Прямолинейное и криволинейное движение. Прямолинейное движение и движение по окружности материальной точки

Если ускорение материальной точки во все моменты времени равно нулю, то скорость ее движения постоянна по величине и по направлению. Траектория в этом случае представляет собой прямую линию. Движение материальной точки в сформулированных условиях называют равномерным прямолинейным. При прямолинейном движении центростремительная составляющая ускорения отсутствует, а поскольку движение равномерное, то и касательная составляющая ускорения равна нулю.

Если ускорение остается постоянным во времени (), то движение называют равнопеременным или неравномерным. Равнопеременное движение может быть равноускоренным, если а > 0, и равнозамедленным, если а < 0. В этом случае мгновенное ускорение оказывается равным среднему ускорению за любой промежуток времени. Тогда из формулы (1.5) следует а = Dv/Dt = (v-v o)/t, откуда

(1.7)

где v o - начальная скорость движения при t=О, v - скорость в момент времени t.

Согласно формуле (1.4) ds = vdt. Тогда

Поскольку для равнопеременного движения a=const, то

(1.8)

Формулы (1.7) и (1.8) справедливы не только для равнопеременного (неравномерного) прямолинейного движения, но также для свободного падения тела и для движения тела, брошенного вверх. В последних двух случаях а = g = 9,81 м/с 2 .

Для равномерного прямолинейного движения v = v o = const, а = 0, и формула (1.8) принимает вид s = vt.

Движение по окружности является простейшим случаем криволинейного движения. Скорость v движения материальной точки по окружности называют линейной. При постоянной по модулю линейной скорости движение по окружности является равномерным. Касательное ускорение материальной точки при равномерном движении по окружности отсутствует, а t = 0. Это значит, что отсутствует изменение скорости по модулю. Изменение вектора линейной скорости по направлению характеризуется нормальным ускорением, а n ¹ 0. В каждой точке круговой траектории вектор а n направлен по радиусу к центру окружности.

а n =v 2 /R, м/с 2 . (1.9)

Полученное ускорение действительно является центростремительным (нормальным), так как при Dt->0 Dj тоже стремится к нулю (Dj->0) и векторы и будут направлены вдоль радиуса окружности к ее центру.

Наряду с линейной скоростью v равномерное движение материальной точки по окружности характеризуется угловой скоростью. Угловая скорость представляет собой отношение угла поворота Dj радиуса-вектора к интервалу времени, за который этот поворот произошел,

Рад/с (1.10)

Для неравномерного движения используется понятие мгновенной угловой скорости

.

Интервал времени t, в течение которого материальная точка совершает один полный оборот по окружности, называют периодом вращения, а величину, обратную периоду, - частотой вращения: n = 1/T, с -1 .


За один период угол поворота радиус-вектора материальной точки равен 2π рад, поэтому , Dt = Т, откуда период вращения , а угловая скорость оказывается функцией периода или частоты вращения

Известно, что при равномерном движении материальной точки по окружности путь, ею пройденный, зависит от времени движения и линейной скорости: s = vt, м. Путь, который проходит материальная точка по окружности радиусом R, за период, равен 2πR. Время, необходимое для этого, равно периоду вращения, то есть t = Т. И, следовательно,

2πR = vT, м (1.11)

и v = 2nR/T = 2πnR, м/с. Поскольку угол поворота радиус-вектора материальной точки за период вращения Т равен 2π, то, исходя из (1.10), при Dt = Т, . Подставляя в (1.11), получим и отсюда находим связь между линейной и угловой скоростью

Угловая скорость - векторная величина. Вектор угловой скорости направлен из центра окружности, по которой движется материальная точка с линейной скоростью v, перпендикулярно плоскости окружности по правилу правого винта.

При неравномерном движении материальной точки по окружности изменяются линейная и угловая скорости. По аналогии с линейным ускорением в этом случае вводится понятие среднего углового ускорения и мгновенного: . Соотношение между касательным и угловым ускорениями имеет вид .

При помощи данного урока вы сможете самостоятельно изучить тему «Прямолинейное и криволинейное движение. Движение тела по окружности с постоянной по модулю скоростью». Вначале мы охарактеризуем прямолинейное и криволинейное движение, рассмотрев, как при этих видах движения связаны вектор скорости и приложенная к телу сила. Далее рассмотрим частный случай, когда происходит движение тела по окружности с постоянной по модулю скоростью.

