Принципы близкодействия и дальнодействия. Электростатика

Взаимодействие материи – неотъемлемое свойство материи, выступающее как причина движения материи.

Фундаментальные взаимодействия - различные, не сводящиеся друг к другу типы взаимодействия элементарных частиц и составленных из них тел.

Существуют четыре типа взаимодействия:

1. Гравитационное взаимодействие – ответственно за взаимодействие между телами, обладающими массой. Является определяющим в мегамире – мире планет, звезд, галактик.

2. Электромагнитное взаимодействие - ответственно за взаимодействия между электрически заряженными частицами и телами. Существенно в макромире и атомных явлениях. Определяет строение и свойства атомов и молекул.

3. Сильное взаимодействие - ответственно за взаимодействие между кварками и адронами, за связь нуклонов в ядре. Является определяющим в микромире.

4. Слабое взаимодействие - ответственно за другие виды взаимодействия между элементарными частицами - все виды бета-распада ядер, процессы взаимодействия нейтрино с веществом, за многие распады элементарных частиц. Проявляет себя в микромире.

Рационалистическое мировоззрение предполагает, что любое событие имеет материальную причину: воздействие со стороны материального тела (тел). Поэтому любая программа рационального объяснения окружающего мира включает в себя представления о механизмах взаимодействия материальных объектов.

Концепция близкодействия предполагает, что взаимодействие возможно только при непосредственном контакте взаимодействующих объектов, любое действие на расстоянии должно передаваться через материальных посредников, так называемых переносчиков взаимодействия, с конечной скоростью.

Концепция дальнодействия предполагает, что взаимодействие материальных тел не требует материального посредника и может передаваться мгновенно.

Концепция близкодействия была выдвинута Аристотелем, который был убежден в отсутствие пустоты в мире. Следовательно, между любыми двумя взаимодействующими телами располагается ряд примыкающих друг к другу других тел, которые передают взаимодействие при непосредственном контакте.

В XVII в. концепция близкодействия была развита Рене Декартом. В механике Декарта взаимодействие происходит только путём давления или удара, т.е. при соприкосновении тел.

Концепция дальнодействия прослеживалась в атомистической теории Демокрита и Левкиппа, так как взаимодействие между атомами передавалось через пустоту.

В механической картине мира , основоположником которой был Исаак Ньютон, принята концепция дальнодействия, при этом считалось, что действие одного тела на другое – это всегда и действие второго на первое, то есть взаимодействие.

В конце XIX в. возникла новая идея – идея поля, основная роль которого – передача взаимодействия. Майкл Фарадей выдвинул идею электромагнитного поля, передающего взаимодействие при электризации проводников и намагничивании вещества. Развил и математически оформил эту идею Максвелл. Таким образом, в основе электромагнитной научной картине мира лежит концепция близкодействия. Механизм передачи взаимодействия с помощью поля состоит в следующем. Тело, участвующее во взаимодействии, создает вокруг себя поле, которое занимает область пространства радиусом равным радиусу взаимодействия. Другие тела взаимодействуют не непосредственно с первым телом, а с созданным им полем в тех точках, где они находятся. Изменение состояния одного из взаимодействующих тел вызывает возмущение созданного им поля, которое распространяется в виде волны, достигает других тел, и только тогда их состояние начинает изменяться. Наряду с электромагнитным полем, которое переносит электромагнитные взаимодействия, в электромагнитной картине мира рассматривается также гравитационное поле – переносчик гравитационных сил.

В современной картине мира идея поля получила дальнейшее развитие. Полевой механизм взаимодействия был уточнен в квантово-полевой механизм . С позиций современной физики все формы существования материи дискретны. Возмущение поля – волна – согласно корпускулярно-волновому дуализму, может одновременно рассматриваться как совокупность частиц – квантов полей. Поэтому взаимодействие, переносимое полем, рассматривается как процесс обмена квантами поля между взаимодействующими телами и частицами вещества. Кванты, которыми обмениваются взаимодействующие тела, представляют собой не обычные частицы, а виртуальные частицы. Виртуальные частицы отличаются тем, что обнаружить их за время их существования невозможно. Об их существовании и свойствах можно судить только косвенно – по силе переносимого взаимодействия. Непосредственно зарегистрировать виртуальную частицу нельзя. Например, виртуальный фотон по зрительному ощущению на сетчатке глаза зарегистрировать нельзя. Описание механизма взаимодействия на языке обмена виртуальными частицами не исключает, а дополняет классическое описание на языке полей и волн. Таким образом, концепция дальнодействия в науке оказалась отброшенной окончательно.

