सबसे सरल लघुगणकीय असमानताओं का समाधान। परीक्षा की तैयारी

आपकी निजता हमारे लिए महत्वपूर्ण है। इस कारण से, हमने एक गोपनीयता नीति विकसित की है जो बताती है कि हम आपकी जानकारी का उपयोग और भंडारण कैसे करते हैं। कृपया हमारी गोपनीयता नीति पढ़ें और यदि आपके कोई प्रश्न हैं तो हमें बताएं।

व्यक्तिगत जानकारी का संग्रह और उपयोग

व्यक्तिगत जानकारी उस डेटा को संदर्भित करती है जिसका उपयोग किसी विशिष्ट व्यक्ति की पहचान करने या उससे संपर्क करने के लिए किया जा सकता है।

जब आप हमसे संपर्क करते हैं तो आपसे किसी भी समय अपनी व्यक्तिगत जानकारी प्रदान करने के लिए कहा जा सकता है।

निम्नलिखित कुछ उदाहरण हैं कि हम किस प्रकार की व्यक्तिगत जानकारी एकत्र कर सकते हैं और हम ऐसी जानकारी का उपयोग कैसे कर सकते हैं।

हम कौन सी व्यक्तिगत जानकारी एकत्र करते हैं:

  • जब आप साइट पर आवेदन जमा करते हैं, तो हम आपका नाम, फोन नंबर, ईमेल पता आदि सहित विभिन्न जानकारी एकत्र कर सकते हैं।

हम आपकी व्यक्तिगत जानकारी का उपयोग कैसे करते हैं:

  • हमारे द्वारा एकत्र की जाने वाली व्यक्तिगत जानकारी हमें आपसे संपर्क करने और आपको अद्वितीय ऑफ़र, प्रचार और अन्य घटनाओं और आने वाली घटनाओं के बारे में सूचित करने की अनुमति देती है।
  • समय-समय पर, हम आपको महत्वपूर्ण नोटिस और संदेश भेजने के लिए आपकी व्यक्तिगत जानकारी का उपयोग कर सकते हैं।
  • हम व्यक्तिगत जानकारी का उपयोग आंतरिक उद्देश्यों के लिए भी कर सकते हैं, जैसे कि ऑडिट करना, डेटा विश्लेषण और विभिन्न शोध करना ताकि हम प्रदान की जाने वाली सेवाओं में सुधार कर सकें और आपको हमारी सेवाओं के बारे में सिफारिशें प्रदान कर सकें।
  • यदि आप एक पुरस्कार ड्रा, प्रतियोगिता या इसी तरह के प्रोत्साहन में प्रवेश करते हैं, तो हम आपके द्वारा प्रदान की जाने वाली जानकारी का उपयोग ऐसे कार्यक्रमों को संचालित करने के लिए कर सकते हैं।

तीसरे पक्ष के लिए प्रकटीकरण

हम आपसे प्राप्त जानकारी को तीसरे पक्ष को नहीं बताते हैं।

अपवाद:

  • इस घटना में कि यह आवश्यक है - कानून के अनुसार, न्यायिक आदेश, कानूनी कार्यवाही में, और / या रूसी संघ के क्षेत्र में राज्य निकायों के सार्वजनिक अनुरोधों या अनुरोधों के आधार पर - आपकी व्यक्तिगत जानकारी का खुलासा करें। हम आपके बारे में जानकारी का खुलासा भी कर सकते हैं यदि हम यह निर्धारित करते हैं कि सुरक्षा, कानून प्रवर्तन, या अन्य सार्वजनिक हित के कारणों के लिए ऐसा प्रकटीकरण आवश्यक या उपयुक्त है।
  • पुनर्गठन, विलय या बिक्री की स्थिति में, हम अपने द्वारा एकत्रित की गई व्यक्तिगत जानकारी को संबंधित तृतीय पक्ष उत्तराधिकारी को स्थानांतरित कर सकते हैं।

