Какая схема подключения батареи отопления лучше – варианты и способы подключения, преимущества и недостатки. Какая схема подключения батареи отопления лучше – варианты и способы подключения, преимущества и недостатки Различия между основными видами подклю

Эффективность работы отопительной системы в первую очередь зависит от грамотного выбора схемы подключения батарей отопления. Идеально, если при небольшом расходе топлива радиаторы способны генерировать максимальное количество тепла. В материале дальше мы расскажем о том, какие бывают схемы подключения радиаторов отопления в многоквартирном доме, в чем особенность каждой из них, а также какие факторы стоит учитывать при выборе конкретного варианта.

Факторы, влияющие на эффективность радиатора

Главные требования к системе отопления – это, безусловно, ее эффективность и экономичность. Поэтому к ее проектированию необходимо подходить вдумчиво, чтобы не упустить всевозможные тонкости и особенности конкретного жилого помещения. Если вы не обладаете достаточными навыками для создания грамотного проекта, лучше доверить это работу специалистам, которые уже зарекомендовали себя и имеют положительные отзывы от клиентов. Полагаться на советы знакомых, рекомендующих те или иные способы подключения радиаторов, не стоит, поскольку в каждом конкретном случае исходные условия будут разные. Проще говоря – что подходит одному, не обязательно подойдет другому.

Тем не менее, если вы все же хотите заниматься подводкой труб к радиаторам отопления самостоятельно, обратите внимание на следующие факторы:

  • размер радиаторов и их тепловая мощность;
  • размещение отопительных приборов внутри дома;
  • схема подключения.

Современному потребителю на выбор представлены самые различные модели отопительных приборов – это и навесные радиаторы из различных материалов, и плинтусные или напольные конвекторы. Различие между ними состоит не только в размерах и внешнем виде, но и способах подводки, а также степени теплоотдачи. Все эти факторы повлияют на выбор вариантов подключения радиаторов отопления.

В зависимости от размера отапливаемого помещения, наличия или отсутствия утепляющего слоя на внешних стенах здания, мощности, а также рекомендованного производителем радиаторов типа подключения, будет разниться количество и габариты таких приборов.

Как правило, радиаторы размещают под окнами или в простенках между ними, если окна находятся друг от друга на большом расстоянии, а также в углах или вдоль глухой стены комнаты, в ванной, прихожей, кладовке, нередко – на лестничных клетках многоквартирных домов.

Чтобы направить тепловую энергию от радиатора внутрь комнаты, желательно прикрепить специальный отражающий экран между прибором и стеной. Такой экран можно сделать из любого отражающего тепло фольгированного материала – например, пенофола, изоспана или любого другого.


Перед тем, как подсоединить батарею отопления к системе отопления, обратите внимание на некоторые особенности ее установки:

  • в пределах одного жилого помещения уровень размещения всех батарей должен быть одинаковым;
  • ребра на конвекторах должны быть направлены вертикально;
  • середина радиатора должна совпадать с центральной точкой окна или может быть смещена на 2 см вправо или влево;
  • общая длина батареи должна составлять от 75 % ширины оконного проема;
  • отступ от подоконника до радиатора должен быть не менее 5 см, а между прибором и полом должно быть не менее 6 см зазора. Лучше всего оставлять 10-12 см.

Обратите внимание, что от правильного выбора способов подключения радиаторов отопления в многоквартирном доме будет зависеть не только теплоотдача батареи, но и уровень теплопотерь.

Нередки случаи, когда владельцы квартир занимаются сборкой и подключением отопительной системы, следуя рекомендациям знакомых. При этом результат оказывается намного хуже ожидаемого. Это значит, что в процессе монтажа были допущены ошибки, мощности приборов недостаточно для отопления конкретного помещения, либо схема подключения труб отопления к батареям нецелесообразна для данного дома.

Различия между основными видами подключения батарей

Все возможные виды подключения радиаторов отопления отличаются между собой типом разводки труб. Она может состоять из одной или двух труб. В свою очередь, каждый из вариантов предполагает разделение на системы с вертикальными стояками или горизонтальными магистралями. Достаточно часто используется горизонтальная разводка системы отопления в многоквартирном доме , и она хорошо себя зарекомендовала.

Исходя из того, какой вариант подводки труб к радиаторам был выбран, будет зависеть непосредственно схема их подключения. В отопительных системах с однотрубным и двухтрубным контуром применяют нижний, боковой и диагональный способ подключения радиаторов. Какой бы вариант вы ни выбрали, главное – чтобы в помещение попадало достаточное количество тепла для его качественного обогрева.


Описанные типы разводки труб относят к тройниковой системе подключения. Однако есть еще одна разновидность – это коллекторная схема, или лучевая разводка. При ее использовании отопительный контур прокладывают к каждому радиатору отдельно. В связи с этим, коллекторные типы подключения батарей имеют более высокую стоимость, поскольку для осуществления такой подводки потребуется достаточно много труб. Кроме того, они будут проходить через все помещение. Тем не менее, обычно в таких случаях отопительный контур прокладывается в полу и не портит интерьер помещения.

Несмотря на то, что описанная коллекторная схема подключения предполагает наличие большого количества труб, она все чаще используется во время проектирования систем отопления. В частности, данный вид подключения радиаторов применяется для создания водяного «теплого пола». Он используется как дополнительный источник тепла, либо как основной – все зависит от проекта.

Однотрубная схема

Однотрубной называют отопительную систему, в которой все без исключения радиаторы подключены к одному трубопроводу. При этом разогретый теплоноситель на входе и остывший на обратке перемещается по одной и той же трубе, постепенно проходя сквозь все отопительные приборы. В данном случае, очень важно, чтобы внутреннее сечение трубы было достаточным для выполнения ее основной функции. В противном случае, все отопление будет неэффективным.

Отопительная система с однотрубным контуром имеет определенные плюсы и минусы. Ошибочным будет мнение, что такая система позволяет существенно сократить расходы на прокладку труб и установку отопительных приборов. Дело в том, что система будет функционировать эффективно только в случае ее грамотного подключения с учетом большого количества тонкостей. Иначе, она не сможет обогревать квартиру должным образом.


Экономия средств при обустройстве однотрубной отопительной системы действительно имеет место, но только в случае применения вертикального подающего стояка. В частности, в пятиэтажных домах часто практикуют такой вариант разводки с целью экономии материалов. В данном случае нагретый теплоноситель подается по главному стояку вверх, где распределяется по всем остальным стоякам. Горячая вода в контуре постепенно проходит сквозь радиаторы на каждом этаже, начиная с верхнего.

По мере достижения теплоносителем нижних этажей его температура постепенно снижается. Чтобы компенсировать разницу температур, на нижних этажах устанавливают радиаторы с большей площадью. Еще одна особенность однотрубной отопительной системы заключается в том, что на всех радиаторах рекомендуют устанавливать байпасы. Они позволяют беспрепятственно снимать батареи в случае необходимости ремонта, не останавливая при этом всю систему.

Если отопление с однотрубным контуром выполнено по схеме с горизонтальной разводкой, движение теплоносителя может быть попутным или тупиковым. Такая система зарекомендовала себя в трубопроводах длиной до 30 м. При этом количество подключенных радиаторов может составлять 4-5 штук.

Двухтрубные отопительные системы

Внутри двухтрубного контура теплоноситель движется по двум отдельным трубопроводам. Один из них используется для подающего потока с горячим теплоносителем, а другой – для обратного потока с остывшей водой, который движется по направлению к нагревательному баку. Таким образом, при монтаже радиаторов отопления с нижним подключением или любым другим типом врезки, все батареи прогреваются равномерно, поскольку в них поступает вода примерно одинаковой температуры.

Стоит отметить, что двухтрубный контур при подключении батарей с нижней подводкой, а также при использовании других схем, является наиболее приемлемым. Дело в том, что подобный тип подключения обеспечивает минимальное количество теплопотерь. Схема циркуляции воды может быть как попутной, так и тупиковой.


Обратите внимание, что при наличии двухтрубной разводки есть возможность регулировать тепловую производительность используемых радиаторов.