От дальнодействия к близкодействию: теория электромагнитного поля.

Идея единства разных сил природы и ее эмпирическое подтвер­ждение . В начале XIX в. начинают закладываться основы теории электричества и магнетизма. Большую роль здесь сыграло мировоззренческое представ­ление о единстве сил природы. Начало здесь положил датский фи­зик Х. К. Эрстед (1777-1851) , получивший докторскую степень по философии. Его внимание привлекла идея немецкого натурфилософа Ф. Шеллинга о взаимовлиянии природных сил. В 1813 г. ученый поставил проблему - выяснить связь между «вольтаическим электричеством» и магнетизмом. Решение пришло в 1820г., когда обнаружилось, что электрический ток создает вокруг проводника магнитное поле, которое влияет на магнитную стрелку. В 1821 г. француз A. M. Ампер (1775-1836 ) установил, что два параллельных друг другу проводника с электрическим током ведут себя как два магнита: если токи идут в одном направлении, то проводники при­тягиваются, в случае противоположных направлений они отталки­ваются. Английский физик М. Фарадей (1791-1867) поставил про­блему обратной зависимости: может ли магнитное поле порождать ток в проводнике? В 1831 г. он установил, что в проводнике, нахо­дящемся в переменном магнитном поле, появляется ток. Так было открыто явление электромагнитной индукции.

Все эти эмпирические законы объединяла математи­ческая теория немецкого физика В. Е. Вебера (1804-1891) . Ее ос­нову составила идея дальнодействующих сил, которые родственны ньютоновской гравитационной силе, не нуждающейся в промежу­точной среде и действующей мгновенно. Авторитет Ньютона в физическом сообществе был таким высоким, что ученые слепо следо­вали его призыву «не измышлять гипотез» по поводу механизма действия сил. И все же здесь нашлись исключения, прежде всего, в лице Фарадея.

Работая переплетчиком в типографии, Фарадей самостоятельно изучил физику и это увлечение привело его в науку. Как верующий человек он был уверен во взаимосвязи электрических и магнитных явлений, так как «природа едина от Бога». Нетрадиционное мышление самоучки и талант эксперимен­тирования сделали его ученым мирового уровня. Сложной матема­тикой своего времени он не овладел и поэтому все силы отдавал опытам и осмыслению их результатов. Идея дальнодействия, господствовавшая на университетс­ких кафедрах, не повлияла на сознание Фарадея. Тем более, что разнообразные эксперименты убеждали его в близкодействии электрических и магнитных сил. Особо в этом отношении выделя­лись факты движения проводников (железные опилки вблизи маг­нита, провода и контуры с током и т. п.)

Для электричества и магнетизма близкодействие универсально . Новаторское мышление Фара­дея предвосхитило идейные сдвиги в физической картине приро­ды. Ньютоновская идея дальнодействия сыграла положительную роль при формировании закона всемирного тяготения. В условиях отсутствия нужных фактов и должной математики она не дала уче­ным увлечься конструированием преждевременных умозритель­ных моделей тяготения. Но в первой половине XIX в. ситуация начала меняться. Физика стала восприимчивой к картезианским представлениям о дви­жении различных материальных объектов, сред, выступающих но­сителями близкодействующих сил. В оптике ньютоновская концеп­ция уступила место волновой теории света с моделью колебаний эфирной среды. В кинетической теории теплота предстала в виде движения атомов и молекул вещества. Механика сплошных сред также способствовала возрождению картезианских идей. Ученые с острой интуицией первыми почувствовали необходимость пере­мен. Так, немецкий исследователь К . Ф. Гаусс (1777-1855) и его ученик Б. Риман предположили, что электродинамические силы действуют не мгновенно, а с конечной скоростью, равной скорос­ти света. Кроме того, к середине XIX в. сформировались математи­ческие методы в виде дифференциальных уравнений в частных производных. Этот аппарат стал необходимым для реализации идеи близкодействия. Многие уравнения гидродинамики и тер­модинамики оказывались пригодными для электродинамики. В 40–50-е гг. на повестку дня встала проблема создания элек­тродинамики на базе принципа близкодействия и ее разрешил Максвелл.