На предыдущем уроке мы рассмотрели вопросы, связанные с законом всемирного тяготения. Тема сегодняшнего урока тесно связана с этим законом, мы обратимся к равномерному движению тела по окружности.

Ранее мы говорили, что движение - это изменение положения тела в пространстве относительно других тел с течением времени. Движение и направление движения характеризуются в том числе и скоростью. Изменение скорости и сам вид движения связаны с действием силы. Если на тело действует сила, то тело изменяет свою скорость.

Если сила направлена параллельно движению тела, то такое движение будет прямолинейным (рис. 1).

Рис. 1. Прямолинейное движение

Криволинейным будет такое движение, когда скорость тела и сила, приложенная к этому телу, направлены друг относительно друга под некоторым углом (рис. 2). В этом случае скорость будет изменять свое направление.

Рис. 2. Криволинейное движение

Итак, при прямолинейном движении вектор скорости направлен в ту же сторону, что и сила, приложенная к телу. А криволинейным движением является такое движение, когда вектор скорости и сила, приложенная к телу, расположены под некоторым углом друг к другу.

Рассмотрим частный случай криволинейного движения, когда тело движется по окружности с постоянной по модулю скоростью. Когда тело движется по окружности с постоянной скоростью, то меняется только направление скорости. По модулю она остается постоянной, а направление скорости изменяется. Такое изменение скорости приводит к наличию у тела ускорения, которое называется центростремительным .

Рис. 6. Движение по криволинейной траектории

Если траектория движения тела является кривой, то ее можно представить как совокупность движений по дугам окружностей, как это изображено на рис. 6.

На рис. 7 показано, как изменяется направление вектора скорости. Скорость при таком движении направлена по касательной к окружности, по дуге которой движется тело. Таким образом, ее направление непрерывно меняется. Даже если скорость по модулю остается величиной постоянной, изменение скорости приводит к появлению ускорения:

В данном случае ускорение будет направлено к центру окружности. Поэтому оно называется центростремительным.

Почему центростремительное ускорение направлено к центру?

Вспомним, что если тело движется по криволинейной траектории, то его скорость направлена по касательной. Скорость является векторной величиной. У вектора есть численное значение и направление. Скорость по мере движения тела непрерывно меняет свое направление. То есть разность скоростей в различные моменты времени не будет равна нулю (), в отличие от прямолинейного равномерного движения.

Итак, у нас есть изменение скорости за какой-то промежуток времени . Отношение к - это ускорение. Мы приходим к выводу, что, даже если скорость не меняется по модулю, у тела, совершающего равномерное движение по окружности, есть ускорение.

Куда же направлено данное ускорение? Рассмотрим рис. 3. Некоторое тело движется криволинейно (по дуге). Скорость тела в точках 1 и 2 направлена по касательной. Тело движется равномерно, то есть модули скоростей равны: , но направления скоростей не совпадают.

Рис. 3. Движение тела по окружности

Вычтем из скорость и получим вектор . Для этого необходимо соединить начала обоих векторов. Параллельно перенесем вектор в начало вектора . Достраиваем до треугольника. Третья сторона треугольника будет вектором разности скоростей (рис. 4).

Рис. 4. Вектор разности скоростей

Вектор направлен в сторону окружности.

Рассмотрим треугольник, образованный векторами скоростей и вектором разности (рис. 5).

Рис. 5. Треугольник, образованный векторами скоростей

Данный треугольник является равнобедренным (модули скоростей равны). Значит, углы при основании равны. Запишем равенство для суммы углов треугольника:

Выясним, куда направлено ускорение в данной точке траектории. Для этого начнем приближать точку 2 к точке 1. При таком неограниченном прилежании угол будет стремиться к 0, а угол - к . Угол между вектором изменения скорости и вектором самой скорости составляет . Скорость направлена по касательной, а вектор изменения скорости направлен к центру окружности. Значит, ускорение тоже направлено к центру окружности . Именно поэтому данное ускорение носит название центростремительное .

Как найти центростремительное ускорение?

Рассмотрим траекторию, по которой движется тело. В данном случае это дуга окружности (рис. 8).

