритмы управления для каждой конкретной единицы оборудования (нижнюю ступень управления). После этого составляется общий алгоритм для сбора, обработки полученных данных (верхняя ступень управления производством).

5. Когда все вышеперечисленное выполнено, целесообразно заняться обеспечением поставок необходимого оборудования. Причем его пусконаладка должна производиться по заранее и строго определенным приоритетам.

6. Необходимо провести автоматизацию всех ступеней производственного процесса путем программного объединения систем управления каждым отдельным уровнем, предусмотрев для них возможность гибких трансформаций.

ТИПИЧНЫЕ ПРОБЛЕМЫ И РЕКОМЕНДАЦИИ ПО ИХ ПРЕОДОЛЕНИЮ

Компания «Солвер» занимается автоматизацией производств машиностроительных предприятий 20 лет. Опыт показывает, что объективными факторами, препятствующими успешному претворению проектов автоматизации в жизнь, являются:

Неготовность коллектива предприятия принять автоматизацию как необходимый и достаточный инструмент производственного цикла на данном этапе развития предприятия;

Нехватка достаточного количества компетентных специалистов в области автоматизации;

Часто на предприятии нет четкого понимания конечных целей мероприятий по автоматизации.

Компанией «Солвер» были сформулированы несколько базовых принципов, позволяющих рационально взглянуть на проблемы роботизации, и постулаты, которыми целесообразно руководствоваться, прорабатывая этапы автоматизации производства.

1. Средства роботизации должны не просто заменять человека или имитировать его действия, но и выполнять эти производственные функции быстрее и лучше. Лишь тогда они будут по-настоящему эффективными. Этим и достигается принцип конечного результата.

2. Комплексность подхода. Должны быть рассмотрены и в конечном итоге решены на новом, более высоком уровне все важнейшие компоненты производственного процесса - технологии, объекты производства, вспомогательное оборудование, системы управления и обслуживания. Одна непроработанная на должном уровне компонента производственного процесса способна сделать неэффективным весь комплекс мер по автоматизации. И промышленные роботы, и автоматизированные системы управления должны внедряться с учетом прогресса технологии и конструкции и в комплексе приспосабливаться к требованиям производства - лишь тогда они будут эффективными.

3. И самое важное - принцип необходимости. Средства роботизации, включая самые перспективные и прогрессивные, должны применяться не там, где их можно приспособить, а там, где без них нельзя обойтись.

Закончить статью хотелось бы следующим выводом. Никто не в состоянии детально и точно описать зарождающееся сегодня сверхиндустриальное общество. Но уже сейчас надо понимать, что в обозримой перспективе общество перейдет от массовой фабричной системы к уникально-штучному производству, интеллектуальному труду, в основе которых будут лежать информация, супертехнологии, а также высокая степень автоматизации производства. Другого пути не предвидится.

Типы систем автоматизации включают в себя:

  • неизменяемые системы. Это системы, в которых последовательность действий определяется конфигурацией оборудования или условиями процесса и не может быть изменена в ходе процесса.
  • программируемые системы. Это системы, в которых последовательность действий может изменяться в зависимости от заданной программы и конфигурации процесса. Выбор необходимой последовательности действий осуществляется за счет набора инструкций, которые могут быть прочитаны и интерпретированы системой.
  • гибкие (самонастраиваемые) системы. Это системы, которые способны осуществлять выбор необходимых действий в процессе работы. Изменение конфигурации процесса (последовательности и условий выполнения операций) осуществляется на основании информации о ходе процесса.

Эти типы систем могут применяться на всех уровнях автоматизации процессов по отдельности или в составе комбинированной системы.

В каждой отрасли экономики существуют предприятия и организации, которые производят продукцию или предоставляют услуги. Все эти предприятия можно разделить на три группы, в зависимости от их «удаленности» в цепочке переработки природных ресурсов.

Первая группа предприятий, это предприятия, добывающие или производящие природные ресурсы. К таким предприятиям относятся, например, сельскохозяйственные производители, нефтегазодобывающие предприятия.

Вторая группа предприятий, это предприятия, выполняющие переработку природного сырья. Они изготавливают продукцию из сырья, добытого или произведенного предприятиями первой группы. К таким предприятиям относятся, например, предприятия автомобильной промышленности, сталелитейные предприятия, предприятия электронной промышленности, электростанции и т.п.

Третья группа, это предприятия сферы услуг. К таким организациям относятся, например, банки, образовательные учреждения, медицинские учреждения, рестораны и пр.

Для всех предприятий можно выделить общие группы процессов, связанные с производством продукции или предоставлением услуг.