Эмпирические законы Фарадея переводятся на язык математики . В качест­ве исходного материала Максвелл взял эмпирические обобщения Фарадея. Свою главную задачу он видел в том, чтобы придать им соответствующую математическую форму. Эта работа оказалась далеко неформальной, ибо перевод эмпирических образов на язык математики требовал особого творчества. Так, анализируя электро­магнитную индукцию, Фарадей выдвинул идею «электротоничес­кого состояния», где изменение магнитного поля вызывает вихре­вое электрическое поле.

Поле и эфир . Из фарадеевского наследия Максвелл также взял принцип близкодействия и идею поля. Они дополняли друг друга, так как близкодействие должно происходить в материальной не­прерывной среде, в этой среде как раз и действует поле. Правда, у Фарадея поле понималось неопределенно и среда рассматрива­лась как нечто подобное газовой среде. И не случайно Максвелл на первых порах строил модели электрического поля, помещая его в особую жидкоподобную среду, которая несжимаема, безынерци­онна и течет, испытывая сопротивление. Позднее в качестве среды у него закрепился эфир, который заполняет все пространство и пронизывает все весомые тела. Этим представлением широко поль­зовался Томсон, под чьим научным влиянием находился Максвелл. Отсюда поле у него стало областью эфира, непосредственно свя­занной с электрическими и магнитными явлениями: «...Электро­магнитное поле – это та часть пространства, которая содержит в себе и окружает тела, находящиеся в электрическом или магнит­ном состоянии».

Экстравагантность тока смещения . Идеи поля и эфира сыгра­ли определяющую роль в понимании центрального элемента теории - гипотезы тока смещения. В опытах Фарадея наблюдались эф­фекты, удаленные на большом расстоянии от электричества, теку­щего по проводнику. Такого же объяснения требовал факт прохож­дения переменного тока через изолятор, разделяющий две пласти­ны конденсатора. В признании нового вида электрического тока могли сыграть свою роль соображения симметрии - ток проводи­мости дополняется током смещения. Но как возможно движение последнего? И вот тут на сцену выступил эфир. Как и проводник, он является телом, обладающим лишь большой разреженностью и проницаемостью. Упругие свойства эфира позволяют переменно­му электрическому полю смещаться туда - сюда, т. е. колебаться. Это и есть ток смещения, имеющий форму волнового колебатель­ного процесса и распространяющийся в эфире вне проводников. Так же, как и ток проводимости, он может порождать магнитное поле. Согласно закону индукции, переменное магнитное поле со­здает переменное электрическое поле. Своей теорией Максвелл утвердил полное взаимодействие: любое переменное электричес­кое поле, основанное либо на токе проводимости, либо на токе сме­щения, порождает магнитное поле. Налицо симметрия взаимных влияний динамичных полей, которая составляет единую природу электромагнитного поля.



Свет как электромагнитное поле . Теория Максвелла помогла глубже понять сущность света. С древних времен существовала корпускулярная (лат. corpusculum - тельце) гипотеза, утверждав­шая, что свет представляет собой поток прямолинейно движущих­ся, очень маленьких частиц. Согласно другому предположению, свет является волнами с весьма малой длиной. В начале XIX в. Е. Юнг и О. Френель представили убедительные аргументы в поль­зу волновой гипотезы. Измерения установили, что скорость света равна примерно 300000 км/с.

Электромагнитное поле - это не только свет . Согласно теории Максвелла, электромагнитные волны распространяются так­же со скоростью 300000 км/с. Совпадение скоростей и волновая теория света побудили ученого отнести свет к электромагнитным процессам. Теория света как последовательного чередования элек­трических и магнитных полей не только хорошо объясняла старые факты, но и предсказывала неизвестные явления. Кроме видимого света должно быть инфракрасное, ультрафиолетовое излучения и другие виды волн. Свет также должен оказывать определенное дав­ление на вещество.

Опытное обнаружение электромагнитных волн . Теория Мак­свелла была опубликована в 1873 г. в «Трактате об электричестве и магнетизме». Почти все физики отнеслись к ней скептически, осо­бое неприятие вызвала гипотеза тока смещения. В теориях Вебера и Гельмгольца таких экзотических идей не было. В данной ситу­ации требовалось свидетельство решающих экспериментов и оно состоялось. В 1887 г. немецкий физик Г. Герц (1857-1894) создал генератор электромагнитных волн и осуществил их прием. Тем са­мым был обнаружен таинственный «ток смещения», который от­крыл перспективу новой практики (радио, телевидение). В 1895 г. немецкий физик В.К. Рентген обнаружил новое излучение, назван­ное рентгеновским и оказавшимся электромагнитными волнами с частотой более высокой, чем ультрафиолетовое излучение. В 1900 г. русский ученый П. Н. Лебедев (1866-1912) посредством очень тонких опытов открыл давление световых волн и измерил его вели­чину. Вся эта научная практика однозначно указала на теорию Мак­свелла как на истинный образ природы.