Некоторые владельцы частных домов полагают, что проекты с двухтрубными видами подключения радиаторов обходятся намного дороже, поскольку требуется больше труб для их осуществления. Однако если разобраться более детально, то окажется, что их стоимость не намного выше, чем при обустройстве однотрубных систем.

Дело в том, что однотрубная система предполагает наличие труб с большим сечением и радиатора больших размеров. В то же время, цена более тонких труб, которые требуются для двухтрубной системы, намного ниже. Кроме того, в конечном итоге излишние затраты окупятся за счет более качественной циркуляции теплоносителя и минимальных теплопотерь.

При двухтрубной системе используется несколько вариантов, как подключить алюминиевые радиаторы отопления. Подключение может быть диагональным, боковым или нижним. При этом допускается применение вертикальных и горизонтальных стыков. С точки зрения эффективности, оптимальным вариантом считается диагональное подключение. При этом тепло равномерно распределяется по всем отопительным приборам с минимальными потерями.

Боковой, или односторонний, способ подключения с равным успехом применяется и в однотрубных, и двухтрубных разводках. Его главное отличие в том, что подающий и обратный контур врезаются с одной стороны радиатора.

Боковое подключение часто используется в многоквартирных домах с вертикальным подающим стояком. Обратите внимание, что перед тем, как подключить радиатор отопления с боковым подключением, на нем необходимо установить байпас и кран. Это позволит свободно снять батарею для промывки, покраски или замены, не отключая систему целиком.

Примечательно, что эффективность односторонней врезки максимальна лишь для батарей на 5-6 секций. Если длина радиатора намного больше, при таком подключении будут существенные теплопотери.

Особенности варианта с нижней подводкой труб

Как правило, подключение радиатора с нижней подводкой выполняется в тех случаях, когда непрезентабельные отопительные трубы необходимо скрыть в полу или в стене, чтобы не нарушать интерьер помещения.

В продаже можно найти большое количество отопительных приборов, в которых производителями предусмотрен нижний подвод к радиаторам отопления. Они выпускаются с различными размерами и конфигурациями. При этом чтобы не повредить батарею, стоит посмотреть паспорт изделия, где прописана методика подключения той или иной модели оборудования. Обычно в узле подключения батареи предусмотрены шаровые краны, которые позволяют снять ее в случае необходимости. Таким образом, даже не имея опыта в подобных работах, пользуясь инструкцией, можно выполнить подключение биметаллических радиаторов отопления с нижним подключением.


Циркуляция воды внутри многих современных радиаторов с нижним подключением происходит так же, как и при диагональной подводке. Достигается такой эффект за счет расположенного внутри радиатора препятствия, которое обеспечивает прохождение воды по всему отопительному прибору. После этого остывший теплоноситель поступает в обратный контур.

Обратите внимание, что в отопительных системах с естественной циркуляцией нижнее подключение радиаторов выполнять нежелательно. Тем не менее, существенные теплопотери от такой схемы подводки можно компенсировать увеличением тепловой мощности батарей.

Подключение диагональным способом

Как мы уже отмечали, диагональный способ подключения радиаторов отличается наименьшими теплопотерями. При такой схеме горячий теплоноситель поступает с одной стороны радиатора, проходит сквозь все секции, а затем по трубе выходит с противоположной стороны. Данный тип подключения подходит как для одно-, так и для двухтрубных отопительных систем.


Диагональное подключение радиаторов можно выполнять в 2 вариантах:

  1. Горячий поток теплоносителя поступает в верхнее отверстие радиатора, а затем, пройдя сквозь все секции, выходит из бокового нижнего отверстия с противоположной стороны.
  2. Теплоноситель заходит в радиатор через нижнее отверстие с одной стороны и вытекает с противоположной стороны сверху.

Подключение диагональным способом целесообразно в тех случаях, когда батареи состоят из большого количества секций – от 12 и более.

Естественная и принудительная циркуляция теплоносителя

Стоит отметить, что метод подводки труб к радиаторам будет зависеть еще и от того, каким образом обеспечивается циркуляция теплоносителя внутри отопительного контура. Различают два вида циркуляции – естественная и принудительная.

Естественная циркуляция жидкости внутри отопительного контура достигается за счет применения физических законов, при этом дополнительное оборудование устанавливать не нужно. Оно возможно только при использовании воды в качестве теплоносителя. Если же применяется любой антифриз, он не сможет свободно циркулировать по трубам.

Отопление с естественной циркуляцией включает котел для подогрева воды, расширительный бак, 2 трубопровода для подачи и обратки, а также радиаторы. В данном случае работающий котел постепенно нагревает воду, которая расширяется и продвигается по стояку, пройдя сквозь все радиаторы в системе. Затем уже остывшая вода самотеком поступает обратно в котел.


Чтобы обеспечить свободное продвижение воды, горизонтальные трубы монтируют с небольшим уклоном к направлению движения теплоносителя. Отопительная система с естественной циркуляцией является саморегулируемой, поскольку количество воды изменяется в зависимости от ее температуры. При нагреве воды увеличивается циркуляционный напор, что обеспечивает равномерный прогрев помещения.

В системах с естественной циркуляцией жидкости можно выполнять монтаж радиатора с нижним подключением при условии двухтрубной подводки, а также использовать схему с верхней разводкой в одно- и двухтрубном контуре. Как правило, данный тип циркуляции осуществляется лишь в небольших домах.


Обратите внимание, что на батареях должны быть предусмотрены воздушные спускники, через которые можно удалить воздушные пробки. Как вариант, можно оборудовать стояки автоматическими воздухоотводчиками. Отопительный котел желательно размещать ниже уровня отапливаемого помещения, например, в подвале.

Если площадь дома превышает 100 м 2 , то способ циркуляции теплоносителя должен быть принудительным. При этом нужно будет установить специальный циркуляционный насос, который обеспечит движение антифриза или воды по контуру. Мощность насоса зависит от размеров дома.

Циркуляционный насос можно монтировать как на подающей, так и на обратной трубе. Очень важно в верхней точке трубопровода установить автоматические спускники или предусмотреть краны Маевского на каждом радиаторе, чтобы удалять воздушные пробки вручную.

Использование циркуляционного насоса оправдано как в одно-, так и двухтрубных системах с вертикальным и горизонтальным типом подключения радиаторов.

Почему важно грамотно подключить радиаторы отопления

Какой бы метод подключения и тип радиатора вы ни выбрали, очень важно провести грамотные расчеты и правильно установить оборудование. При этом важно учесть особенности конкретного помещения, чтобы подобрать оптимальный вариант. Тогда система будет максимально эффективной и позволит избежать существенных теплопотерь в будущем.

Если вы хотите собрать систему отопления в большом дорогостоящем особняке, проектирование лучше доверить специалистам.

Для домов небольшой площади с выбором схемы подключения и монтажом батарей можно справиться самостоятельно. Нужно только рассмотреть качество той или иной схемы подключение и изучить особенности выполнения монтажных работ.

Обратите внимание, что трубопровод и радиаторы должны быть сделаны из аналогичного материала. Например, к чугунным батареям нельзя подключать пластиковые трубы, поскольку это чревато неприятностями.

Таким образом, при условии, что будут учтены особенности конкретного дома, подключение радиаторов отопления можно выполнить самостоятельно. Грамотно подобранная схема подводки труб к радиаторам позволит свести к минимуму теплопотери, чтобы отопительные приборы могли работать с максимальной эффективностью.


Источник: « В мире науки» , №3, 1983. Авторы: Невиль Х. Флетчер и Сусанна Туэйтс

Величественное звучание органа создаётся благодаря взаимодействию строго синхронизированных по фазе воздушной струи, проходящей через разрез в трубе, и воздушного столба, резонирующего в её полости.

