Печальная история советских компьютеров. История развития вычислительной техники в армянской сср Армянская эвм 60 х годов

Почти шестьдесят лет назад – 31 декабря 1951 года – была завершена работа над первым советским компьютером. Что же было потом? Сегодня нам больше известна история развития компьютерной техники в США, нежели в бывшем СССР.
Про отечественную компьютерную школу предпочитают в наше время умалчивать. Попробуем приоткрыть некоторые факты, которые к этому привели.

Хотя в наше время вычислительные операции далеко не главная, и уж во всяком случае не единственная сфера применения компьютера, исторически он обязан своим возникновением именно необходимости развития вычислительной техники.

Первыми вычислительными устройствами были различные механические приборы, наиболее типичным представителем которых является арифмометр с десятичной системой исчисления. Непосредственными предшественниками ЭВМ явились машины двоичного исчисления, выполненные на электромагнитных реле. Вскоре на смену им пришли приборы, работающие на электронных лампах, что означало рождение ЭВМ первого поколения.

Появление первых вычислительных устройств совпадает по времени с феноменальными открытиями ученых в области энергетики, ядерной физики, ракетостроения, электроники. Научные исследования в этих областях требовали исключительно точных, быстрых и сложнейших вычислений. Другая причина форсирования работ в области информационных технологий – начавшийся процесс послевоенной конфронтации между СССР и США. Первые компьютеры появились в обоих государствах практически одновременно.

Официально началом эры вычислительной техники принято считать 1946 год, когда военное ведомство США рассекретило легендарную электронно-вычислительную машину под названием ENIAC. Эта первая полномасштабная универсальная ЭВМ была построена в университете штата Пенсильвания. "Крестным отцом" ее были американские физики Джон Моучли и Джон Эккерт. Первый разработал архитектуру ЭВМ, а второй воплотил теоретические разработки в жизнь. Работы начаты были в 1942 году, а весной 1945 года ЭВМ была построена.

Основоположниками советской вычислительной техники были Сергей Лебедев и Исаак Брук. Эти ученые, работая в энергетической области, хотели хоть как-то автоматизировать утомительный вычислительный процесс. В результате каждый из них предложил независимое направление развития вычислительной техники. В 1939 году Брук создал в лаборатории Энергетического института АН СССР механический интегратор для решения дифференциальных уравнений, а Лебедев создал в 1945 году электронную аналоговую машину, призванную решать подобные же задачи.

Надо заметить, что к 1948 году в СССР сложились три научные школы развития средств вычислительной техники:
- Сергея Лебедева, ставшего идеологом ЭВМ с высоким быстродействием;
- Иссака Брука, занимавшегося разработкой малых и управляющих ЭВМ;
- Бориса Рамеева, который до конца 60-х годов возглавлял направление, связанное с разработкой универсальной ЭВМ.

Началом истории советской вычислительной техники считается 1948 год. Именно в этом году под руководством Брука и его коллеги Рамеева был разработан проект автоматической цифровой вычислительной машины с жестким программным управлением. Однако этот проект не был реализован. В этом же году Лебедев начал на базе Института электротехники АН УССР работу по созданию малой электронной счетной машины, которая была успешно завершена через два года.

В 1949 году Рамеев разработал проект новой ЭВМ "Стрела" и участвовал в ее создании как заместитель главного конструктора Базилевского. "Стрела" стала первой советской серийной ЭВМ. После нее Рамеев в качестве генерального конструктора начал активно работать над ЭВМ "Урал-1". Сегодня увидеть своими глазами первые советские ЭВМ можно в Политехническом музее в Москве. Интересные экспонаты хранятся также в Институте кибернетики АН Украины имени В.М. Глушкова в Киеве.

К середине 60-х годов созданием ЭВМ, помимо основных научных школ в Москве и Пензе, занимались в Минске (серия машин производительности "Минск") и Ереване (мини-компьютеры и ЭВМ средней производительности "Наири" и "Раздан").

Институт кибернетики АН Украины, возглавляемый В.М. Глушковым, проводил теоретические исследования в области проектирования ЭВМ и воплотил теорию в реальных машинах – малых ЭВМ "Днепр", миникомпьютерах для инженерного применения "Промiнь" и "Мир".

Тогда казалось, что нет особых преград для стремительного развития отечественной компьютерной школы и вычислительной техники. Но вот наступил роковой декабрь 1967 года, когда на правительственном уровне было принято решение о разработке единой серии электронно-вычислительных машин (ЕС ЭВМ). Но два года спустя в высших кулуарах власти сочли целесообразным развивать отрасль, опираясь на архитектуру ЭВМ программно-совместимого семейства IBM 360.

Академики Глушков и Лебедев выступали против копирования систем IBM, указывая на то, что в этом случае будет воспроизводиться техника почти десятилетней давности и затормозятся собственные научные разработки. Однако их голоса не были услышаны, что навсегда похоронило мечту ученых и энтузиастов о развитии собственной компьютерной индустрии. В результате вычислительные центры довольно быстро были заполнены компьютерами семейства ЕС ЭВМ, АСВТ, СМ ЭВМ.

Жертвы поклонения IBM не были оправданы, что подтвердила история. Так, во второй половине 80-х годов в Минске начался выпуск персональных ЕС ЭВМ (ЕС-1840, ЕС-45 и 55) на процессорах, подобных Intel. Однако опять же технология производства микропроцессоров не позволила пойти дальше уровня Intel 286.

К 1990 году в эксплуатации находилось порядка 15 тысяч машин ЕС ЭВМ. После прекращения их производства началось естественное вымирание отечественного компьютерного парка. Рассыпались сервисные системы, остановились заводы...

Такие вот грустные фактики всплывают, когда мы обращаемся к истории создания отечественных персональных компьютеров.

Компьютерная грамотность предполагает наличие представления о пяти поколениях ЭВМ, которое Вы получите после ознакомления с данной статьей.

Когда говорят о поколениях, то в первую очередь говорят об историческом портрете электронно-вычислительных машин (ЭВМ).

3.
4.
5.

Фотографии в фотоальбоме по истечении определенного срока показывают, как изменился во времени один и тот же человек. Точно так же поколения ЭВМ представляют серию портретов вычислительной техники на разных этапах ее развития.

Всю историю развития электронно-вычислительной техники принято делить на поколения. Смены поколений чаще всего были связаны со сменой элементной базы ЭВМ, с прогрессом электронной техники. Это всегда приводило к росту быстродействия и увеличению объема памяти. Кроме этого, как правило, происходили изменения в архитектуре ЭВМ, расширялся круг задач, решаемых на ЭВМ, менялся способ взаимодействия между пользователем и компьютером.

ЭВМ первого поколения

Онибыли ламповыми машинами 50-х годов. Их элементной базой были электровакуумные лампы. Эти ЭВМ были весьма громоздкими сооружениями, содержавшими в себе тысячи ламп, занимавшими иногда сотни квадратных метров территории, потреблявшими электроэнергию в сотни киловатт.