Материя - это вещество и электромагнитное поле . В силу своей фундаментальности теория Максвелла существенно повлия­ла на научную картину природы. Рухнула длительная монополия идеи вещества, и через понятие электромагнитного поля стала фор­мироваться идея физического поля как самостоятельного вида ма­терии. Программа обнаружения единства природы получила заме­чательный результат - былое различие электричества и магнетиз­ма уступило место единому электромагнитному процессу. Мак­свелл продемонстрировал высокую эвристическую силу математи­ческой гипотезы и дал образец синтеза математики с физикой. Новая электродинамика стала венцом классической физики.

Задания.

1. Какие тенденции были характерны для развития биологии с XVI по XIX в.?

2. Почему открытие Д. И. Менделеевым периодического закона оценивается как революция в химии?

3. Какие мировоззренческие выводы были сделаны из закона сохранения энергии?

4. За что махисты и энергетисты критиковали атомистику?

5. Можно ли с позиции лапласовского детерминизма признать статистическую закономерность?

6. Какие новые идеи принесла с собой электродинамика Максвелла?

100 р бонус за первый заказ

Выберите тип работы Дипломная работа Курсовая работа Реферат Магистерская диссертация Отчёт по практике Статья Доклад Рецензия Контрольная работа Монография Решение задач Бизнес-план Ответы на вопросы Творческая работа Эссе Чертёж Сочинения Перевод Презентации Набор текста Другое Повышение уникальности текста Кандидатская диссертация Лабораторная работа Помощь on-line

Узнать цену

Уже в античном мире мыслители задумывались над природой и сущностью простран-ства и времени. Одни из философов отрицали возможность существования пустого прос-транства или, по их выражению, небытия. Это были представители элейской школы в Древней Греции - Парменид и Зенон. Другие философы, в том числе Демокрит, утвер-ждали, что пустота существует, как и атомы, и необходима для их перемещений и соеди-нений.

В естествознании до XVI века господствовала геоцентрическая система Птоло-мея. Она представляла собой первую универсальную математическую модель мира, в которой время было бесконечным, а пространство конечным, включающим в себя равно-мерное круговое движение небесных тел вокруг неподвижной Земли. Коренное изменение пространственной и всей физической картины произошло в гелиоцентрической системе мира, представленной Коперником. Признав подвижность Земли, он отверг все ранее существовавшие представления о ее уникальности как центра Вселенной и тем самым направил движение научной мысли к признанию безграничности и бесконечности прос-транства. Эта мысль получила развитие в философии Джордано Бруно, который сделал вывод о бесконечности Вселенной и отсутствии у нее центра.

Важную роль в развитии представлений о пространстве сыграл открытый Галилеем принцип инерции. Согласно этому принципу все физические (механические) явления происходят одинаково во всех системах, движущихся равномерно и прямолинейно с постоянной по величине и направлению скорости.

Дальнейшее развитие представления о пространстве и времени связано с физико- космической картиной мира Р. Декарта. В ее основу он положил идею о том, что все явления природы объясняются механическим воздействием элементарных материальных частиц. Само же воздействие Декарт представлял в виде давления или удара при сопри-косновении частиц друг с другом и ввел таким образом в физику идею близкодействия.

Новая физическая картина мира была представлена в классической механике И. Ньютона. Он нарисовал стройную картину планетной системы, дал строгую количествен-ную теорию движения планет. Вершиной его механики стала теория тяготения, провозгла-сившая универсальный закон природы - закон всемирного тяготения . Согласно этому закону, любые два тела притягивают друг друга с силой, прямо пропорциональной их массам и обратно пропорциональной квадрату расстояния между ними.

Этот закон выражается следующей формулой:

где: k - гравитационная постоянная;

m1, m2 - тяготеющие массы;

r - расстояние между ними.