Ни один музыкальный инструмент не может сравниться с органом по силе, тембру, диапазону, тональности и величественности звучания. Подобно многим музыкальным инструментам, устройство органа постоянно совершенствовалось благодаря усилиям многих поколений искусных мастеров, медленно накапливавших опыт и знания. К концу XVII в. орган в основном приобрёл свою современную форму. Два наиболее выдающихся физика XIX в. Герман фон Гельмгольц и лорд Рэлей выдвинули противоположные теории, объясняющие основной механизм образования звуков в органных трубах , но из-за отсутствия необходимых приборов н инструментов их спор так и не был решён. С появлением осциллографов н других современных приборов стало возможным детальное изучение механизма действия органа. Оказалось, что как теория Гельмгольца, так и теория Рэлея справедливы для определённых величин давления, под которым воздух нагнетается в органную трубу. Далее в статье будут изложены результаты последних исследований, которые во многом не совпадают с объяснением механизма действия органа, приводимым в учебниках.

Трубки, вырезанные из камыша или других растений с полым стеблем, были, вероятно, первыми духовыми музыкальными инструментами. Они издают звуки, если дуть поперёк открытого конца трубки, или дуть в трубку, вибрируя губами, или, защемив конец трубки, вдувать воздух, заставляя вибрировать её стенки. Развитие этих трёх видов простейших духовых инструментов привело к созданию современной флейты, трубы и кларнета, из которых музыкант может извлекать звуки в довольно большом диапазоне частот.

Параллельно создавались и такие инструменты, в которых каждая трубка предназначалась для звучания на одной определённой ноте. Простейший из таких инструментов – это свирель (или «флейта Пана»), которая обычно имеет около 20 трубок различной длины, закрытых с одного конца и издающих звуки, если дуть поперёк другого, открытого конца. Самым большим и сложным инструментом этого типа является орган, содержащий до 10000 труб, которыми органист управляет при помощи сложной системы механических передач. Орган ведёт своё происхождение из глубокой древности. Глиняные фигурки, изображавшие музыкантов, играющих на инструменте из многих труб, снабжённых мехами, были изготовлены в Александрии ещё во II в. до н.э. К X в. орган начинает использоваться в христианских церквях, и в Европе появляются написанные монахами трактаты об устройстве органов. По преданию, большой орган , построенный в Xв. для Винчестерского собора в Англии, имел 400 металлических труб, 26 мехов и две клавиатуры с 40 клавишами, где каждая клавиша управляла десятью трубами. На протяжении последующих столетий устройство органа совершенствовалось в механическом и музыкальном отношении, и уже в 1429 г. в Амьенском соборе был построен орган, имевший 2500 труб. В Германии к концу XVII в. органы уже приобрели свою современную форму.

Орган, установленный в 1979 г. в концертном зале Сиднейского оперного театра в Австралии, является самым большим и технически совершенным органом в мире. Спроектирован и построен Р. Шарпом. В нем имеется около 10500 труб, управляемых с помощью механической передачи пятью ручными и одной ножной клавиатурами. Орган может управляться автоматически магнитной лентой, на которой в цифровой форме ранее было записано исполнение музыканта.

Термины, применяемые для описания устройства органа , отражают их происхождение от трубчатых духовых инструментов, в которые воздух вдувался ртом. Трубы органа сверху открыты, а снизу имеют суженную конусообразную форму. Поперёк сплющенной части, над конусом, проходит «ротик» трубы (разрез). Внутри трубы помешен «язычок» (горизонтальное ребро), так что между ним и нижней «губой» образуется «лабиальное отверстие» (узкая щель). Воздух нагнетается в трубу большими мехами и поступает в её конусообразное основание под давлением от 500 до 1000 паскалей (от 5 до 10 см вод. ст.). Когда при нажатии соответствующей педали и клавиши воздух входит в трубу, он устремляется вверх, образуя при выходе из лабиальной щели широкую плоскую струю. Струя воздуха проходит поперёк прорези «ротика» и, ударяясь о верхнюю губу, взаимодействует с воздушным столбом в самой трубе; в результате создаются устойчивые колебания, которые и заставляют трубу «говорить». Сам по себе вопрос, каким образом происходит в трубе этот внезапный переход от молчания к звучанию, очень сложен и интересен, но в данной статье он не рассматривается. Разговор в основном будет идти о процессах, которые обеспечивают непрерывное звучание органных труб и создают их характерную тональность.

Органная труба возбуждается воздухом, поступающим в её нижний конец и образующим струю при прохождении через щель между нижней губой и язычком. В разрезе струя взаимодействует с воздушным столбом в трубе у верхней губы и проходит то внутри трубы, то вне её. В воздушном столбе создаются установившиеся колебания, заставляющие трубу звучать. Давление воздуха, изменяющееся по закону стоячей волны, показано цветной штриховкой. На верхний конец трубы насаживается съемная муфта или заглушка, которые позволяют при настройке слегка изменять длину воздушного столба.

Может показаться, что задача описания воздушной струи, порождающей и сохраняющей звучание органа, полностью относится к теории потоков жидкостей и газов. Выяснилось, однако, что весьма трудно теоретически рассмотреть движение даже постоянного, плавного, ламинарного потока, что же касается полностью турбулентной струи воздуха, которая движется в органной трубе, то её анализ невероятно сложен. К счастью, турбулентность, представляющая собой сложный вид движения воздуха, в действительности упрощает характер воздушного потока. Если бы этот поток был ламинарным, то взаимодействие струи воздуха с окружающей средой зависело бы от их вязкости. В нашем случае турбулентность заменяет вязкость в качестве определяющего фактора взаимодействия в прямой зависимости от ширины воздушного потока. При строительстве органа особое внимание уделяется тому, чтобы воздушные потоки в трубах были полностью турбулентны, что достигается с помощью мелких нарезок по кромке язычка. Как ни удивительно, в отличие от ламинарного турбулентный поток устойчив и может быть воспроизведён.

Полностью турбулентный поток постепенно смешивается с окружающим воздухом. Процесс расширения и замедления при этом сравнительно несложен. Кривая, изображающая изменение скорости потока в зависимости от расстояния от центральной плоскости его сечения, имеет вид перевёрнутой параболы, вершина которой соответствует максимальному значению скорости. Ширина потока возрастает пропорционально расстоянию от лабиальной щели. Кинетическая энергия потока остаётся неизменной, поэтому уменьшение его скорости пропорционально корню квадратному из расстояния от щели. Эта зависимость подтверждается как расчётами, так и результатами эксперимента (при учёте небольшой области перехода вблизи лабиальной щели).

В уже возбуждённой и звучащей органной трубе воздушный поток попадает из лабиальной щели в интенсивное звуковое поле в прорези трубы. Движение воздуха, связанное с генерацией звуков, направлено через прорезь и, следовательно, перпендикулярно плоскости потока. Пятьдесят лет назад Б. Брауну из колледжа Лондонского университета удалось сфотографировать ламинарный поток задымлённого воздуха в звуковом поле. На снимках было отмечено образование извилистых волн, увеличивающихся по мере их продвижения вдоль потока, пока последний не распадался на два ряда вихревых колец, вращающихся в противоположных направлениях. Упрошенная интерпретация этих и подобных им наблюдений привела к неверному описанию физических процессов в органных трубах, которое можно найти во многих учебниках.

Более плодотворный метод изучения действительного поведения воздушной струи в звуковом поле заключается в экспериментировании с отдельно взятой трубой, в которой звуковое поле создаётся с помощью репродуктора. В результате таких исследований, проведённых Дж. Колтманом в лаборатории компании Westinghouse Electric Corporation и группой с моим участием в Университете Новой Англии в Австралии, были разработаны основы современной теории физических процессов, происходящих в органных трубах. Фактически ещё Рэлей дал тщательное и почти полное математическое описание ламинарных потоков невязких сред. Поскольку обнаружилось, что турбулентность не усложняет, а упрощает физическую картину воздушной струн, оказалось возможным использовать метод Рэлея с небольшими изменениями для описания воздушных потоков, экспериментально полученных и исследованных Колтманом и нашей группой.