Например, одна из первых ЭВМ – представляла собой огромный по объему агрегат длиной более 30 метров, содержала 18 тысяч электровакуумных ламп и потребляла около 150 киловатт электроэнергии.

Для ввода программ и данных применялись перфоленты и перфокарты. Не было монитора, клавиатуры и мышки. Использовались эти машины, главным образом, для инженерных и научных расчетов, не связанных с переработкой больших объемов данных. В 1949 году в США был создан первый полупроводниковый прибор, заменяющий электронную лампу. Он получил название транзистор .

ЭВМ второго поколения

В 60-х годах транзисторы стали элементной базой для ЭВМ второго поколения. Машины стали компактнее, надежнее, менее энергоемкими. Возросло быстродействие и объем внутренней памяти. Большое развитие получили устройства внешней (магнитной) памяти: магнитные барабаны, накопители на магнитных лентах.

В этот период стали развиваться языки программирования высокого уровня: ФОРТРАН, АЛГОЛ, КОБОЛ. Составление программы перестало зависеть от конкретной модели машины, сделалось проще, понятнее, доступнее.

В 1959 г. был изобретен метод, позволивший создавать на одной пластине и транзисторы, и все необходимые соединения между ними. Полученные таким образом схемы стали называться интегральными схемами или чипами. Изобретение интегральных схем послужило основой для дальнейшей миниатюризации компьютеров.

В дальнейшем количество транзисторов, которое удавалось разместить на единицу площади интегральной схемы, увеличивалось приблизительно вдвое каждый год.

ЭВМ третьего поколения

Это поколение ЭВМ создавалось на новой элементной базе – интегральных схемах (ИС) .

ЭВМ третьего поколения начали производиться во второй половине 60-х годов, когда американская фирма IBM приступила к выпуску системы машин IBM-360. Немного позднее появились машины серии IBM-370.

В Советском Союзе в 70-х годах начался выпуск машин серии ЕС ЭВМ (Единая система ЭВМ) по образцу IBM 360/370. Скорость работы наиболее мощных моделей ЭВМ достигла уже нескольких миллионов операций в секунду. На машинах третьего поколения появился новый тип внешних запоминающих устройств – магнитные диски.

Успехи в развитии электроники привели к созданию больших интегральных схем (БИС) , где в одном кристалле размещалось несколько десятков тысяч электрических элементов.

В 1971 году американская фирма Intel объявила о создании микропроцессора. Это событие стало революционным в электронике.

– это миниатюрный мозг, работающий по программе, заложенной в его память.

Соединив микропроцессор с устройствами ввода-вывода и внешней памяти, получили новый тип компьютера: микро-ЭВМ.

ЭВМ четвертого поколения

Микро-ЭВМ относится к машинам четвертого поколения. Наибольшее распространение получили персональные компьютеры (ПК). Их появление связано с именами двух американских специалистов: и Стива Возняка. В 1976 году на свет появился их первый серийный ПК Apple-1, а в 1977 году – Apple-2.

Однако с 1980 года «законодателем мод» на рынке ПК становится американская фирма IBM. Ее архитектура стала фактически международным стандартом на профессиональные ПК. Машины этой серии получили название IBM PC (Personal Computer). Появление и распространение ПК по своему значению для общественного развития сопоставимо с появлением книгопечатания.

С развитием этого типа машин появилось понятие «информационные технологии», без которых невозможно обойтись в большинстве областей деятельности человека. Появилась новая дисциплина – информатика.

ЭВМ пятого поколения

Они будут основаны на принципиально новой элементной базе. Основным их качеством должен быть высокий интеллектуальный уровень, в частности, распознавание речи, образов. Это требует перехода от традиционной фон-неймановской к архитектурам, учитывающим требования задач создания искусственного интеллекта.


Таким образом, для компьютерной грамотности необходимо понимать, что на данный момент создано четыре поколения ЭВМ :

  • 1-ое поколение: 1946 г. создание машины ЭНИАК на электронных лампах.
  • 2-ое поколение: 60-е годы. ЭВМ построены на транзисторах.
  • 3-ье поколение: 70-е годы. ЭВМ построены на интегральных микросхемах (ИС).
  • 4-ое поколение: Начало создаваться с 1971 г. с изобретением микропроцессора (МП). Построены на основе больших интегральных схем (БИС) и сверх БИС (СБИС).

Пятое поколение ЭВМ строится по принципу человеческого мозга, управляется голосом. Соответственно, предполагается применение принципиально новых технологий. Огромные усилия были предприняты Японией в разработке компьютера 5-го поколения с искусственным интеллектом, но успеха они пока не добились.

Оганджанян С.Б.

В начале пятидесятых годов в СССР бурными темпами стала развиваться электроника и вычислительная техника (ВТ). Начиная осознавать перспективы развития ВТ руководство СССР в долгосрочной программе предусмотрело создание базовых регионов, в которых планировалось создание крупных производственных и научных объектов в этой области исходя из научного потенциала кадров, менталитета и др. Армения явилась одним из немногочисленных регионов СССР, который был наиболее подходящим для реализации этой программы. Научные исследования и научно-технические разработки в области информатики и ВТ в Армении начались в 1950-е годы, и именно в силу этого по инициативе академиков В.А. Амбарцумяна, А.Л. Шагиняна и А.Г. Иосифьяна СМ Арм. ССР выступил с предложением в СМ СССР о создании в составе Министерства приборостроения и средств автоматизации СССР Ереванского научно-исследовательского института математических машин (ЕрНИИММ), который был открыт в июне 1956 года. Через год, в 1957, по инициативе АН Арм. ССР и при поддержке СМ Арм. ССР - вычислительный центр АН и Госуниверситета (ныне Институт информатики и проблем автоматизации НАН РА).

Ведущую роль в создании института сыграл молодой ученый, академик С. Мергелян - первый руководитель ЕрНИИММ. До сих пор в Армении, в народе, «Институт Мергеляна» служит синонимом ЕрНИИММ.

Сергей Никитович Мергелян (19.5. 1928, Симферополь-20.8. 2008, Лос-Анджелес), математик, член-корреспондент АН СССР (1953), академик АН Арм. ССР (1956). Самый молодой доктор наук в истории СССР (степень присуждена при защите кандидатской диссертации в возрасте 20 лет в Математическом институте им. В.А. Стеклова АН СССР), самый молодой член-корреспондент АН СССР (присвоено в возрасте 24 лет). Лауреат Государственной премии СССР (1952), кавалер ордена Святого Месропа Маштоца (2008) - высший орден Республики Армения.