Данный закон ничего не говорит о зависимости силы тяготения от времени. Сила тяготения чисто математически может быть названа дальнодействующей, она мгновенно связывает взаимодействующие тела и для ее вычисления не требуется никаких допущений о среде, передающей взаимодействие.

Распространив на всю Вселенную закон тяготения, Ньютон рассмотрел и возможную ее структуру. Он пришел к выводу, что Вселенная - бесконечна. Лишь в этом случае в ней может существовать множество космических объектов - центров гравитации. В рамках ньютоновской модели Вселенной утвердилось представление о бесконечном пространстве, в котором находятся космические объекты, связанные между собой силой тяготения. Последовавшее во второй половине XVIII века открытие основных законов электро - и магнитостатики, аналогичных по математической форме закону всемирного тяготения еще более утвердило в сознании ученых идею дальнодействующих сил, зависящих только от расстояния, но не от времени.

Поворот в сторону идей близкодействия связан с идеями Фарадея и Масквелла, которые разработали концепцию электромагнитного поля как самостоятельной физической реальности. Исходным при этом было признание близкодействия и конечной скорости передачи любых взаимодействий.

Вывод о том, что волновое электромагнитное поле отрывается от разряда и может самостоятельно существовать и распространяться в пространстве, казался абсурдным. Сам Максвелл упорно стремился вывести свои уравнения из механических свойств эфира. Но когда Герц экспериментально обнаружил существование электромагнитных волн, это бы-ло воспринято как решающее доказательство справедливости теории Максвелла. Место мгновенного дальнодействия заняло передающееся с конечной скоростью близкодей-ствие.

Близкоде́йствие - представление, согласно которому взаимодействие между удаленными друг от друга телами осуществляется с помощью промежуточной среды (поля) и осуществляется с конечной скоростью. В начале 18 века одновременно с теорией близкодействия зародилась противоположная ей теория дальнодействия , согласно которой тела действуют друг на друга без посредников, через пустоту, на любом расстоянии, и такое взаимодействие осуществляется с бесконечно большой скоростью (но подчиняется определенным законам). Примером дальнодействия можно считать силу всемирного тяготения в классической теории гравитации И. Ньютона .

Одним из родоначальников теории близкодействия считается М. В. Ломоносов . Ломоносов был противником теории дальнодействия, считая, что тело не может воздействовать на другие тела мгновенно. Он полагал, что электрическое взаимодействие передается от тела к телу через особую среду «эфир», заполняющую все пустое пространство, в частности и пространство между частицами, из которых состоит «весомая материя», т. е. вещество. Электрические явления, по Ломоносову, следует рассматривать как определенные микроскопические движения, происходящие в эфире. То же самое относится и к магнитным явлениям.

Однако теоретические представления Ломоносова и Л. Эйлера в то время не могли получить развития. После открытия закона Кулона , который по своей форме был таким же, как и закон всемирного тяготения, теория дальнодействия совсем вытесняет теорию близкодействия. И только в начале 19 века М. Фарадей возрождает теорию близкодействия. Согласно Фарадею, электрические заряды не действуют друг на друга непосредственно. Каждый из них создает в окружающем пространстве электрическое и магнитное (если он движется) поля. Поля одного заряда действуют на другой и наоборот. Всеобщее признание теории близкодействия начинается со второй половины 19 века, после экспериментального доказательства теории Дж. Максвелла , сумевшего придать идеям Фарадея точную количественную форму, столь необходимую в физике - систему уравнений электромагнитного поля.

Важным отличием теории близкодействия от теории дальнодействия является наличие максимальной скорости распространения взаимодействий (полей, частиц) - скорости света. В современной физике проводится четкое разделение материи на частицы-участники (или источники) взаимодействий (называемые веществом) и частицы-переносчики взаимодействий (называемые полем). Из четырех видов фундаментальных взаимодействий надежную экспериментальную проверку существования частиц-переносчиков получили три: сильное, слабое и электромагнитное взаимодействия. В настоящее время предпринимаются попытки по обнаружению переносчиков гравитационного взаимодействия - так называемого

Благодаря исследованиям и достижениям Эрстеда, Фарадея, Максвелла, Герца, Попова было показано, что материя существует не только в виде вещества, но и в виде поля. Признание реальности электромагнитного поля означало победу в физике концепции близкодействия над общепринятой в XIX в. концепцией дальнодействия . Рассмотрим, в чем состоит суть этих концепций.

Дальнодействие и близкодействие – противоположные концепции, призванные объяснить общий характер взаимодействия физических объектов.