Если бы в трубе не было лабиальной щели, то можно было бы ожидать, что воздушная струя в виде полосы движущегося воздуха просто смещалась бы назад и вперёд вместе со всем остальным воздухом в прорези трубы под воздействием акустических колебаний. В действительности же при выходе струи из щели она эффективно стабилизируется самой щелью. Этот эффект можно сравнить с результатом наложения на общее колебательное движение воздуха в звуковом поле строго сбалансированного смешения, локализованного в плоскости горизонтального ребра. Это локализованное смешение, которое имеет ту же частоту и амплитуду, что и звуковое поле, и в результате создаёт у горизонтального ребра нулевое смешение струи, сохраняется в движущемся потоке воздуха и создаёт извилистую волну.

Пять труб разной конструкции производят звуки одинаковой высоты, но разного тембра. Вторая труба слева – это дульсиана, обладающая нежным, тонким звучанием, напоминающим звучание струнного инструмента. Третья труба – открытый диапазон, дающий светлый, звонкий звук, который наиболее характерен для органа. У четвертой трубы звук сильно приглушённой флейты. Пятая труба – Waldflote (« лесная флейта») с мягким звучанием. Деревянная труба слева закрыта заглушкой. Она имеет ту же основную частоту колебаний, что и другие трубы, но резонирует на нечётных обертонах, частоты которых в нечётное число раз больше основной частоты. Длина остальных труб не совсем одинакова, так как для получения одинаковой высоты тона производится «коррекция конца».

Как показал Рэлей для исследованного им типа струи и как мы всесторонне подтвердили для случая с расходящейся турбулентной струёй, волна распространяется вдоль потока со скоростью несколько меньшей половины скорости движения воздуха в центральной плоскости струи. При этом по мере движения вдоль потока амплитуда волны возрастает почти по экспоненте. Как правило, она увеличивается вдвое при перемещении волны на один миллиметр и её воздействие быстро становится преобладающим по отношению к простому возвратно-поступательному боковому перемещению, вызываемому звуковыми колебаниями.

Было установлено, что наибольшая скорость увеличения волны достигается в том случае, когда её длина вдоль потока в шесть раз превышает ширину потока в данной точке. С другой стороны, если длина волны оказывается меньше ширины потока, то амплитуда не увеличивается и волна может вообще исчезнуть. Поскольку воздушная струя расширяется и замедляет движение по мере удаления от щели, распространяться по длинным потокам с большой амплитудой могут только длинные волны, то есть низкочастотные колебания. Это обстоятельство окажется немаловажным при последующем рассмотрении создания гармонического звучания органных труб.

Рассмотрим теперь воздействие на воздушную струю звукового поля органной трубы. Нетрудно представить, что акустические волны звукового поля в прорези трубы заставляют кончик воздушной струи перемешаться поперёк верхней губы прорези, так что струя оказывается то внутри трубы, то вне её. Это напоминает картину, когда толкают уже раскачивающиеся качели. Воздушный столб в трубе уже колеблется, и, когда порывы воздуха входят в трубу синхронно с колебанием, они сохраняют силу колебаний, несмотря на различные потери энергии, связанные с распространением звука и трением воздуха о стенки трубы. Если же порывы воздуха не совпадают с колебаниями воздушного столба в трубе, они будут подавлять эти колебания и звук будет затухать.

Форма воздушной струи показана на рисунке в виде ряда последовательных кадров при выходе из лабиальной щели в движущееся акустическое поле, создаваемое в «ротике» трубы воздушным столбом, который резонирует внутри трубы. Периодическое смещение воздуха в разрезе ротика создаёт извилистую волну, движущуюся со скоростью вдвое меньшей скорости движения воздуха в центральной плоскости струи и увеличивающейся по экспоненте, пока её амплитуда не превысит ширину самой струи. Горизонтальные сечения показывают отрезки пути, которые волна в струе проходит за последовательные четверти периода колебаний Т . Секущие линии сближаются с уменьшением скорости струи. В органной трубе верхняя губа расположена в месте, указанном стрелкой. Воздушная струя попеременно выходит из трубы и входит в неё.

Измерение звукопроизводящих свойств воздушной струи можно осуществить, помещая в открытый конец трубы фетровые или пенопластовые клинья, препятствующие звучанию, и создавая звуковую волну небольшой амплитуды с помощью громкоговорителя. Отражаясь от противоположного конца трубы, звуковая волна взаимодействует у разреза «ротика» с воздушной струёй. Взаимодействие струи со стоячей волной внутри трубы измеряется с помощью переносного микрофона-тестера. Таким способом удается обнаружить, увеличивает или уменьшает воздушная струя энергию отраженной волны в нижней части трубы. Для того чтобы труба звучала, струя должна увеличивать энергию. Результаты измерения выражаются в величине акустической «проводимости», определяемой как отношение акустического потока на выходе из разреза « ротика» к звуковому давлению непосредственно за резрезом. Кривая значений проводимости при различных сочетаниях давления нагнетания воздуха и частоты колебаний имеет форму спирали, как показано на следующем рисунке.

Связь между возникновением акустических колебаний в прорези трубы и моментом поступления очередной порции воздушной струи на верхнюю губу прорези определяется отрезком времени, за который волна в воздушном потоке проходит расстояние от лабиальной щели до верхней губы. Мастера по изготовлению органов называют это расстояние «подрезом». Если «подрез» велик или давление (а следовательно, и скорость движения) воздуха низкое, то время движения будет большим. И наоборот, если «подрез» мал или давление воздуха высокое, то время движения будет небольшим.

Для того чтобы точно определить фазовое соотношение между колебаниями воздушного столба в трубе и поступлениями порций воздушной струи на внутреннюю кромку верхней губы, необходимо более подробно изучить характер воздействия этих пропорций на воздушный столб. Гельмгольц считал, что главным фактором здесь является объем воздушного потока, доставляемого струёй. Поэтому для того, чтобы порции струи сообщали как можно больше энергии колеблющемуся воздушному столбу, они должны поступать в тот момент, когда давление у внутренней части верхней губы достигает максимума.

Рэлей выдвигал другое положение. Он доказывал, что, поскольку прорезь находится сравнительно недалеко от открытого конца трубы, акустические волны у прорези, на которые воздействует воздушная струя, не могут создавать большое давление. Рэлей считал, что воздушный поток, поступая в трубу, фактически наталкивается на преграду и почти останавливается, что быстро создаёт в нём высокое давление, которое и оказывает воздействие на его движение в трубе. Поэтому, по мнению Рэлея, воздушная струя будет передавать максимальное количество энергии в том случае, если она будет поступать в трубу в момент, когда максимальным будет не давление, а сам поток акустических волн. Сдвиг между этими двумя максимумами составляет одну четверть периода колебаний воздушного столба в трубе. Если провести аналогию с качелями, то это различие выражается в толкании качелей, когда они находятся в верхней точке и обладают максимальной потенциальной энергией (по Гельмгольцу), и в момент, когда они находятся в самой нижней точке и обладают максимальной скоростью (по Рэлею).

Кривая акустической проводимости струи имеет форму спирали. Расстояние от начальной точки указывает величину проводимости, а угловое положение – сдвиг фаз между акустическим потоком на выходе из прорези и звуковым давлением за прорезью. Когда поток совпадает по фазе с давлением, значения проводимости лежат в правой половине спирали и происходит рассеяние энергии струи. Для того чтобы струя генерировала звук, значения проводимости должны находиться в левой половине спирали, что имеет место при компенсации или задержке по фазе движения струи по отношению к давлению за разрезом трубы. В этом случае длина отраженной волны выше длины падающей волны. Величина опорного угла зависитот того, какой из двух механизмов доминирует в возбуждении трубы: механизм Гельмгольца или механизм Рэлея. При проводимости, соответствующей верхней половине спирали, струя понижает собственную резонансную частоту трубы, а когда значение проводимости находится в нижней части спирали, повышает собственную резонансную частоту трубы.