Рис. 8. Движение тела по окружности

На рисунке представлены два треугольника: треугольник, образованный скоростями, и треугольник, образованный радиусами и вектором перемещения. Если точки 1 и 2 очень близки, то вектор перемещения будет совпадать с вектором пути. Оба треугольника являются равнобедренными с одинаковыми углами при вершине. Таким образом, треугольники подобны. Это значит, что соответствующие стороны треугольников относятся одинаково:

Перемещение равно произведению скорости на время: . Подставив данную формулу, можно получить следующее выражение для центростремительного ускорения:

Угловая скорость обозначается греческой буквой омега (ω), она говорит о том, на какой угол поворачивается тело за единицу времени (рис. 9). Это величина дуги в градусной мере, пройденной телом за некоторое время.

Рис. 9. Угловая скорость

Обратим внимание, что если твердое тело вращается, то угловая скорость для любых точек на этом теле будет величиной постоянной. Ближе точка располагается к центру вращения или дальше - это не важно, т. е. от радиуса не зависит.

Единицей измерения в этом случае будет либо градус в секунду (), либо радиан в секунду (). Часто слово «радиан» не пишут, а пишут просто . Для примера найдем, чему равна угловая скорость Земли. Земля делает полный поворот на за ч, и в этом случае можно говорить о том, что угловая скорость равна:

Также обратите внимание на взаимосвязь угловой и линейной скоростей:

Линейная скорость прямо пропорциональна радиусу. Чем больше радиус, тем больше линейная скорость. Тем самым, удаляясь от центра вращения, мы увеличиваем свою линейную скорость.

Необходимо отметить, что движение по окружности с постоянной скоростью - это частный случай движения. Однако движение по окружности может быть и неравномерным. Скорость может изменяться не только по направлению и оставаться одинаковой по модулю, но и меняться по своему значению, т. е., кроме изменения направления, существует еще изменение модуля скорости. В этом случае мы говорим о так называемом ускоренном движении по окружности.

Что такое радиан?

Существует две единицы измерения углов: градусы и радианы. В физике, как правило, радианная мера угла является основной.

Построим центральный угол , который опирается на дугу длиной .

Движение – это изменение положения
тела в пространстве относительно других
тел с течением времени. Движение и
направление движения характеризуются в
том числе и скоростью. Изменение
скорости и сам вид движения связаны с
действием силы. Если на тело действует
сила, то тело изменяет свою скорость.

Если сила направлена параллельно
движению тела, в одну сторону, то такое
движение будет прямолинейным.

Криволинейным будет такое движение,
когда скорость тела и сила, приложенная к
этому телу, направлены друг относительно
друга под некоторым углом. В этом случае
скорость будет изменять свое
направление.

Итак, при прямолинейном
движении вектор скорости направлен в ту
же сторону, что и сила, приложенная к
телу. А криволинейным
движением является такое движение,
когда вектор скорости и сила,
приложенная к телу, расположены под
некоторым углом друг к другу.

Центростремительное ускорение

ЦЕНТРОСТРЕМИТЕЛЬНОЕ
УСКОРЕНИЕ
Рассмотрим частный случай
криволинейного движения, когда тело
движется по окружности с постоянной по
модулю скоростью. Когда тело движется
по окружности с постоянной скоростью, то
меняется только направление скорости. По
модулю она остается постоянной, а
направление скорости изменяется. Такое
изменение скорости приводит к наличию у
тела ускорения, которое
называется центростремительным.

Если траектория движения тела является
кривой, то ее можно представить как
совокупность движений по дугам
окружностей, как это представлено на рис.
3.

На рис. 4 показано, как изменяется направление
вектора скорости. Скорость при таком движении
направлена по касательной к окружности, по дуге
которой движется тело. Таким образом, ее
направление непрерывно меняется. Даже если
скорость по модулю остается величиной постоянной,
изменение скорости приводит к появлению ускорения:

В данном случае ускорение будет
направлено к центру окружности. Поэтому
оно называется центростремительным.
Рассчитать его можно по следующей
формуле:

Угловая скорость. связь угловой и линейной скоростей

УГЛОВАЯ СКОРОСТЬ. СВЯЗЬ
УГЛОВОЙ И ЛИНЕЙНОЙ
СКОРОСТЕЙ
Некоторые характеристики движения по
окружности
Угловая скорость обозначается греческой
буквой омега (w), она говорит о том, на какой
угол поворачивается тело за единицу времени.
Это величина дуги в градусной мере,
пройденной телом за некоторое время.
Заметьте, если твердое тело вращается, то
угловая скорость для любых точек на этом теле
будет величиной постоянной. Ближе точка
располагается к центру вращения или дальше –
это не важно, т.е. от радиуса не зависит.