Сразу же после открытия Ньютоном закона всемирного тяготения, а затем – после открытия Кулоном закона электростатического взаимодействия зарядов, возникли вопросы философского содержания: почему физические тела, обладающие массой, действуют друг на друга на расстоянии через пустое пространство, и почему заряженные тела взаимодействуют даже через электрически нейтральную среду? До введения понятия поля не было удовлетворительных ответов на данные вопросы. Долгое время считалось, что взаимодействие между телами может осуществляться непосредственно через пустое пространство, которое не принимает участия в передаче взаимодействия и передача взаимодействия, таким образом, происходит мгновенно. Такое предположение составляет сущность концепции дальнодействия , допускающей действие вне времени и пространства. После Ньютона эта концепция получает широкое распространение в физике, хотя сам Ньютон понимал, что введенные им силы дальнодействия (например, тяготения) являются лишь формальным приемом, позволяющим дать верное в некоторых пределах описание наблюдаемых явлений.

В исследованиях по электричеству и магнетизму концепция дальнодействия незадолго до исследований Фарадея одержала победу над господствовавшей долгое время механистической концепцией близкодействия, по которой взаимодействующие тела должны соприкасаться. Эта победа привела к ряду важных теорий и законов (закон Кулона, электродинамика Ампера). Однако к середине XIX в. идея о необходимости отказа от дальнодействия в электродинамике, признания принципа близкодействия и конечной скорости распространения электромагнитных возмущений начала овладевать умами ученых (Гаусс, Риман), однако никто, кроме Максвелла, не разработал эту идею и не довел ее до степени научной теории.

Концепция близкодействия утверждает, что любое воздействие на материальные объекты может быть передано лишь от данной точки пространства к ближайшей соседней точке и за конечный промежуток времени. В теории электромагнетизма Максвелла было доказано, что взаимодействие электрически заряженных тел осуществляется не мгновенно, а с конечной скоростью, равной скорости света в пустоте – 300000 км/с .

Таким образом, выработка концепции физического поля способствовала упрочению концепции близкодействия, которая распространяется не только на электромагнитное, но и на другие типы взаимодействий.

Развитие концепций пространства и времени в специальной теории относительности

В механистической картине мира понятия пространства и времени рассматривались безотносительно к свойствам движущейся материи. Пространство выступало в ней как своеобразное вместилище для движущихся тел, а время – как параметр, знак которого можно менять на обратный. Другой особенностью механистической картины мира является то, что в ней пространство и время как формы существования материи изучаются отдельно и обособленно, вследствие чего их связь не устанавливается.

Принцип относительности

Когда в естествознании господствовала механистическая картина мира и существовала тенденция сводить объяснение всех явлений природы к законам механики, принцип относительности , сформулированный Галилеем в рамках классической механики, не подвергался никакому сомнению. Положение резко изменилось, когда физики вплотную приступили к изучению электрических, магнитных и оптических явлений. Максвелл объединил все эти явления в рамках единой электромагнитной теории. В связи с этим естественно возник вопрос: выполняется ли принцип относительности и для электромагнитных явлений?

В 1905 г. французский математик и физик А. Пуанкаре (1854–1912) сформулировал принцип относительности как общий физический закон, справедливый и для механических и электромагнитных явлений. Согласно этому принципу, законы физических явлений должны быть одинаковы как для покоящегося наблюдателя, так и для наблюдателя, находящегося в состоянии равномерного прямолинейного движения. На основе принципа относительности развилась новая физическая теория пространства и времени – .

А. Пуанкаре первым высказал мысль о том, что принцип равноправия всех инерциальных координатных систем должен распространяться и на электромагнитные явления, т.е. принцип относительности применим ко всем явлениям природы. Это вело к необходимости пересмотра представлений о пространстве и времени . Однако Пуанкаре не указал на необходимость этого. Это было впервые сделано А. Эйнштейном (1979–1955).

Специальная теория относительности – физическая теория, рассматривающая пространство и время как тесно связанные между собой формы существования материи. Специальная теория относительности была создана в 1905–1908 гг. трудами Х. Лоренца, А. Пуанкаре, А. Эйнштейна и Г. Минковского на основе анализа опытных данных, относящихся к оптическим и электромагнитным явлениям, обобщением которых являются постулаты:

· принцип относительности ,согласно которомувсе законы природы должны быть одинаковы во всех инерциальных системах отсчета;

· принцип постоянства скорости света , согласно которому скорость света в пустоте одинакова во всех инерциальных системах отсчета и не зависит от движения источников и приемников света.