График движения воздушного потока в трубе (пунктирная кривая) при данном отклонении струи несимметричен по отношению к нулевой величине отклонения, поскольку губа трубы устроена так, чтобы разрезать струю не по её центральной плоскости. Когда отклонение струи происходит по простой синусоиде с большой амплитудой (сплошная кривая черного цвета), воздушный поток, поступающий в трубу (цветная кривая), «насыщается» сначала у одной крайней точки отклонения струи, когда она полностью выходит из трубы. При ещё большей амплитуде происходит насыщение воздушного потока и у другой крайней точки отклонения, когда струя полностью входит в трубу. Смещение губы придает потоку асимметричную волновую форму, обертоны которой имеют частоты, кратные частоте отклоняющей волны.

На протяжении 80 лет задача оставалась нерешённой. Более того, новые исследования фактически не проводились. И лишь теперь она нашла удовлетворительное решение благодаря работам Л. Кремера и X. Лизинга из Института им. Генриха Герца в Зап. Берлине, С. Эллера из Военно-морской академии США, Колтмана и нашей группы. Коротко говоря, и Гельмгольц, и Рэлей оба были отчасти правы. Соотношение между двумя механизмами воздействия определяется давлением нагнетаемого воздуха и частотой звука, причём механизм Гельмгольца оказывается основным при низких давлениях и высоких частотах, а механизм Рэлея – при высоких давлениях и низких частотах. Для органных труб стандартной конструкции механизм Гельмгольца играет обычно более важную роль.

Колтман разработал простой и эффективный способ изучения свойств воздушной струи, который был несколько модифицирован и усовершенствован в нашей лаборатории. В основе этого метода лежит изучение воздушной струи у прорези органной трубы, когда дальний конец её закрыт фетровыми или пенопластовыми звукопоглощающими клиньями, не дающими трубе звучать. Затем из репродуктора, помещённого у дальнего конца, вниз по трубе подаётся звуковая волна, которая отражается от края прорези сначала при наличии нагнетаемой струи, а потом без неё. В обоих случаях падающая и отражённая волны взаимодействуют внутри трубы, создавая стоячую волну. Измеряя с помощью небольшого микрофона-зонда изменения в конфигурации волны при подаче воздушной струи, можно определить, увеличивает или уменьшает струя энергию отражённой волны.

В наших экспериментах фактически измерялась «акустическая проводимость» воздушной струи, которая определяется отношением акустического потока на выходе из прорези, создаваемого присутствием струи, к акустическому давлению непосредственно внутри прорези. Акустическая проводимость характеризуется величиной и фазовым углом, которые можно представить графически в виде функции частоты или давления нагнетания. Если представить график проводимости при независимом изменении частоты и давления, то кривая будет иметь форму спирали (см. рисунок). Расстояние от начальной точки спирали указывает величину проводимости, а угловое положение точки на спирали соответствует запаздыванию фазы извилистой волны, возникающему в струе под воздействием акустических колебаний в трубе. Запаздывание на одну длину волны соответствует 360° по окружности спирали. Вследствие особых свойств турбулентной струи оказалось, что при умножении величины проводимости на квадратный корень из величины давления все величины, измеренные для данной органной трубы, укладываются на одной и той же спирали.

Если давление остаётся постоянным, а частота поступающих звуковых волн растёт, то точки, указывающие величину проводимости, приближаются по спирали к её середине по часовой стрелке. При постоянной частоте и увеличении давления эти точки удаляются от середины в противоположном направлении.

Внутренний вид органа Сиднейского оперного театра. Видны некоторые трубы его 26 регистров. Большая часть труб сделана из металла, некоторые изготовлены из дерева. Длина звучащей части трубы удваивается через каждые 12 труб, а диаметр трубы удваивается примерно через каждые 16 труб. Многолетний опыт мастеров – создателей органов позволил им найти наилучшие пропорции, обеспечивающие устойчивый тембр звучания.

Когда точка величины проводимости находится в правой половине спирали, струя отбирает энергию у потока в трубе, и поэтому происходит потеря энергии. При положении точки в левой половине струя передаст энергию потоку и тем самым действует как генератор звуковых колебаний. При положении значения проводимости в верхней половине спирали струя понижает собственную резонансную частоту трубы, а когда эта точка находится в нижней половине, струя повышает собственную резонансную частоту трубы. Величина угла, характеризующего отставание по фазе, зависит от того, по какой схеме – Гельмгольца или Рэлея – осуществляется основное возбуждение трубы, а это, как было показано, определяется величинами давления и частоты. Однако этот угол, отсчитываемый от правой части горизонтальной оси (правая четверть), никогда не бывает значительно больше нуля.

Поскольку 360° по окружности спирали соответствует отставанию по фазе, равному длине и извилистой волны, распространяющейся вдоль воздушной струи, величины такого отставания от значительно меньших четверти длины волны до почти трёх четвёртых её длины будут лежать на спирали от центральной линии, то есть в той части, где струя действует как генератор звуковых колебаний. Мы также видели, что при постоянной частоте отставание по фазе является функцией давления нагнетаемого воздуха, от которой зависят как скорость самой струи, так и скорость распространения извилистой волны вдоль струи. Поскольку скорость такой волны составляет половину скорости струи, которая в свою очередь прямо пропорциональна корню квадратному из величины давления, изменение фазы струи на половину длины волны возможно лишь при значительном изменении давления. Теоретически давление может меняться в девятикратном размере, прежде чем труба перестаёт производить звучание на своей основной частоте, если другие условия не нарушаются. На практике, однако, труба начинает звучать на более высокой частоте до достижения указанного высшего предела изменения давления.

Следует отметить, что для восполнения потерь энергии в трубе и обеспечения устойчивости звука, несколько витков спирали может уйти далеко влево. Заставить трубу звучать может только ещё один такой виток, местоположение которого соответствует примерно трём полуволнам в струе. Так как проводимость струн в этой точке низка, продуцируемый звук слабее любого звука, соответствующего точке на внешнем витке спирали.

Форма спирали проводимости может ещё больше усложниться, если величина отклонения у верхней губы превышает ширину самой струи. При этом струя почти полностью выдувается из трубы и вдувается в неё обратно на каждом цикле перемещения, и количество энергии, которую она сообщает отражённой волне в трубе, перестаёт зависеть от дальнейшего увеличения амплитуды. Соответственно снижается и эффективность воздушной струн в режиме генерации акустических колебаний. В этом случае увеличение амплитуды отклонения струи приводит лишь к уменьшению спирали проводимости.

Снижение эффективности струи мри увеличении амплитуды отклонения сопровождается возрастанием потерь энергии в органной трубе. Колебания в трубе быстро устанавливаются на более низком уровне, при котором энергия струи точно компенсирует потери энергии в трубе. Интересно отметить, что в большинстве случаев потери энергии вследствие турбулентности и вязкости значительно превышают потери, связанные с рассеянием звуковых волн через прорезь и открытый коней трубы.

Разрез органной трубы диапазонного типа, на котором видно, что язычок имеет насечку для соэданияоднородного турбулентного движения струи воздуха. Труба изготовлена из «краплёного металла» – сплава с большим содержанием олова и добавкой свинца. При изготовлении листового материала из этого сплава на нём закрепляется характерный рисунок, который хорошо виден на фотографии.

Разумеется, действительное звучание трубы в органе не ограничено одной определённой частотой, но содержит и звуки более высокой частоты. Можно доказать, что эти обертоны являются точными гармониками основной частоты и отличаются от неё в целое число раз. При постоянных условиях воздухонагнетания форма звуковой волны на осциллографе остаётся совершенно одинаковой. Малейшее отклонение частоты гармоник от величины, строго кратной основной частоте, приводит к постепенному, но чётко видимому изменению формы волны.

Это явление представляет интерес, потому что резонансные колебания воздушного столба в органной трубе, как и в любой открытой трубе, устанавливаются на частотах, которые несколько отличаются от частот гармоник. Дело в том, что при увеличении частоты рабочая длина трубы становится немного меньше из-за изменения акустического потока у открытых концов трубы. Как будет показано, обертоны в органной трубе создаются за счёт взаимодействия воздушной струи и губы прорези, а сама труба служит для обертонов более высокой частоты главным образом пассивным резонатором.