Начальной задачей поставленной перед ЕрНИИММ было создание средств электронной ВТ. Исходя из профиля института, там были созданы все структуры для разработки и внедрения ВТ, начиная с технического задания и кончая внедрением в производство и эксплуатацией: конструкторские отделы, отделения систем автоматического проектирования, отделения математического обеспечения и тестирования, подразделения системного анализа и проектирования, электронного проектирования, лаборатория типовых испытаний узлов и устройств ВТ и подразделения разработки документации. С целью отработки устройств и ЭВМ был создан опытный завод при ЕрНИИММ, который обеспечивал изготовление опытных образцов, отработку документации и технологических решений до передачи изделия в серийное производство (т.е. создание замкнутого цикла - «разработка - внедрение», школа Иосифьяна). Подобная организация цикла позволила добиться высокой эффективности при взаимодействии со многими НИИ и заводами в рамках установленной кооперации. С этой же целью на базе ЕрНИИММ в начале 1960-х годов в Ереване был создан завод «Электрон», который выполнял промышленную сборку ЭВМ разработанных в институте, а также в других НИИ Советского Союза.

В начале 1960-ых годов сформировались основные направления работ института: это, по классификации того времени, были малые и средние ЭВМ и в конце 60-ых годов - специальные вычислительные комплексы и автоматизированные системы управления специального назначения. Совместно с основными направлениями, для обеспечения их продвижения, развивались подразделения электронной и конструкторской разработки, программного и тестового обеспечения, автоматизации разработки, электропитания и систем памяти, технологического обеспечения и др.

В 1956-58 в ЕрНИИММ по документации московского Всесоюзного НИИ электромеханики (ныне ФГУП «НПП ВНИИЭМ с заводом имени А.Г. Иосифьяна») была осуществлена модернизация ЭВМ М-3 - внедрение новой оперативной памяти (ОП) на ферритовых кольцах, что позволило увеличить её быстродействие с 30 оп/с до 3000 оп/с. Усовершенствованный образец М-3 после наладки (Б. Мелик-Шахназаров, В. Русаневич и др.) в 1958 г. был передан в Институт энергетики им. Кржижановского АН СССР для решения задач в области энергетики. Эта работа явилась первым шагом ЕрНИИММ в области ВТ.

Одной из первых разработок, выполненных ЕрНИИММ, были ЭВМ первого поколения - на электронных лампах - «Арагац» (1958-1960 гг., гл. конструктор - Б. Хайкин), «Раздан-1» (гл. конструктор. Е. Брусиловский) и «Ереван» (гл. конструктор М. Айвазян).

В 1958-61 гг. в институте спроектировали универсальную ЭВМ «Раздан-2» (гл. конструктор. Е. Брусиловский) - первую в СССР ЭВМ полностью собранную на полупроводниковых приборах. Для стандартизации элементов проектируемых машин в институте создали комплекс элементов «Магний» (гл. конструктор В. Карапетян) и конструкторско-технологическую базу для ЭВМ новых поколений, что позволило создать универсальную ЭВМ «Раздан-3» (1965, гл. конструктор В. Русаневич), с быстродействием 15-20 тыс. оп/с и объёмом ОП 32 Кбайт - одна из первых машин, экспортируемых из СССР. Производство этой машины организовали на заводе «Электрон».

В 1957 г. начались и к 1960 г. успешно закончились работы по проектированию специализированных машин, имеющих оборонное значение, таких, как СЭВМ «Волна» (гл. конструктор Г. Белкин) и СЭВМ «Корунд» (гл. конструктор О. Цюпа). Тогда же были созданы ЭВМ «Каназ», управляющая технологическим процессом Канакерского алюминиевого завода (гл. конструктор А. Сагоян), и ЭВМ «Перепись», обрабатывающая результаты переписи населения СССР (гл. конструктор В. Русаневич).

В 1963-77 гг. директором института был назначен Ф. Саркисян, с именем которого, безусловно, связаны расцвет и становление ЕрНИИММ, его традиций, создание мощного сплава опытных наставников и молодых ученых. По его инициативе ставились и решались крупные научно-технические, производственные и организационные задачи. В институте появились новые направления, началось создание малых универсальных машин семейства «Наири». ЕрНИИММ принял участие в государственной программе создания Единой системы универсальных ЭВМ (ЕС ЭВМ) и автоматизированной системы управления (АСУ) особого назначения, необходимой для нужд Министерства обороны СССР. Был взят курс на повышение качества проектирования и увеличение мощности.

Фадей Тачатович Саркисян (18.9. 1923, Ереван - 10.1. 2010, Ереван) советский и армянский учёный, государственный деятель, генерал-майор, академик АН Армянской ССР (1977). В 1940-1942 учился в Ереванском политехническом институте; в 1942-1946 окончил Ленинградскую Военную электротехническую академию связи имени С. М. Буденного; в 1946-1963 являлся сотрудником Научно-технического комитета Главного ракетно-артиллерийского управления Министерства обороны СССР. В 1952 году участвовал в качестве советника в боевых действиях по ПВО КНР, награжден двумя медалями КНР. В 1963-77 - директор ЕрНИИММ, главный конструктор специальных больших автоматизированных систем управления. Председатель Совета Министров Армянской ССР (1977-89); президент Национальной академии наук Армении (1993-2006), иностранный член РАН (2003). Лауреат Государственных премий СССР (1971, 1981) и Украинской ССР (1986). Награжден орденами Трудового Красного Знамени (1965, 1976, 1986), Октябрьской революции (1971), Ленина (1981).

В 1962 г. в ЕрНИИММ начали разработку первых малых машин семейства «Наири», особенностью которых являлась организация управления и автоматизированного программирования по микропрограммным принципам, что дало возможность существенно упростить обслуживание машины, уменьшить габариты, увеличить надежность и сделать ее доступной для специалиста любой области науки и техники. Были созданы: Наири 1, 2, 3, 3-1 (1963-1971 гг., гл. конструктор - Г. Овсепян; Госпремия СССР, 1971 г.); в 1972-76 гг. ЭВМ Наири 3-2, Наири 3-3 (гл. конструктор - А. Геолецян; Госпремия Украинской ССР в составе авторского коллектива), которые были первыми в СССР проблемно-ориентированными ЭВМ коллективного пользования; ЭВМ Наири 4 АРМ/Наири 4 и Наири 4-1 (1974-1981 гг., гл. конструктор - Г. Оганян), предназначенные для автоматического управления типового производства, обеспечивали обработку графической и текстовой информации и совместимость с такими широко распространенными семействами ЭВМ, как СМ ЭВМ (СССР) и PDP (США); в 1980- 1981 гг. ЭВМ Наири 4В и Наири 4В/С (гл. конструкторы - В. Карапетян, А. Сагоян; Госпремия СССР в составе авторского коллектива, 1987 г.) предназначенные для использования в системах автоматического управления и вспомогательные ЭВМ в составе сложных систем для обороны, так и в народном хозяйстве; имели полную совместимость с семействами СМ ЭВМ и PDP. Разработчики семейства ЭВМ «Наири» получили 44 авторских свидетельства. Машины выставлялись на выставках СССР и в 19 зарубежных странах.