Принцип относительности в формулировке Эйнштейна представляет собой обобщение принципа относительности Галилея, сформулированного лишь для механического движения. Этот принцип следует из целого ряда опытов, относящихся к электродинамике и оптике движущихся тел.

Точные опыты Майкельсона в 80-х годах XIX в. показали, что при распространении электромагнитных волн скорости не суммируются. Например, если вдоль направления движения поезда, скорость которого равна v 1 , послать световой сигнал со скоростью v 2 , близкой к скорости света в вакууме, то скорость перемещения сигнала по отношению к платформе оказывается меньше суммы v 1 +v 2 и вообще не может превышать скорость света в вакууме. Скорость распространения светового сигнала не зависит от скорости движения источника света. Этот факт вступил в противоречие с принципом относительности Галилея.

Принцип постоянства скорости света может быть, например, проверен при измерении скорости света от противоположных сторон вращающегося Солнца: один край Солнца всегда движется к нам, а другой – в противоположную сторону. Несмотря на движение источника, скорость света в пустоте всегда одинакова и равна с=300000 км/с .

Эти два принцип противоречат друг другу с точки зрения основных представлений классической физики.

Возникла дилемма: отказ либо от принципа постоянства скорости света, либо от принципа относительности. Первый принцип установлен настолько точно и однозначно, что отказ от него был бы явно неоправданным и к тому же связан с чрезмерным усложнением описания процессов природы. Не меньшие трудности возникают и при отрицании принципа относительности в области электромагнитных процессов.

Кажущееся противоречие принципа относительности закону постоянства скорости света возникает потому, что классическая механика, по заявлению Эйнштейна, опиралась "на две ничем не оправданные гипотезы":

· промежуток времени между двумя событиями не зависит от состояния движения системы отсчета;

· пространственное расстояние между двумя точками твердого тела не зависит от состояния движения системы отсчета.

Исходя из этих, кажущихся вполне очевидными, гипотез классическая механика молчаливо признавала, что величины промежутка времени и расстояния имеют абсолютные значения, т.е. не зависят от состояния движения тела отсчета. Выходило, что если человек в равномерно движущемся вагоне проходит, например, расстояние в 1 метр за одну секунду, то этот же путь по отношению к полотну дороги он пройдет тоже за одну секунду. Аналогично этому считалось, что пространственные размеры тел в покоящихся и движущихся системах отсчета остаются одинаковыми. И хотя эти предположения с точки зрения обыденного сознания и здравого смысла кажутся само собой очевидными, тем не менее, они не согласуются с результатами тщательно проведенных экспериментов, подтверждающих выводы новой, специальной теории относительности.

3.4.2. Преобразование Лоренца

Эйнштейн при работе над специальной теорией относительности не отказался от принципа относительности, а, напротив, придал ему более общий вид. При этом потребовалось коренным образом преобразовать понимание пространства и времени, одним словом, создать принципиально новую теорию изменения пространственно-временных отношений между объектами.

Рассмотрим, каким условиям должны удовлетворять преобразования пространственных координат и времени при переходе от одной системы отсчета к другой. Если принять предположение классической механики об абсолютном характере расстояний и времени, то уравнения преобразования, называемые преобразованием Галилея, будут иметь следующий вид:

x = x’ + vt’,

y = y’,

z = z’,

t = t’.

Однако признание принципа постоянства скорости света требовало замены преобразования Галилея другими формулами, не противоречащими этому принципу. Эйнштейн показал, что таким преобразованием, не противоречащим принципу постоянства скорости, является, так называемое преобразование Лоренца , названное по имени нидерландского физика Х. А. Лоренца (1853–1928).

В случае, когда одна система отсчета движется относительно другой равномерно и прямолинейно вдоль оси абсцисс х , формулы преобразования Лоренца, включающие преобразование времени имеют вид:

x = (x’+vt’)/(1-v 2 /c 2) 1/2 ,

y = y’ ,

z = z’ ,

t = (t’+vx’/c 2)/(1-v 2 /c 2) 1/2 ,

где v – скорость движения системы координат  (x’,y’,z’)  относительно системы координат  (x,y,z) ,  c – скорость света.