Единицей измерения в этом случае будет
либо градус в секунду, либо радиан в
секунду. Часто слово «радиан» не пишут, а
пишут просто с-1. Для примера найдем,
чему равна угловая скорость Земли. Земля
делает полный поворот на 360° за 24 ч, и в
этом случае можно говорить о том, что
угловая скорость равна.

Также обратите внимание на взаимосвязь угловой
скорости и линейной скорости:
V = w . R.
Необходимо отметить, что движение по
окружности с постоянной скоростью – это частный
случай движения. Однако движение по окружности
может быть и неравномерным. Скорость может
изменяться не только по направлению и оставаться
одинаковой по модулю, но и меняться по своему
значению, т.е., кроме изменения направления,
существует еще и изменение модуля скорости. В
этом случае мы говорим о так называемом
ускоренном движении по окружности.

В зависимости от формы траектории движение можно подразделять на прямолинейное и криволинейное. Чаще всего можно столкнуться с криволинейными движениями, когда траектория представлена в виде кривой. Примером такого вида движения является путь тела, брошенного под углом к горизонту, движение Земли вокруг Солнца, планет и так далее.

Рисунок 1 . Траектория и перемещение при криволинейном движении

Определение 1

Криволинейным движением называют движение, траектория которого представляет собой кривую линию. Если тело движется по криволинейной траектории, то вектор перемещения s → направлен по хорде, как показано на рисунке 1 , а l является длиной траектории. Направление мгновенной скорости движения тела идет по касательной в той же точке траектории, где в данный момент располагается движущийся объект, как показано на рисунке 2 .

Рисунок 2 . Мгновенная скорость при криволинейном движении

Определение 2

Криволинейное движение материальной точки называют равномерным тогда, когда модуль скорости постоянный (движение по окружности), и равноускоренным при изменяющемся направлении и модуле скорости (движение брошенного тела).

Криволинейное движение всегда ускоренное. Это объясняется тем, что даже при неизмененном модуле скорости, а измененном направлении, всегда присутствует ускорение.

Для того чтобы исследовать криволинейное движение материальной точки, применяют два метода.

Путь разбивается на отдельные участки, на каждом из которых его можно считать прямолинейным, как показано на рисунке 3 .

Рисунок 3 . Разбиение криволинейного движения на поступательные

Теперь для каждого участка можно применять закон прямолинейного движения. Такой принцип допускается.

Самым удобным методом решения считается представление пути в качестве совокупности нескольких движений по дугам окружностей, как показано на рисунке 4 . Количество разбиений будет намного меньше, чем в предыдущем методе, кроме того, движение по окружности уже является криволинейным.

Рисунок 4 . Разбиение криволинейного движения на движения по дугам окружностей

Замечание 1

Для записи криволинейного движения необходимо уметь описывать движение по окружности, произвольное движение представлять в виде совокупностей движений по дугам этих окружностей.

Исследование криволинейного движения включает в себя составление кинематического уравнения, которое описывает это движение и позволяет по имеющимся начальным условиям определить все характеристики движения.

Пример 1

Дана материальная точка, движущаяся по кривой, как показано на рисунке 4 . Центры окружностей O 1 , O 2 , O 3 располагаются на одной прямой. Необходимо найти перемещение
s → и длину пути l во время движения из точки А в В.

Решение

По условию имеем, что центры окружности принадлежат одной прямой, отсюда:

s → = R 1 + 2 R 2 + R 3 .

Так как траектория движения – это сумма полуокружностей, то:

l ~ A B = π R 1 + R 2 + R 3 .

Ответ: s → = R 1 + 2 R 2 + R 3 , l ~ A B = π R 1 + R 2 + R 3 .

Пример 2

Дана зависимость пройденного телом пути от времени, представленная уравнением s (t) = A + B t + C t 2 + D t 3 (C = 0 , 1 м / с 2 , D = 0 , 003 м / с 3) . Вычислить, через какой промежуток времени после начала движения ускорение тела будет равно 2 м / с 2

Решение

Ответ: t = 60 с.

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

Loading...Loading...