Впервые в стране в ЕрНИИММ был спроектирован и создан вычислительный комплекс «Маршрут-1», предназначенный для автоматизации билетно-кассовых операций Московского железнодорожного узла (гл. конструктор - А. Кучукян; Госпремия Арм. ССР, 1974 г.). Комплекс состоял из трех машин «Маршрут-1», способных работать как в сопряженном, так и в одиночном режимах, с оперативной памятью на магнитных дисках, долговременным запоминающим устройством емкостью 216 Кбайт. Впервые в стране был спроектирован и создан вычислительный комплекс, учитывающий требования, предъявляемые к системам бронирования мест на железнодорожном транспорте. Для комплекса, включая все устройства и узлы, был разработан пакет диагностических программ. Это дало возможность выявлять и исправлять многие характерные ошибки, что существенно облегчало обслуживание вычислительного комплекса в режиме реального времени. Вычислительный комплекс «Маршрут-1» дал возможность работать с 126 линиями связи. В 1971 г. комплекс пущен в эксплуатацию на Московском железнодорожном узле. Комплекс «Маршрут-1б» два раза (в 1973 и 1976 гг.) выставлялся на ВДНХ СССР, защищен несколькими авторскими свидетельствами. Вторая очередь системы бронирования билетов была построена с помощью вычислительных комплексов на основе ЕС ЭВМ, разработанных в институте. Систему установили на больших железнодорожных узлах СССР, создав единую сеть.

В 1977-1989 гг. велись работы по созданию ЭВМ «Ковер» (гл. конструктор В. Карапетян), которая предназначалась для использования АСУ особого назначения в ВЦ Министерства обороны СССР. Эта машина выполняла до двух миллионов коротких операций в секунду и имела ОП 10-30 Мб на магнитных дисках. Производство машин «Ковер» осуществлялось на опытном заводе ЕрНИИММ, на заводе «Электрон» и на ПО «Раздан» до 1990 г.

В конце 1960-х годов по инициативе Ф. Саркисяна институт принял активное участие в Международной программе создания Единой системы ЭВМ (ЕС-ЭВМ), которые были совместимы с семействами ЭВМ IBM360, 370 и 4300. ЭВМ серии ЕС должны были стандартизировать структуру систем, способы подключения устройств, ПО, средства телеобработки для всех машин и устройств, разрабатываемых в рамках этой программы, и были выпущены большой партией на заводе «Электрон» в Ереване и на Казанском заводе ЭВМ РФ. В 1972 г. в институте собрали одну из первых моделей ЕС ЭВМ - ЕС-1030 (гл. конструкторы - М. Семерджян, А. Кучукян; Госпремия Арм. ССР, 1976 г.). Она предназначалась для решения широкого круга научно-технических и информационно-логических задач. Модель была построена на интегральных микросхемах, имела быстродействие 70 тыс. оп/с, ОП 256-512 Кбайт и внешнюю память на магнитных дисках и лентах. В 1972 г. на Казанском заводе ЭВМ началось ее серийное производство. Машина экспортировалась в Чехословакию, Болгарию, Польшу, Монголию и Индию. ЭВМ ЕС-1030 демонстрировалась на международных ярмарках (Брно, Познань) и удостоилась там золотой медали и диплома.

В институте в 1974 г. начались работы по созданию нового ряда ЕС ЭВМ - «Ряд-2». Машины этого ряда благодаря использованию новых электронных элементов с более высокой степенью интеграции по сравнению с машинами «Ряд-1», имели лучшие технико-экономические характеристики. Одновременно разрабатывались и внедрялись в производство новые методы и технологии монтажа ЭВМ, изготовления многослойных плат, новые методы контроля и конструирования (гл. конструктор Э. Манучарян). В связи с разработкой этих машин в институте появилось новое научно-техническое направление автоматического проектирования устройств, узлов и элементов ЭВМ с помощью самих ЭВМ (начальники отделов А. Петросян, С. Саргсян, Ю. Шукурян, С. Амбарян).

Благодаря созданию и применению ряда программных и аппаратных средств, в первую очередь диагностических и самоконтролирующих, обслуживание машины ЕС-1045, ЕС-1046 по сравнению со старыми моделями ЕС ЭВМ существенно упрощалось (гл. конструктор - А. Кучукан; Госпремия СССР в составе авторского коллектива, 1983 г., Госпремии Арм. ССР 1983 и 1988 гг.). А. Кучукяну за разработку и организацию серийного производства и внедрение в народное хозяйство и оборону страны ЕС ЭВМ была присвоена Ленинская премия (1983) в составе коллектива. ЕС-1045 имела микропрограммное управление, при решении научно-технических задач показывала производительность 880 тыс.оп/с, ОП 4 Мбайт. ЕС 1045 дала возможность создания двухпроцессорной системы с общим полем основной и внешней памяти. Была разработана также ЭВМ четвертого поколения ЕС-1170 (гл. конструктор - А. Кучукян), которая была основана на широком применении больших интегральных схем.

В 1981 г. началась разработка машины средней производительности ЕС 1046 ряда «Ряд-3» (гл. конструктор А. Кучукян). Машина была предназначена для решения широкого круга научно-технических, экономических, информационных и особых задач. Производительность машины доходила до 1,3 млн. оп/с, объем ОП 4-8 Мб, внешняя память на магнитных дисках и лентах. В 1984 г. были проведены государственные и международные испытания и организовано серийное производство ЕС 1046 на Казанском заводе ЭВМ. В 1988г. машина экспонировалась на Международной выставке в Будапеште.

Наряду с разработкой ЭВМ ЕрНИИММ разрабатывал комплексы ЭВМ. Так, на основе ЕС-1030, был создан первый двухмашинный комплекс ЕС ВК-1010 (1975 г. гл. конструктор - В. Русаневич). На основе ЭВМ ЕС1045 и EC-1046 были разработаны двухмашинные (ВК-2М-45, ВК-2М-46), двухпроцессорные (ВК-2П-45, ВК2П-46) и трехмашинные (ВК-3М-45, МВК-46) комплексы с высокой отказоустойчивостью (1975-1981 гг. гл. конструктор - А. Кучукян). С целью повышения производительности ЭВМ для специальных задач институт разработал и сдал в эксплуатацию первый в СССР матричный процессор ЕС 2345 (принят Государственной комиссией в 1980 г., гл. конструктор - А. Кучукян). При совместной работе с ЕС 1045 эквивалентная производительность матричного процессора составила 28 млн. оп/с.

При выполнении своих разработок институт тесно сотрудничал с Научно-Исследовательским Центром Электронной Вычислительной техники (НИЦЭВТ, г. Москва), Институтом Точной Механики и Вычислительной техники (ИТМиВТ, г. Москва), НИИ Автоматической Аппаратуры (г. Москва), НИИ Электронных вычислительных машин (г. Москва) и т. д. Изделия института изготавливались Казанским заводом ЭВМ, Винницким Радиотехническим заводом, Ереванским заводом «Электрон» и др.