व्यक्तिगत जानकारी की सुरक्षा

हम आपकी व्यक्तिगत जानकारी को हानि, चोरी और दुरुपयोग से बचाने के साथ-साथ अनधिकृत पहुंच, प्रकटीकरण, परिवर्तन और विनाश से बचाने के लिए - प्रशासनिक, तकनीकी और भौतिक सहित - सावधानी बरतते हैं।

कंपनी स्तर पर आपकी गोपनीयता बनाए रखना

यह सुनिश्चित करने के लिए कि आपकी व्यक्तिगत जानकारी सुरक्षित है, हम अपने कर्मचारियों को गोपनीयता और सुरक्षा प्रथाओं के बारे में बताते हैं और गोपनीयता प्रथाओं को सख्ती से लागू करते हैं।

लघुगणकीय असमानताओं की पूरी विविधता के बीच, एक चर आधार के साथ असमानताओं का अलग से अध्ययन किया जाता है। उन्हें एक विशेष सूत्र के अनुसार हल किया जाता है, जो किसी कारण से स्कूल में शायद ही कभी पढ़ाया जाता है:

लॉग के (एक्स) एफ (एक्स) ∨ लॉग के (एक्स) जी (एक्स) ⇒ (एफ (एक्स) - जी (एक्स)) (के (एक्स) - 1) ∨ 0

जैकडॉ "∨" के बजाय, आप कोई असमानता चिन्ह लगा सकते हैं: कम या ज्यादा। मुख्य बात यह है कि दोनों असमानताओं में संकेत समान हैं।

इसलिए हम लघुगणक से छुटकारा पाते हैं और समस्या को तर्कसंगत असमानता में कम करते हैं। उत्तरार्द्ध को हल करना बहुत आसान है, लेकिन लॉगरिदम को त्यागते समय, अतिरिक्त जड़ें दिखाई दे सकती हैं। उन्हें काटने के लिए, स्वीकार्य मूल्यों की सीमा को खोजने के लिए पर्याप्त है। यदि आप लघुगणक के ODZ को भूल गए हैं, तो मैं इसे दोहराने की दृढ़ता से अनुशंसा करता हूं - "एक लघुगणक क्या है" देखें।

स्वीकार्य मूल्यों की सीमा से संबंधित सब कुछ अलग से लिखा और हल किया जाना चाहिए:

एफ (एक्स)> 0; जी (एक्स)> 0; के (एक्स)> 0; के (एक्स) 1.

ये चार असमानताएं एक प्रणाली का निर्माण करती हैं और इन्हें एक साथ पूरा किया जाना चाहिए। जब स्वीकार्य मूल्यों की सीमा पाई जाती है, तो इसे तर्कसंगत असमानता के समाधान के साथ पार करना बाकी है - और उत्तर तैयार है।

काम। असमानता को हल करें:

सबसे पहले, हम लघुगणक का ODZ लिखते हैं:

पहली दो असमानताएँ स्वचालित रूप से की जाती हैं, और अंतिम को लिखना होगा। चूँकि किसी संख्या का वर्ग शून्य होता है, यदि और केवल यदि वह संख्या स्वयं शून्य हो, तो हमें प्राप्त होता है:

एक्स 2 + 1 1;
x2 0;
एक्स 0.

यह पता चला है कि लघुगणक का ODZ शून्य को छोड़कर सभी संख्याएँ हैं: x (−∞ 0)∪(0; +∞)। अब हम मुख्य असमानता को हल करते हैं:

हम लघुगणकीय असमानता से परिमेय में संक्रमण करते हैं। मूल असमानता में "से कम" चिह्न होता है, इसलिए परिणामी असमानता भी "इससे कम" चिह्न के साथ होनी चाहिए। हमारे पास है:

(10 - (एक्स 2 + 1)) (एक्स 2 + 1 - 1)< 0;
(9 - x2) x2< 0;
(3 - x) (3 + x) x 2< 0.