Резонансные колебания в трубе создаются при наибольшем движении воздуха у её отверстий. Другими словами, проводимость в органной трубе должна достигать своего максимума у прорези. Отсюда следует, что резонансные колебания и трубе с открытым длинным концом возникают на частотах, при которых в длине трубы укладывается целое число полуволн звуковых колебаний. Если обозначить основную частоту как f 1 , то более высокие резонансные частоты будут 2f 1 , 3f 1 и т.д. (В действительности, как уже было указано, высшие резонансные частоты всегда немного превышают эти значения.)

В трубе с закрытым или заглушенным дальним конном резонансные колебания возникают на частотах, при которых в длине трубы укладывается нечётное число четвертей длины волны. Поэтому для звучания на той же самой ноте закрытая труба может быть вдвое короче открытой, и её резонансные частоты будут f 1 , 3f 1 , 5f 1 и т.д.

Результаты влияния изменения давления нагнетаеого воздуха на звук в обычной органной трубе. Римскими цифрами обозначены первые несколько обертонов. Главный режим трубы (в цвете) охватывает диапазон хорошо сбалансированного нормального звучания при нормальном давлении. При увеличении давления звучание трубы переходит на второй обертон; при понижении давления создается ослабленный второй обертон.

Теперь вернёмся к воздушной струе в органной трубе. Мы видим, что волновые возмущения высокой частоты постепенно затухают по мере увеличения ширины струи. Вследствие этого конец струи у верхней губы колеблется почти по синусоиде на основной частоте звучания трубы и почти независимо от более высоких гармоник колебаний акустического поля у прорези трубы. Однако синусоидальное движение струи не создаст такого же движения воздушного потока в трубе, поскольку поток «насыщается» за счёт того, что при крайнем отклонении в любую сторону он полностью течёт либо с внутренней, либо с внешней стороны верхней губы. Кроме того, губа обычно несколько смещена и разрезает поток не точно по его центральной плоскости, так что насыщение оказывается несимметричным. Поэтому колебание потока в трубе имеет полный набор гармоник основной частоты со строго определённым соотношением частот и фаз, а относительные амплитуды этих высокочастотных гармоник быстро возрастают с увеличением амплитуды отклонения воздушной струи.

В обычной органной трубе величина отклонения струи в прорези соизмерима с шириной струи у верхней губы. В результате в воздушном потоке создаётся большое число обертонов. Если бы губа разделяла струю строго симметрично, чётные обертоны в звучании отсутствовали бы. Поэтому обычно губе придаётся некоторое смешение, чтобы сохранить все обертоны.

Как и следовало ожидать, открытая и закрытая трубы создают звук разного качества. Частоты обертонов, создаваемых струёй, кратны основной частоте колебаний струи. Столб воздуха в трубе будет сильно резонировать на определённый обертон только при большой акустической проводимости трубы. При этом будет отмечаться резкое увеличение амплитуды на частоте, близкой к частоте обертона. Поэтому в закрытой трубе, где создаются лишь обертоны с нечётными номерами резонансной частоты, происходит подавление всех других обертонов. В результате получается характерный «глухой» звук, в котором чётные обертоны слабы, хотя и не отсутствуют полностью. Напротив, а открытой трубе получается более «светлый» звук, поскольку он сохраняет все обертоны, производные от основной частоты.

Резонансные свойства трубы в большой степени зависят от потерь энергии. Эти потери бывают двух типов: потери на внутреннее трение и теплоотдачу и потери на излучение через прорезь и открытый конец трубы. Потери первого типа более значительны в узких трубах и при низкой частоте колебаний. Для широких труб и при высокой частоте колебаний существенными являются потери второго типа.

Влияние места расположения губы на создание обертонов свидетельствует о целесообразности смещения губы. Если бы губа разделяла струю строго по центральной плоскости, в трубе создавался бы только звук основной частоты (I) и третий обертон (III). При смещении губы, как показано пунктирной линией, возникают второй и четвёртый обертоны, значительно обогащающие качество звука.

Отсюда следует, что при данной длине трубы, а следовательно, и определённой основной частоте широкие трубы могут служить хорошими резонаторами только для основного тона и ближайших нескольких обертонов, образующих приглушенный «флейтоподобный» звук. Узкие трубы служат хорошими резонаторами для широкого диапазона обертонов, и поскольку излучение на высоких частотах происходит более интенсивно, чем на низких, то образуется высокий «струнный» звук. Между этими двумя звучаниями находится звонкий сочный звук, стать характерный для хорошего органа, который создаётся так называемыми принципалами или диапазонами.

Кроме того, в большом органе могут быть ряды труб с коническим корпусом, перфорированной заглушкой или иными разновидностями геометрической формы. Такие конструкции предназначены для модификации резонансных частот трубы, а иногда для увеличения диапазона высокочастотных обертонов с целью получения тембра особой звуковой окраски. Выбор материала, из которого изготавливается труба, не имеет большого значения.

Существует большое число возможных видов колебаний воздуха в трубе, и это в ещё большей степени усложняет акустические свойства трубы. Например, при увеличении давления воздуха в открытой трубе до такой степени, что в струе будет как раз создаваться первый обертон f 1 одной четверти длины основной волны, точка на спирали проводимости, соответствующая этому обертону, перейдёт на её правую половину и струя перестанет создавать обертон данной частоты. В то же время частота второго обертона 2f 1 соответствует полуволне в струе, и он может быть устойчивым. Поэтому звучание трубы перейдёт на этот второй обертон, почти на целую октаву выше первого, причём точная частота колебаний будет зависеть от резонансной частоты трубы и давления нагнетания воздуха.

Дальнейшее увеличение давления нагнетания может привести к образованию следующего обертона 3f 1 при условии, что «подрез» губы не слишком велик. С другой стороны, часто бывает, что низкое давление, недостаточное для образования основного тона, постепенно создаёт один из обертонов на втором витке спирали проводимости. Подобные звуки, создаваемые при излишке или недостатке давления, представляют интерес для лабораторных исследований, но в самих органах применяются крайне редко, лишь для достижения какого-то особого эффекта.


Вид стоячей волны при резонансе в трубах с открытым и закрытым верхним концом. Ширина каждой цветной линии соответствует амплитуде колебаний в различных частях трубы. Стрелками указано направление движения воздуха во время одной половины колебательного цикла; во второй половине цикла направление движения меняется на обратное. Римскими цифрами обозначены номера гармоник. Для открытой трубы резонансными являются все гармоники основной частоты. Закрытая труба должна быть вдвое короче для создании той же ноты, но для нее резонансными являются только нечетные гармоники. Сложная геометрия «ротика» трубы несколько искажает конфигурацию волн ближе к нижнему концу трубы, не меняя их « основного» характера.

После того как мастер при изготовлении органа сделал одну трубу, обладающую необходимым звучанием, основная и наиболее трудная его задача – создать весь ряд труб соответствующей громкости и гармоничности звучании по всему музыкальному диапазону клавиатуры. Этого нельзя достичь простым набором труб одинаковой геометрии, различающихся только своими размерами, поскольку у таких труб потери энергии от трения и излучения будут по-разному влиять на колебания различной частоты. Чтобы обеспечить постоянство акустических свойств по всему диапазону, необходимо варьировать целым рядом параметров. Диаметр трубы меняется при изменении её длины и зависит от неё как степень с показателем k, где k меньше 1. Поэтому длинные басовые трубы делают более узкими. Расчётная величина k составляет 5/6, или 0,83, но с учётом психофизических особенностей человеческого слуха она должна быть уменьшена до 0,75. Это значение kочень близко к тому, которое эмпирически определили великие мастера органов XVII и XVIII вв.

В заключение рассмотрим вопрос, важный с точки зрения игры на органе: каким образом осуществляется управление звучанием множества труб в большом органе. Основной механизм этого управления прост и напоминает ряды и колонки матрицы. Трубы, располагаемые по регистрам, соответствуют рядам матрицы. Все трубы одного регистра обладают одним тембром, и каждая труба соответствует одной ноте на ручной или ножной клавиатуре. Подача воздуха к трубам каждого регистра регулируется специальным рычагом, на котором указано название регистра, а подача воздуха непосредственно к трубам, связанным с данной нотой н составляющим колонку матрицы, регулируется соответствующей клавишей на клавиатуре. Труба будет звучать лишь в том случае, если передвинут рычажок регистра, в котором она находится, и нажата нужная клавиша.