Пройдя все этапы всемирной практики развития вычислительной техники, ЕрНИИММ стал одним из крупнейших в СССР центром разработки средств ВТ гражданского и оборонного значения и автоматизированных систем управления. Сотрудничество с ведущими НИИ СССР, а также с передовыми заводами-изготовителями позволили накопить огромный опыт разработки, внедрения и эксплуатации четырех поколений ЭВМ, комплексов и систем автоматического управления. Для республики институт выполнял роль координирующего центра, становление и развитие которого оказались основополагающими для развития этого и других направлений науки и техники - в системе Академии Наук, ВУЗов и отраслевой науки и производства.

К 1992 году численность инженерно-технического персонала института достигла 3500 человек, а вместе с опытным заводом и заводом интегральных схем - более 7000 человек. Сотрудники института опубликовали 16 монографий, 52 научно-технических сборника и сделали 380 изобретений. После развала СССР от ЕрНИИММ отделился НИИ автоматизированных систем управления (ЕрНИИАСУ).

В начале 1970-х гг. в Армении появились: НИИ «Алгоритм» - разработка программного обеспечения для гражданского и оборонного значения, в т.ч. для специализированных ЭВМ; НИИ «АСУ Город» - разработка автоматизированной системы городского хозяйства; НИИ микроэлектроники; ПО «Базальт» - разработка запоминающих устройств для специализированных бортовых систем и др.

Особо хочу отметить огромный вклад Ереванского политехнического института (ЕрПи) в поддержании и продолжении традиций развития ВТ в Армении. Уже в 1955 году на кафедре «Электрические машины и автоматизация» была открыта специализация - математические счётно-решающие приборы и устройства (МСРПУ), которая в 1957 г. отделилась в самостоятельную кафедру «Автоматики и вычислительной техники» (АВТ). Первые выпускники этой специальности и частично выпускники механико-математического факультета Ереванского государственного университета (ЕрГу), составили основной костяк коллектива ЕрНИИММ, ВЦ Академии Наук и ЕрГУ, завода «Электрон» и др.

В 1961 г. в ЕрПи на базе кафедры АВТ (зав. кафедрой д.т.н. профессор Арешян Г.Л. - проректор по научной работе) и кафедры «Электронная техник» (зав. кафедрой к.т.н. доцент Варданян В.Р.) электротехнического факультета создаётся факультет «Автоматика и вычислительная техника» (первый декан к.т.н. доц. Абрамян К.Г.), где по трем специальностям - математические счётно-решающие приборы и устройства (МСРПУ), автоматика и телемеханика (АиТ), промышленная электроника (ПЭ), в шести группах обучалось 150 студентов. В особенности высока была потребность в специалистах МСРПУ. Для увеличения числа выпускников необходимо было увеличивать профессорско-преподавательский и учебно-вспомогательный состав кафедры. С этой целью на кафедру были приглашены из ЕрНИИММ разработчики и создатели первых ЭВМ - д.т.н. Григорян Л.А., д.т.н. Кучукян А.Т., д.т.н. Матевосян П.А., к.т.н. доцент Сагоян А.Н., к.т.н., доцент Мелик-Шахназаров Б.Б., Абрамян Л.С., Гутов А.Н., а также выпускники кафедры - отличники Авакян А.К., Нерсесян Л.К., Ягджян В.Г, Шагинян С.И.

В 1965 году факультет АВТ был преобразован в факультет «Техническая кибернетика». С целью дальнейшего усовершенствования и повышения качества выпускников, благодаря активной деятельности декана факультета Абрамяна К.Г., на базе кафедры АВТ в 1967 г. были созданы две кафедры - «Автоматика и телемеханика» (АиТ) и «Вычислительная техника» (ВТ). Учитывая возрастающий спрос в специалистах, план приёма уже в 1967 - 68 уч. годах по кафедре ВТ составил 250 студентов. Кафедра пополнилась новыми выпускниками и совместно с опытными преподавателями был создан мощный коллектив единомышленников, работающих на одну цель - развитие ВТ как в Армении, так и СССР.

В 1976 г. в связи с сильно возросшим контингентом, факультет «Техническая кибернетика» разделился на три факультета: «Вычислительная техника», «Техническая кибернетик» и «Радиотехника». Учитывая возросший объём учебной нагрузки и численность преподавательского состава (около 100 чел) часть кафедры ВТ отделили в общеинститутскую кафедру «Алгоритмические языки и программирование» (зав кафедрой - к.т.н., доцент Айвазян Ю.А.). В 1986 г. численность студентов обучающихся на кафедре ВТ (вместе с вечерними группами) возросла до 2000. В этот же год на кафедре была введена новая специализация «Программное обеспечение вычислительной техники и автоматизированных систем» (зав. кафедрой - к.т.н., доцент Ягджян В.Г.)

В 1967, учитывая значительный научный потенциал, на кафедру ВТ из Москвы поступил заказ от одного из крупных НИИ военно-промышленного комплекса страны, на выполнение хоздоговорной темы: «Разработка и создание регистратора быстропеременных процессов». Были разработаны два типа регистраторов (хронографов). Оба были изготовлены на материально-технической базе кафедры силами только её сотрудников. Тема велась до 1971 года (научный руководитель зав. кафедрой ВТ к.т.н. доц. Абрамян К.Г.) и была выполнена на высоком уровне. С этого времени на кафедре ВТ параллельно с педагогической и методологической деятельностью силами сотрудников кафедры проводились научные исследования на уровне хоздоговорных и госбюджетных работ как республиканского, так и общесоюзного масштаба. Так, в 1971 - 1976 сотрудники кафедры ВТ выполнили широкомасштабную хоздоговорную работу «Разработка и внедрение регионального АСУ Аэрофлот» (научный руководитель Абрамян К.Г.), которая бала внедрена во многих городах СССР.