К таким процессам относятся:

  • бизнес процессы;
  • процессы проектирования и разработки;
  • процессы производства;
  • процессы контроля и анализа.
  • Бизнес процессы – это процессы, обеспечивающие взаимодействие внутри организации и с внешними заинтересованными сторонами (потребителями, поставщиками, надзорными органами и пр.). К этой категории процессов можно отнести процессы маркетинга и продаж, взаимодействия с потребителями , процессы финансового, кадрового, материального планирования и учета и пр.
  • Процессы проектирования и разработки – это все процессы, связанные с разработкой продукции или услуги. К таким процессам относятся процессы планирования разработки, сбора и подготовки исходных данных, выполнение проекта, контроль и анализ результатов проектирования и пр.
  • Процессы производства – это процессы, необходимые для производства продукции или предоставления услуг. К этой группе относятся все производственные и технологические процессы. Они также включают в себя процессы планирования потребности и планирования мощностей, логистические процессы и процессы обслуживания.
  • Процессы контроля и анализа – эта группа процессов связана со сбором и обработкой информации о выполнении процессов. К таким процессам относятся процессы контроля качества, операционного управления, процессы контроля запасов и пр.

Большинство процессов, относящихся к этим группам, может быть автоматизирована. На сегодняшний день, существуют классы систем, которые обеспечивают автоматизацию этих процессов.

Техническое задание на подсистему "Склады" Техническое задание на подсистему "Документооборот" Техническое задание на подсистему "Закупки"

Стратегия автоматизации процессов

Автоматизация процессов представляет собой сложную и трудоемкую задачу. Для успешного решения этой задачи необходимо придерживаться определенной стратегии автоматизации. Она позволяет улучшить процессы и получить от автоматизации ряд существенных преимуществ.

Кратко, стратегию можно сформулировать следующим образом:

  • понимание процесса. Для того чтобы автоматизировать процесс необходимо понимать существующий процесс со всеми его деталями. Процесс должен быть полностью проанализирован. Должны быть определены входы и выходы процесса, последовательность действий, взаимосвязь с другими процессами, состав ресурсов процесса и пр.
  • упрощение процесса. После проведения анализа процесса необходимо упростить процесс. Лишние операции, не приносящие ценности, должны быть сокращены. Отдельные операции могут объединяться или выполняться параллельно. Для улучшения процесса могут быть предложены другие технологии его исполнения.
  • автоматизация процесса. Автоматизация процессов может выполняться только после того, как процесс максимально упростился. Чем проще порядок действий процесса, тем проще его автоматизировать и тем эффективнее будет работать автоматизированный процесс.

В настоящее время очень сложно представить себе промышленное предприятие без автоматизированных систем управления. Автоматизация повышает производительность предприятий, минимизирует человеческий фактор и улучшает качество продукции.

Долгое время производство оставалась частично автоматизированным. Современные технологии позволяют перейти на полностью автоматизированные схемы, где роль человека сводится к выполнению функций оператора.

Автоматизация технологического процесса может быть:

  • частичная. На производстве автоматизируют отдельные аппараты и машины. В основном применяется на предприятиях пищевой промышленности, когда человек не может выполнять некоторую работу в связи с ее сложностью или быстротой. Такая автоматизация применяется на объектах легкой и химической промышленности.
  • Комплексная. Ярким примером такой автоматизации можно назвать электростанцию. Она функционирует как единый комплекс, человек выполняет только функции оператора.
  • Полная. Все функции управления и контроля выполняются машиной. Современные технологии вплотную подошли к полной автоматизации, но, к сожалению, без человеческого фактора пока обойтись не могут. Самый высокий уровень автоматизации применяется в области атомной энергетики.

К основным элементам автоматизации производства относятся:

  • Станки с ЧПУ (появились в 1955 году).
  • Промышленные роботы (первые модели появились в 1962 году).
  • Роботизированные технологические комплексы.
  • Автоматизированные складские системы.
  • Системы автоматизированного проектирования.

Преимущества автоматизации:

  • Большинство управленческих решений принимается автоматически и своевременно. Также с помощью машин можно ввести оперативный учет.
  • Автоматизация позволяет максимально эффективно распределять трудовые ресурсы.
  • Производственные циклы никогда не дают сбоев.
  • Все решения автоматических систем сохраняются в базе данных, что облегчает анализ деятельности предприятия
  • Автоматизация производства значительно сокращает оборот документов на предприятии.
  • Производство работает стабильно, без видимых отклонений.

Современная оптимизация производства требует участия профессиональных компаний. Одной из лучших можно назвать ООО "Промышленная Автоматизация", которая проводит автоматизацию предприятий на всех уровнях. Эта компания внедряет высокотехнологичные системы на предприятия производства.

Таким образом, качественные изменения в технологии системы управления и автоматизации производства, дают толчок к экономическому развитию, за счет снижения затрат на энергоресурсы и материалы. Компания "Nordengineering" индивидуально подходит к каждому предпринимательству. Компания гарантирует качество своей работы, и экономический рост клиента. Автоматизация производится на всех уровнях начиная от компрессорного, и заканчивая комплексом готовой продукции.

Loading...Loading...