Размещение органных труб напоминает ряды и колонки матрицы. На этой упрощённой схеме каждый ряд, именуемый регистром, состоит из однотипных труб, каждая из которых производит одну ноту (верхняя часть схемы). Каждая колонка, связанная с одной нотой на клавиатуре (нижняя часть схемы), включает трубы разных типов (левая часть схемы). Рычажком на консоли (правая часть схемы) обеспечивается доступ воздуха ко всем трубам регистра, а нажатием клавиши на клавиатуре воздух нагнетается во все трубы данной ноты. Доступ воздуха в трубу возможен только при одновременном включении ряда и колонки.

В наше время можно применять самые различные способы осуществления подобной схемы с использованием цифровых логических устройств и электрически управляемых клапанов на каждой трубе. На старых органах использовались простые механические рычажки и пластинчатые клапаны для подачи воздуха в клавишные каналы и механические ползуны с отверстиями для управления поступлением воздуха к целому регистру. Эта простая и надёжная механическая система, помимо своих конструктивных достоинств, позволяла органисту самому регулировать скорость открытия всех клапанов и как бы делала ему более близким этот уж слишком механический музыкальный инструмент.

В XIX в начале XX в. строились большие органы со всевозможными электромеханическими и электропневматическим устройствами, но в последнее время предпочтение опять отдаётся механическим передачам от клавиш и педалей, а сложные электронные устройства используются для одновременного включения сочетаний регистров во время игры на органе. Например, самый большой орган в мире с механической передачей был установлен в концертном зале Сиднейского оперного театра в 1979 г. В нем 10500 труб в 205 регистрах, распределённых между пятью ручными и одной ножной клавиатурами. Клавишное управление осуществляется механическим способом, но оно дублируется электрической передачей, к которой можно подключаться. Благодаря этому исполнение органиста может быть записано в кодированной цифровой форме, которую затем можно использовать для автоматического воспроизведения на органе первоначального исполнения. Управление регистрами и их сочетаниями осуществляется с помощью электрических или электропневматических устройств и микропроцессоров с памятью, что позволяет широко варьировать управляющую программу. Таким образом, великолепное богатое звучание величественного органа создаётся сочетанием самых передовых достижений современной техники и традиционных приёмов и принципов, которые на протяжении многих столетий использовались мастерами прошлого.

Когда неприметная дверь, окрашенная в бежевый цвет, открылась, взгляд выхватил из темноты лишь несколько деревянных ступенек. Сразу за дверью ввысь уходит мощный деревянный короб, похожий на вентиляционный. «Осторожнее, это органная труба, 32 фута, басовый флейтовый регистр, — предупредила моя провожатая. — Подождите, я включу свет». Я терпеливо дожидаюсь, предвкушая одну из самых интересных в моей жизни экскурсий. Передо мной вход в орган. Это единственный музыкальный инструмент, внутрь которого можно зайти.

Органу больше ста лет. Он стоит в Большом зале Московской консерватории, том самом знаменитом зале, со стен которого на вас смотрят портреты Баха, Чайковского, Моцарта, Бетховена… Однако все, что открыто глазу зрителя, — это повернутый к залу тыльной стороной пульт органиста и немного вычурный деревянный «проспект» с вертикальными металлическими трубами. Наблюдая фасад органа, человек непосвященный так и не поймет, как и почему играет этот уникальный инструмент. Чтобы раскрыть его секреты, придется подойти к вопросу с другой стороны. В буквальном смысле.

Стать моим экскурсоводом любезно согласилась Наталья Владимировна Малина — хранитель органа, преподаватель, музыкант и органный мастер. «В органе можно передвигаться только лицом вперед», — строго объясняет мне она. К мистике и суевериям это требование не имеет ни малейшего отношения: просто, двигаясь назад или вбок, неопытный человек может наступить на одну из органных труб или задеть ее. А труб этих тысячи.

Главный принцип работы органа, отличающий его от большинства духовых инструментов: одна труба — одна нота. Древним предком органа можно считать флейту Пана. Этот инструмент, существовавший с незапамятных времен в разных уголках мира, представляет собой несколько связанных вместе полых тростинок разной длины. Если подуть под углом в устье самой короткой — раздастся тонкий высокий звук. Более длинные тростинки звучат ниже.


Забавный инструмент — губная гармоника с необычными для этого инструмента раструбами. Но практически точно такую же конструкцию можно встретить в любом большом органе (вроде того, что показан на снимке справа) — именно так устроены «язычковые» органные трубы

Звук трех тысяч труб. Общая схема На схеме представлена упрощенная схема органа с механической трактурой. Фотографии, показывающие отдельные узлы и устройства инструмента, сделаны внутри органа Большого зала Московской государственной консерватории. На схеме не показан магазинный мех, поддерживающий постоянное давление в виндладе, и рычаги Баркера (они есть на снимках). Также отсутствует педаль (ножная клавиатура)

В отличие от обычной флейты менять высоту звучания отдельной трубки нельзя, поэтому флейта Пана может сыграть ровно столько нот, сколько в ней тростинок. Чтобы заставить инструмент издавать очень низкие звуки, нужно включить в его состав трубки большой длины и большого диаметра. Можно сделать много флейт Пана с трубками из разных материалов и разного диаметра, и тогда они будут выдувать одни и те же ноты с разными тембрами. Но играть на всех этих инструментах одновременно не получится — их нельзя удержать в руках, да и дыхания на гигантские «тростинки» не хватит. А вот если поставить все наши флейты вертикально, снабдить каждую отдельную трубку клапаном для впуска воздуха, придумать механизм, который дал бы нам возможность управлять всеми клапанами с клавиатуры и, наконец, создать конструкцию для нагнетания воздуха с его последующим распределением, у нас как раз и получится орган.

На старинном корабле

Трубы в органах делают из двух материалов: дерева и металла. Деревянные трубы, применяющиеся для извлечения басовых звуков, имеют квадратное сечение. Металлические трубы обычно меньшего размера, они цилиндрические или конические по форме и изготавливаются, как правило, из сплава олова и свинца. Если олова больше — труба звонче, если больше свинца, извлекаемый звук более глухой, «ватный».

Сплав олова и свинца очень мягкий — вот почему органные трубы легко поддаются деформации. Если большую металлическую трубу положить на бок, через некоторое время она под собственной тяжестью приобретет овальное сечение, что неизбежно скажется на ее способности извлекать звук. Передвигаясь внутри органа Большого зала Московской консерватории, я стараюсь касаться только деревянных частей. Если наступить на трубу или неловко схватиться за нее, у органного мастера появятся новые хлопоты: трубу придется «лечить» — выправлять, а то и запаивать.


Орган, внутри которого я нахожусь, — далеко не самый большой в мире и даже в России. По размерам и количеству труб он уступает органам Московского дома музыки, Кафедрального собора в Калининграде и Концертного зала им. Чайковского. Главные рекордсмены находятся за океаном: например, инструмент, установленный в Зале съездов города Атлантик-Сити (США), насчитывает более 33 000 труб. В органе Большого зала консерватории труб в десять раз меньше, «всего» 3136, но и это значительное количество невозможно разместить компактно на одной плоскости. Орган внутри — это несколько ярусов, на которых рядами установлены трубы. Для доступа органного мастера к трубам на каждом ярусе сделан узкий проход в виде дощатого помоста. Ярусы соединены между собой лестницами, в которых роль ступенек выполняют обычные перекладины. Внутри органа тесно, а передвижение между ярусами требует известной ловкости.

«Мой опыт говорит о том, — рассказывает Наталья Владимировна Малина, — что органному мастеру лучше всего быть худощавого сложения и иметь небольшой вес. Человеку с иными габаритами здесь сложно работать, не нанеся ущерба инструменту. Недавно электрик — грузный мужчина — менял лампочку над органом, оступился и выломал пару дощечек из дощатой кровли. Обошлось без жертв и увечий, но выпавшие дощечки повредили 30 органных труб».