В 1977 - 1981 выполнялась госбюджетная работа «Разработка и создание У ниверсальной М ногоуровневой С истемы А втоматизированного П оиска» - УМСАП и в дальнейшем создание «С истемы У правления Б азами Д анных» - СУБД (ответственный исполнитель - Ягджян В.Г.). В 1982 - 1984 на базе апробированной СУБД была внедрена система «Разработка и создание АСУ Высшая школа» и уже в 1984 г. успешно были запущены подсистемы «Расписание» и «Приём и проведение вступительных экзаменов абитуриентов» (ответственный исполнитель Ягджян В.Г.) В 1977- 1980 часть сотрудников кафедры занялась проблемами оптимизации технологических процессов, и выполнила хоздоговорную работу «Разработка и внедрение системы оптимизации технологических процессов Зодского золоторудного комбината» (ответственный исполнитель - к.т.н. доц. Гаспарян Т.Г.); в 1980 - 1983 выполнялась хоздоговорная работа «Разработка и внедрение системы оптимизации технологических процессов Каджаранского медно-молибденового комбината» (ответственный исполнитель Гаспарян Т.Г.), что позволило создать единый комплекс решения задач оптимизации технологических процессов, который был внедрён более чем в 10 добывающих регионах СССР. В 1985 г. от Госснаба СССР поступил заказ на создание «Автоматизированной системы рационального использования вторичных минеральных ресурсов». На базе разработанной на кафедре СУБД УМСАП-4 группой преподавателей кафедры к 1986 г. был создан АС социативный М ногоуровневый И нформационный К омплекс - АСМИК (ответственный исполнитель Гаспарян Т.Г.). По инициативе Госснаба СССР и Всесоюзного НИИ вторичных ресурсов (ВИВР) система с 1986 по 1989 год была внедрена в 18 регионах СССР. В 1989 г. силами группы разработчиков АСМИК был создан Экологический информационный центр при ЕрПИ (руководители Гаспарян Т.Г, Оганджанян С.Б.), получивший бюджетное финансирование от правительства Армении; в этот же период по заказу Государственного Комитета по газификации Арм. ССР при поддержке Совета Министров Арм. ССР и Госплана Арм. ССР сотрудниками кафедры (10 чел) была проведена масштабная работа «Разработка концепции топливно-энергетического комплекса Арм. ССР» (руководители Гаспарян Т.Г, Оганджанян С.Б.), которая получила высокую оценку и поддержку руководства СМ Арм. ССР. Однако наступивший развал Советского Союза, экономическая блокада и смена власти привели к приостановлению этой и других работ.

В заключение могу сказать, что традиции еще сохраняются. На месте крупных предприятий создано много мелких, которые с экономической точки зрения, более оперативно реагируют на конъюнктуру рынка, могут быстрее перестроиться, однако все это ориентировано в основном на обслуживание ведущих зарубежных фирм.

Материалы международной конференции SORUCOM 2011 (12–16 сентября 2011 года)
Статья помещена в музей 22.07.2013 с разрешения авторов

Сегодня выражение ЭВМ «Электронная вычислительная машина» напрочь изжило себя. На замену ему пришло новое, более удобное слово с иноязычными корнями «компьютер». По данным некоторых исследований, по всему миру личным компьютером владеет практически 61% всего населения Земли. А ведь каких-то 50–60 лет назад никто и подумать не мог, что компьютеры смогут стать новой и невероятно огромной нишей в коммерции. Помимо этого, эргономика компьютеров каждое десятилетие менялась.


«ENIAC»

Раньше, в эпоху ранних, еще электронно–механических ЭВМ, которые по своим возможностям мало чем отличались от современного калькулятора занимали огромные, специально отведенные помещения. Вот например, самый первый представитель компьютеров (ЭВМ) ранней эпохи - «ENIAC», разработанный учеными из Пенсильванского университета по заказу Армии Соединенных Штатов. Потреблял он практически 150 киловатт энергии, а весил 30 тонн. На графике вы можете увидеть разницу в производительности между современными вычислительными станциями и «ENIAC»:

Впечатляет. Сегодня даже смартфон, который умещается у нас на ладони, в миллионы раз превосходит то, что было десятки лет назад. Но сегодня не об этом. В этой статье я хочу рассказать вам о заслугах наших отечественных инженеров, о вкладе, который они внесли в развитие всей компьютерной индустрии.

Первая ЭВМ в СССР

Началось все с появления «МЭСМ» (Малой Электронной Счётной Машины), ставшей точкой отсчета в развитии наших вычислительных технологий. Её проект был создан еще в 1948-м году ученым Сергеем Алексеевичем Лебедевым, который являлся одним из основоположников информационных технологий и вычислительной техники в СССР. А также Героем Социалистического труда и Лауреатом премии Ленина.

Машина была сконструирована через два года, в 1950–м. А смонтирована в бывшем двухэтажном общежитии при женском монастыре в Феофании под Киевом. ЭВМ могла выполнять три тысячи операций в секунду, при этом потребляя 25 киловатт электроэнергии. Состояло это все чудо технологического прогресса из шести тысяч вакуумных ламп–проводников. Площадь отведенная под всю систему составляла 60 квадратных метров. Также одной из особенностей «МЭСМ» являлась поддержка трехадресной системы команд и возможность считывания данных не только с перфокарт, но и с магнитных ленточных носителей. Нахождение корня дифференциального уравнения стало первым вычислением, обработанным при помощи «МВЭМ». Спустя год (в 1951–м) инспекцией академии наук, «МЭСМ» Лебедева была утверждена и принята на постоянную эксплуатацию в военной и промышленной сфере.

«БЭСМ–1»



Процесс работы на БЭСМ–1

В 1953 году, снова под крылом Сергея Лебедева была разработана Большая Электронная Счетная Машина первого поколения (БЭСМ–1). К сожалению, выпущена она была лишь в одном экземпляре. Вычислительные возможности «БЭСМ» стали аналогичны вычислительным машинам США того времени, а также «БЭСМ–1» стала самой продвинутой и производительной ЭВМ в Европе. На протяжении практически 6 лет машина неоднократно модернизировалась инженерами. Благодаря чему её производительность смогла достигнуть 10 тысяч операций в секунду. В 1958 году после очередной модернизации было принято решение переименовать «БЭСМ–1» в «БЭСМ–2» и пустить её в серийное производство. Всего было выпущено несколько десятков штук этой ЭВМ.

«Стрела»

Но первой массовой Советской ЭВМ стала легендарная «Стрела», разрабатываемая примерно в тот же период начала 50–х под эгидой главного инженера Юрия Яковлевича Базилевского.

Вычислительная мощность «Стрелы» составляла 2 тыс. операций в секунду. Что немного уступало той же «МЭСМ» Лебедева, но тем не менее это не помешало Стреле стать самой лучшей в сфере промышленных ЭВМ. Всего на свет было выпущено 7 таких экземпляров.

«М–1»

Уже точно ясно, что конец 40–х и начало 50–х были очень плодотворными относительно растущего энтузиазма внедрения компьютерных систем в производственные и военные ниши бывшего Советского Союза. Вот и в Москве сотрудниками Энергетического института Кржижановского разрабатывалась своя ЭВМ, а в 1948–м году даже был подан патент на её регистрацию.

Ключевыми фигурами в этом проекте являлись Башир Рамеев и Исаак Брук. К 1951 г. ЭВМ («М–1») была сконструирована, но по своим возможностям она уступала той же МЭСМ Лебедева в стезе вычислительных мощностей. По сравнению с «МЭСМ», «М–1» ЭВМ могла выполнять лишь 20 операций в секунду, что в 150 раз меньше числа вычислений «МЭСМ». Но этот недостаток компенсировался относительной компактностью всей системы и её энергоэффективностью. Вместо 60 квадратных метров, требуемых для полного монтажа «МЭСМ», «М–1» требовалось около 10 квадратных метров, а потребление тока при работе составляло 29 киловатт. По мнению Исаака Брука, такие вычислительные машины должны быть ориентированы для малых предприятий не оперирующих большим капиталом.