Опираясь на преобразования Лоренца, легко проверить, что твердая линейка, движущаяся в направлении ее длины, будет короче покоящейся, и тем короче, чем быстрее она движется. В самом деле, используя первое уравнение преобразования Лоренца, получим, что длина движущейся линейки относительно неподвижной системы отсчета l=l 0 (1–v 2 /c 2) 1/2 , где l 0 – длина линейки в системе отсчета, связанной с линейкой.

Релятивистская механика

Специальная теория относительности возникла из электродинамики и мало чем изменила ее содержание, но зато значительно упростила ее теоретическую конструкцию, т.е. вывод законов и, самое главное, уменьшила количество независимых гипотез, лежащих в ее основе.

С классической механикой дело обстоит несколько иначе. Для того, чтобы согласоваться с постулатами специальной теории относительности, классическая механика нуждается в некоторых изменениях. Эти изменения касаются в основном законов быстрых движений, т.е. движений, скорость которых сравнима со скоростью света. В обычных земных условиях мы встречаемся со скоростями, значительно меньшими скорости света, и поэтому поправки, которые требует вносить теория относительности, имеют крайне малую величину и ими во многих случаях практически можно пренебречь.

Новая механика, основанная на специальном принципе относительности Эйнштейна , который представляет собой объединение принципа относительности с утверждением о конечности максимальной скорости распространения взаимодействия, получила название релятивистской механики .

Основными выводами релятивистской механики являются утверждения о том, что масса тела m , его длина l  и длительность события D t  зависят от величины отношения скорости тела v  к скорости света c  и определяются формулами:

m = m 0 /(1 - v 2 /c 2) 1/2 ,

l = l 0 (1 -v 2 /c 2) 1/2,

Dt =Dt 0 /(1 - v 2 /c 2) 1/2 ,

где m 0 , l 0 , Dt 0 – масса тела, его длина и длительность события в системе отсчета, связанной с телом.

Например, если два космических корабля находятся в состоянии относительного движения, то наблюдатель на каждом из кораблей будет видеть другой корабль сократившимся в направлении движения, а космонавтов – похудевшими и передвигающимися замедленно. Все явления с периодическими движениями будут казаться замедленными, - движение маятника, колебание атомов и т.д. При обычных скоростях эти изменения чрезвычайно малы: Земля, которая движется вокруг Солнца со скоростью 30 км/час , показалась бы наблюдателю, покоящемуся относительно Солнца, сократившейся всего лишь на несколько сантиметров. Когда относительные скорости очень велики, изменения становятся значительными.

В дополнение к изменениям длины и времени, релятивистская механика дает релятивистское изменение массы .

Масса тела, определяемая путем измерения силы, необходимой для сообщения телу данного ускорения, называется инертной массой . Для наблюдателя, находящегося в космическом корабле и покоящегося относительно какого-то предмета инертная масса этого предмета, остается одной и той же независимо от скорости корабля v и называется массой покоя. Инертная масса этого предмета для наблюдателя, находящегося на Земле, называется релятивистской массой и зависит от относительной скорости наблюдателя и объекта наблюдения. Когда скорость тела приближается к скорости света, масса его неограниченно растет и в пределе приближается к бесконечности. Поэтому согласно теории относительности движения со скоростью, превышающей скорость света, невозможны.

Из релятивистской механикиможно вывести закон взаимосвязи массы и энергии, играющий фундаментальную роль в ядерной физике:

E = mc 2 ,

где m – масса тела,  E – его энергия.

Экспериментальная проверка основных выводов релятивистской механики используется для обоснования специальной теории относительности Эйнштейна, подтверждаемой ежедневно в лабораториях ученых – атомщиков, работающих с частицами, движущимися со скоростями, близкими к скорости света. Движения со скоростями, сравнимыми со скоростью света, впервые удалось наблюдать на примере электронов, а затем и других элементарных частиц. Тщательно поставленные эксперименты с такими частицами действительно подтвердили предсказания специальной теории относительности об увеличении их массы с возрастанием скорости.

При обычных скоростях v << c  релятивистская механика переходит в классическую механику Ньютона. Достаточно, например, отметить, что даже при скорости движения спутника Земли, равной примерно 8 км/с , поправка к массе составит около одной двухмиллиардной ее части. В 1928 г. Английский физик П. Дирак объединил специальную теорию относительности и квантовую механику (механику микрочастиц) в релятивистскую квантовую механику , описывающую движение микрочастиц при скоростях, близких к скорости света.

Loading...Loading...