Мысленно прикидывая, что в моем теле легко поместилась бы пара органных мастеров идеальных пропорций, я с опаской поглядываю на хлипкие с виду лестницы, ведущие на верхние ярусы. «Не беспокойтесь, — успокаивает меня Наталья Владимировна, — идите только вперед и повторяйте движения за мной. Конструкция крепкая, она вас выдержит».

Свистковые и язычковые

Мы поднимаемся на верхний ярус органа, откуда открывается недоступный простому посетителю консерватории вид на Большой зал с верхней точки. На сцене внизу, где только что окончилась репетиция струнного ансамбля, ходят маленькие человечки со скрипками и альтами. Наталья Владимировна показывает мне вблизи трубы испанских регистров. В отличие от прочих труб, они расположены не вертикально, а горизонтально. Образуя своего рода козырек над органом, они трубят прямо в зал. Создатель органа Большого зала Аристид Кавайе-Коль происходил из франко-испанского рода органных мастеров. Отсюда и пиренейские традиции в инструменте на Большой Никитской улице в Москве.

Кстати, об испанских регистрах и регистрах вообще. «Регистр» — одно из ключевых понятий в конструкции органа. Это ряд органных труб определенного диаметра, образующих хроматический звукоряд соответственно клавишам своей клавиатуры или ее части.


В зависимости от мензуры входящих в их состав труб (мензура — соотношение важнейших для характера и качества звучания параметров трубы) регистры дают звук с различной тембровой окраской. Увлекшись сравнениями с флейтой Пана, я чуть не упустил одну тонкость: дело в том, что далеко не все трубы органа (подобно тростинкам старинной флейты) являются аэрофонами. Аэрофон — это духовой инструмент, в котором звучание образуется в результате колебаний столба воздуха. К таким относятся флейта, труба, туба, валторна. А вот саксофон, гобой, губная гармошка состоят в группе идиофонов, то есть «самозвучащих». Здесь колеблется не воздух, а обтекаемый потоком воздуха язычок. Давление воздуха и сила упругости, противодействуя, заставляют язычок дрожать и распространять звуковые волны, которые усиливаются раструбом инструмента как резонатором.

В органе большинство труб — аэрофоны. Их называют лабиальными, или свистковыми. Идиофонные трубы составляют особую группу регистров и носят наименование язычковых.

Сколько рук у органиста?

Но как же музыканту удается заставить все эти тысячи труб — деревянных и металлических, свистковых и язычковых, открытых и закрытых — десятки или сотни регистров… звучать в нужное время? Чтобы это понять, спустимся на время с верхнего яруса органа и подойдем к кафедре, или пульту органиста. Непосвященного при виде этого устройства охватывает трепет как перед приборной доской современного авиалайнера. Несколько ручных клавиатур — мануалов (их может быть пять и даже семь!), одна ножная плюс еще какие-то таинственные педали. Еще есть множество вытяжных рычагов с надписями на рукоятках. Зачем все это?

Разумеется, у органиста всего две руки и играть одновременно на всех мануалах (в органе Большого зала их три, что тоже немало) он не сможет. Несколько ручных клавиатур нужны для того, чтобы механически и функционально разделить группы регистров, подобно тому как в компьютере один физический хард-драйв делится на несколько виртуальных. Так, например, первый мануал органа Большого зала управляет трубами группы (немецкий термин — Werk) регистров под названием Grand Orgue. В нее входит 14 регистров. Второй мануал (Positif Expressif) отвечает также за 14 регистров. Третья клавиатура — Recit expressif — 12 регистров. И наконец, 32-клавишная ножная клавиатура, или «педаль», работает с десятью басовыми регистрами.


Рассуждая с точки зрения профана, даже 14 регистров на одну клавиатуру — это как-то многовато. Ведь, нажав одну клавишу, органист способен заставить зазвучать сразу 14 труб в разных регистрах (а реально больше из-за регистров типа mixtura). А если нужно исполнить ноту всего лишь в одном регистре или в нескольких избранных? Для этой цели собственно и применяются вытяжные рычаги, расположенные справа и слева от мануалов. Вытянув рычаг с написанным на рукоятке названием регистра, музыкант открывает своего рода заслонку, открывающую доступ воздуха к трубам определенного регистра.

Итак, чтобы сыграть нужную ноту в нужном регистре, надо выбрать управляющий этим регистром мануал или педальную клавиатуру, вытащить соответствующий данному регистру рычаг и нажать на нужную клавишу.

Мощное дуновение

Финальная часть нашей экскурсии посвящена воздуху. Тому самому воздуху, который заставляет орган звучать. Вместе с Натальей Владимировной мы спускаемся на этаж ниже и оказываемся в просторном техническом помещении, где нет ничего от торжественного настроя Большого зала. Бетонный пол, белые стены, уходящие вверх опорные конструкции из старинного бруса, воздуховоды и электродвигатель. В первое десятилетие существования органа здесь в поте лица трудились качальщики-кальканты. Четыре здоровых мужика вставали в ряд, хватались обеими руками за палку, продетую в стальное кольцо на стойке, и попеременно, то одной, то другой ногой давили на рычаги, надувающие мех. Смена была рассчитана на два часа. Если концерт или репетиция длились дольше, уставших качальщиков сменяло свежее подкрепление.

Старые мехи, числом четыре, сохранились до сих пор. Как рассказывает Наталья Владимировна, по консерватории ходит легенда о том, что однажды труд качальщиков пытались заменить конской силой. Для этого якобы был даже создан специальный механизм. Однако вместе с воздухом в Большой зал поднимался запах конского навоза, и приходивший на репетицию основатель русской органной школы А.Ф. Гедике, взяв первый аккорд, недовольно водил носом и приговаривал: «Воняет!»

Правдива эта легенда или нет, но в 1913 году мускульную силу окончательно заменил электродвигатель. С помощью шкива он раскручивал вал, который в свою очередь через кривошипно-шатунный механизм приводил в движение мехи. Впоследствии и от этой схемы отказались, и сегодня воздух в орган закачивает электровентилятор.


В органе нагнетаемый воздух попадает в так называемые магазинные мехи, каждый из которых связан с одной из 12 виндлад. Виндлада — это имеющий вид деревянного короба резервуар для сжатого воздуха, на котором, собственно, и установлены ряды труб. На одной виндладе обычно помещается несколько регистров. Большие трубы, которым не хватает места на виндладе, установлены в стороне, и с виндладой их связывает воздухопровод в виде металлической трубки.

Виндлады органа Большого зала (конструкция «шлейфлада») разделены на две основные части. В нижней части с помощью магазинного меха поддерживается постоянное давление. Верхняя поделена воздухонепроницаемыми перегородками на так называемые тоновые каналы. В тоновый канал имеют выход все трубы разных регистров, управляемые одной клавишей мануала или педали. Каждый тоновый канал соединен с нижней частью виндлады отверстием, закрытым подпружиненным клапаном. При нажатии клавиши через трактуру движение передается клапану, он открывается, и сжатый воздух попадает наверх, в тоновый канал. Все трубы, имеющие выход в этот канал, по идее должны начать звучать, но… этого, как правило, не происходит. Дело в том, что через всю верхнюю часть виндлады проходят так называемые шлейфы — заслонки с отверстиями, расположенные перпендикулярно тоновым каналам и имеющие два положения. В одном из них шлейфы полностью перекрывают все трубы данного регистра во всех тоновых каналах. В другом — регистр открыт, и его трубы начинают звучать, как только после нажатия клавиши воздух попадет в соответствующий тоновый канал. Управление шлейфами, как нетрудно догадаться, осуществляется рычагами на пульте через регистровую трактуру. Попросту говоря, клавиши разрешают звучать всем трубам в своих тоновых каналах, а шлейфы определяют избранных.

Благодарим руководство Московской государственной консерватории и Наталью Владимировну Малину за помощь в подготовке этой статьи.

Loading...Loading...