Вскоре «М–1» была значительно усовершенствована. Новое имя, присвоенное второму поколению, было такое же краткое, закономерное, но при этом броское «М–2». Должен сказать, что отношение к названиям техники в Советском Союзе и России у меня особое. И кто бы что не говорил насчет их грубости и неказистости, в сравнении с американскими аналогами, наши мне нравятся больше, и лично я не представляю, чтобы эмблема условных Эльбрусов писалась или называлась иноязычно.

Но давайте вернемся к нашей ЭВМ. «М–2» стала самым лучшим «компьютером» в Советском Союзе по соотношению цены, качества и производительности. К слову, в первом компьютерном шахматном турнире, в котором соревновались множества стран, тем самым презентуя возможности и результаты своих разработок в ИТ–сфере, «М–2» одержала безоговорочную победу.

Из-за своей крайне успешности тройка лучших вычислительных машин - «БЭСМ», «Стрела» и «М–2» встали на службу для решения нужд военной обороны страны, науки и даже народного хозяйства.

Что значит «Ранние ЭВМ»?


Все, о чем я рассказал выше, является вычислительной техникой первого поколения. Определяет эту классификацию то, что все они имели большие габариты, электронные лампы и элементные базы, а также высокое потреблении электроэнергии и, к сожалению, низкую надежность и ориентированность на узкую аудиторию (преимущественно физиков, инженеров и прочих научных деятелей). Магнитные барабаны и магнитные ленты использовались в качестве внешней памяти.



«IBM 701»

Возможно кому-то могло показаться, что так было только у нас, но нет. Например, ознакомившись с разработками своих коллег из Штатов, академик Николай Николаевич Моисеев увидел те же исполинских размеров вычислительные автоматы, вокруг которых копошатся замудренные физики и математики, облаченные в белые халаты, рьяно пытающиеся устранить возникающие одну за другой неполадки. В 50–е года гордостью Америки был «IBM 701», который определенно удостоен отдельного рассказа, но это потом. Его вычислительная мощность составляла 15 тыс. операций в секунду. Чуть позже, Лебедевым была представлена следующая разработка ЭВМ «М–20».

«М–20»



Работа за «М–20»

Число операций, которые могла обрабатывать «М–20» в секунду составляло 20 тыс., что на 5 тыс. больше, чем у западного конкурента. Также было введено некое подобие совмещения параллельных вычислений, благодаря увеличенному в два раза, в сравнении с «БЭСМ», объему оперативной памяти. Иронично, но всего было выпущено 20 единиц системы «М–20». Тем не менее, это не препятствовало тому, что «М–20» смогла зарекомендовать себя как самая производительная и многофункциональная ЭВМ, которая к тому же была самой надежной на фоне остальных. Возможность написания кода в мнемокодах - это лишь немногая часть того, что позволяла делать «М–20». Все научные вычисления, моделирования, проводимые в СССР в XX веке, преимущественно были выполнены именно на этой машине.



ЭВМ «Урал»

Период производства и эксплуатации ранних ЭВМ в Советском Союзе продолжался еще практически 20-30 лет. В начале 60–х было начато производство ЭВМ «Урал». За все время было выпущено порядка 150 единиц техники. Основной областью применения «Урала» стали экономические расчеты.

Заключение


На сегодня это все. Спасибо большое, что дочитали до конца. В следующих частях цикла мы рассмотрим историю ЕС ЭВМ (Единых систем электронных вычислительных машин), а также домашних компьютеров производимых некогда в Советском Союзе, и конечно же не забудем про современную технику Эльбрус.

У нас хорошая новость: отныне каждые выходные мы будем публиковать «20-ку самых…» — рейтинг продуктов, технологий, изобретений и изобретателей, так или иначе связанных с IT.

Первый наш рейтинг будет самым общим. В него мы включили компьютеры, которые на наш взгляд оказали самое большое влияние на развитие отрасли. Сразу оговоримся: в этой 20-ке будут именно компьютеры в привычном смысле этого слова – никаких механических «паскалин» и «арифмометров» (им мы посвятим отдельный рейтинг).

Ну, поехали!

1. Z1

1938 год. Первая программируемая вычислительная машина с электрическим приводом.

Эту электромеханическую машину немецкого инженера Конрада Цузе относят к нулевому поколению. В соответствии с идеями Цузе, она состояла из главной управляющей программы, оперативной памяти и дополнительного вычислительного модуля. В качестве основного компонента в Z1 применялось электромагнитное реле. Пиковая производительность Z1 составляла где-то 1Hz (1 умножение за 5 сек.), а ее работу обеспечивал мотор от пылесоса мощностью 1 КВт. Машина помещалась на нескольких сдвинутых вместе столах, занимала около 4 м² и весила 500 кг.

Вообще-то до настоящего компьютера Z1 было еще далеко, да и работала она крайне нестабильно. Но кое в чём она была прогрессивнее, чем ENIAC или EDVAC — Z1 использовала двоичную систему счисления и поддерживала ввод данных с нормальной клавиатуры. К сожалению, оригинальная Z1 и ее потомки Z2 и Z3 вместе со всей документацией погибли в 1944 году под бомбами союзников.

2. ENIAC

1946 год. Первый электронный цифровой компьютер общего назначения.

Вот эту американскую машину уже с уверенностью можно назвать компьютером первого поколения. У ENIAC были все признаки настоящей ЭВМ, включая полностью электронную компонентную базу – вакуумные лампы.

Команда под руководством Дж. Экерта и Дж. Мокли потратила 3 года на сооружение ENIAC и получила настоящего монстра весом 30 тонн, занимавшего несколько залов и потреблявшего 174 КВт. Вычислительная мощность ENIAC составляла 357 операций умножения или 5000 операций сложения в секунду , тактовая частота – 100 KHz . Машина поддерживала ввод данных с перфокарт, а программировалась целой системой тумблеров.

В течение нескольких лет ENIAC использовали для решения научных и военных задач, правда, с переменным успехом. Вообще, успешной эту ЭВМ назвать нельзя: ENIAC ломался через раз, был неудобен в использовании и, честно говоря, успел устареть к моменту сдачи в эксплуатацию. Но! Эта машина смогла доказать, что у ЭВМ есть будущее, и это направление необходимо развивать.

1957 год. Первый компьютер, целиком построенный на транзисторах.

После многочисленных ламповых ENIAC, EDVAC, EDSAC случился новый прорыв – компания NCR совместно с GE разработала компьютер, в котором применялась совершенно новая элементная база – транзисторы. Получившуюся ЭВМ NCR-304 можно назвать первым компьютером второго поколения.

В базовой комплектации машина состояла из блока с центральным процессором, блоков памяти на магнитной ленте, медиа-конвертеров и высокоскоростного оборудования для ввода-вывода данных.

Преимущества новой архитектуры стали очевидны сразу же. NCR-304 спокойно помещался в одной комнате, был удобен в работе, а, главное, он оказался гораздо надежнее своих ламповых предков. Покупатели сразу выстроились в очередь: сначала Корпус морской пехоты США, потом ряд учреждений в Вашингтоне, а затем и иностранцы – японский банк «Сумимото» и другие. Машина оказалась настолько удачной, что продержалась на рынке 17 лет — последний NCR-304 был демонтирован только в 1974 году.

4. Casio 14-A

1957 год. Первый электрический калькулятор.

К середине 50-х ЭВМ распространились довольно широко, но тут возник вопрос: а как быть бухгалтерам, аудиторам и вообще всем, кому для расчетов не требуются мощности больших компьютеров? Ответом стал Casio 14-A. По сути, это такой же калькулятор, как в вашем мобильном телефоне или планшете – только аналоговый и массой 150 кг.

14-A выполнял четыре основные арифметические операции, был способен отображать 14-значные числа и обладал небольшой памятью. При всем своем сходстве с токарным станком, он все же был намного компактнее и дешевле, чем существовавшие ЭВМ. Целевая аудитория оценила преимущества новой машины, и с тех пор калькуляторы начали активно развиваться: перешли на транзисторы, микросхемы, стали миниатюрными, удобными и исключительно дешевыми.

5. Apollo Guidance Computer

1961 или 1962 год. Первый встраиваемый компьютер и первый компьютер на микросхемах.

Бортовой управляющий компьютер «Аполлона» — чудо инженерной мысли, производившееся на заводах Raytheon. AGC стал, наверное, самой передовой разработкой в IT-секторе начала 60-х. Модификации этого компьютера устанавливали на командный и лунный модули, и они проводили вычисления и контролировали движение, навигацию, и управляли модулями в ходе полётов.

Поражало уже то, что элементной базой для AGC были не лампы или транзисторы, а интегральные схемы. До 60% всех производившихся тогда микросхем в США шло на нужды программы «Аполлон» и конкретно для постройки AGC. Это позволило сделать компьютер быстрым (тактовая частота – 2MHz, ОЗУ 512 Бит, ПЗУ 8Kb) и достаточно компактным (250 кг), чтобы встраивать его в приборную панель каждого из модулей.

Потомками AGC являются встраиваемые промышленные, бортовые и бытовые компьютеры. Что до микросхем, то массовый выпуск ЭВМ на их базе начался лишь через десяток лет после AGC.

6. PDP-1 и УМ-1НХ

1961 и 1963 годы соответственно. Борются за право считаться первым первым мини-компьютером.

К началу 60-х ЭВМ по-прежнему занимали целые залы и стоили сотни тысяч долларов, однако применение транзисторов позволило сделать их на порядок быстрее ламповых «динозавров». Это подтолкнуло инженеров компании DEC к любопытной идее – создать компактную и недорогую транзисторную ЭВМ.

В 1961 году появился PDP -1. Компьютер стоил $20 000, имел размер где-то 4-х холодильников и быстродействие около 20 000 команд в секунду. Быстрая машина. Одним из нововведений PDP-1 был дисплей размером 512 х 512 пикселов. PDP пошли в серию и стали одними из популярнейших компьютеров 60-х и 70-х годов.

В СССР тоже не сидели сложа руки. В 1963 году в Ленинграде была представлена ЭВМ УМ1-НХ («Управляющая машина №1 для народного хозяйства»). Она была медленнее PDP-1 и использовала дискретную логику, однако получилась гораздо более компактной – весила всего 80 кг и помещалась на письменном столе.

7. IBM System/360

1964 год. Первое семейство серийных, масштабируемых компьютеров.

Значение этого продукта от IBM сложно переоценить. Серия System/360 стала первым примером стандартизации и масштабируемости ЭВМ. Вместо того, чтобы выпускать закрытую систему как раньше, IBM спроектировала System/360 как набор совместимых друг с другом блоков, и все они использовали одинаковый набор команд.

Единожды купив такой компьютер, заказчик мог совершенствовать его, докупать нужную периферию, настраивать под свои нужды и при этом не терять первоначальных вложений.

Масштабируемость стала не единственной находкой инженеров IBM. System/360 стала еще и первой 32-разрядной системой, могла работать с 16Mb памяти, развивать тактовую частоту до 5MHz и стала настолько успешной, что ее охотно покупали до конца 1970-х.

8. CDC 6600

1964 год. Первый суперкомпьютер.

Суперкомпьютером этот шедевр Сеймура Крея назвали позднее, а тогда это была «просто» новаторская машина с передовой архитектурой, которая могла использоваться для решения очень сложных задач.

В CDC 6600 были впервые применены кремниевые транзисторы вместо германиевых, активная система охлаждения на основе фреона, и все это сформировало совершенно новую архитектуру. Главный процессор CDC 6600 выполнял только логические и арифметические операции, а за работу с устройствами отвечало 10 «периферийных» процессоров. В результате, CDC 6600 был способен одновременно выполнять несколько операций сложения, умножения и деления. Благодаря таким параллельным вычислениям, он стал самым быстрым компьютером своего времени, а ряд его архитектурных особенностей лег в основу RISC-процессоров, появившихся в 70-е.

9. Honeywell DP-516

1969 год. Первый сервер-маршрутизатор.

Первоначально DP-516 был довольно заурядным мини-компьютером – до тех пор, пока на него не обратили внимание Джерри Элкинд и Ларри Роберт, которые предложили схему первой компьютерной сети.

Для организации того, что вскоре получило название ARPANET, потребовались IMP (Interface Message Processor) – модифицированные DP-516. Эти компьютеры стали выполнять задачи по маршрутизации потоков в сети. Каждый такой компьютер мог соединяться с шестью другими IMP через арендованные у AT&T телефонные линии и передавать данные со скоростью до 56 Kbps.

Первые эксперименты по соединению двух ЭВМ через IMP прошли в том же 1969 году – была установлена связь между компьютерами в Лос-Анджелесе и Стэнфорде.

10. Magnavox Odyssey

1972 год. Первая коммерческая игровая консоль.

До начала 70-х компьютерные игры были редкой забавой для студентов и лаборантов, имевших доступ к серьезным ЭВМ. В середине 60-х американский Инженер Ральф Баер, что пора менять ситуацию и в 1969 году представил Brown Box – прототип игровой консоли. Это было компактное устройство на простейшей дискретной логике. Оно подключалось к телевизору и позволяло с помощью манипуляторов играть в простейшие игры типа «два квадратика гоняют по экрану третий квадратик».

Баер заключил контракт с Magnavox, которая в 1972 году выпустила коммерческий вариант его Brown Box под названием Odyssey. Консоль стоила около $100, неплохо продавалась и заложила основу для целого рынка домашних видеоигр.

Loading...Loading...