इस व्यंजक के शून्यक: x = 3; एक्स = -3; x = 0. इसके अलावा, x = 0 दूसरी बहुलता का मूल है, जिसका अर्थ है कि इससे गुजरने पर फलन का चिह्न नहीं बदलता है। हमारे पास है:

हमें x (−∞ −3)∪(3; +∞) प्राप्त होता है। यह सेट पूरी तरह से लघुगणक के ODZ में समाहित है, जिसका अर्थ है कि यह उत्तर है।

लॉगरिदमिक असमानताओं का परिवर्तन

अक्सर मूल असमानता ऊपर वाले से भिन्न होती है। लॉगरिदम के साथ काम करने के मानक नियमों के अनुसार इसे ठीक करना आसान है - "लघुगणक के मूल गुण" देखें। अर्थात्:

  1. किसी भी संख्या को दिए गए आधार के साथ लघुगणक के रूप में दर्शाया जा सकता है;
  2. समान आधार वाले लघुगणक के योग और अंतर को एकल लघुगणक से बदला जा सकता है।

अलग से, मैं आपको स्वीकार्य मूल्यों की सीमा के बारे में याद दिलाना चाहता हूं। चूंकि मूल असमानता में कई लघुगणक हो सकते हैं, इसलिए उनमें से प्रत्येक का डीपीवी खोजना आवश्यक है। इस प्रकार, लघुगणकीय असमानताओं को हल करने की सामान्य योजना इस प्रकार है:

  1. असमानता में शामिल प्रत्येक लघुगणक का ODZ ज्ञात कीजिए;
  2. लघुगणक जोड़ने और घटाने के सूत्रों का उपयोग करके असमानता को मानक एक तक कम करें;
  3. उपरोक्त योजना के अनुसार परिणामी असमानता को हल करें।

काम। असमानता को हल करें:

पहले लघुगणक की परिभाषा का क्षेत्र (ODZ) ज्ञात कीजिए:

हम अंतराल विधि द्वारा हल करते हैं। अंश का शून्य ज्ञात करना:

3x - 2 = 0;
एक्स = 2/3।

तब - हर के शून्य:

एक्स - 1 = 0;
एक्स = 1.

हम निर्देशांक तीर पर शून्य और चिह्न अंकित करते हैं:

हमें x (−∞ 2/3)∪(1; +∞) प्राप्त होता है। ODZ का दूसरा लघुगणक वही होगा। अगर आपको मेरी बात पर विश्वास नहीं है तो आप चेक कर सकते हैं। अब हम दूसरे लघुगणक को रूपांतरित करते हैं ताकि आधार दो हो:

जैसा कि आप देख सकते हैं, आधार पर और लघुगणक से पहले के त्रिगुण सिकुड़ गए हैं। एक ही आधार के दो लघुगणक प्राप्त करें। आइए उन्हें एक साथ रखें:

लॉग 2 (x - 1) 2< 2;
लॉग 2 (x - 1) 2< log 2 2 2 .

हमने मानक लघुगणकीय असमानता प्राप्त की है। हम सूत्र द्वारा लघुगणक से छुटकारा पाते हैं। चूँकि मूल असमानता में कम से कम का चिह्न है, परिणामी परिमेय व्यंजक भी शून्य से कम होना चाहिए। हमारे पास है:

(एफ (एक्स) - जी (एक्स)) (के (एक्स) - 1)< 0;
((x - 1) 2 - 2 2)(2 - 1)< 0;
x 2 − 2x + 1 − 4< 0;
एक्स 2 - 2x - 3< 0;
(एक्स - 3)(एक्स + 1)< 0;
एक्स (−1; 3)।

हमें दो सेट मिले:

  1. ओडीजेड: एक्स ∈ (−∞ 2/3)∪(1; +∞);
  2. उत्तर उम्मीदवार: x (−1; 3)।

इन सेटों को पार करना बाकी है - हमें असली जवाब मिलता है:

हम समुच्चयों के प्रतिच्छेदन में रुचि रखते हैं, इसलिए हम दोनों तीरों पर छायांकित अंतरालों को चुनते हैं। हमें x (−1; 2/3)∪(1; 3) मिलता है - सभी बिंदु पंचर हैं।

क्या आपको लगता है कि परीक्षा से पहले अभी भी समय है, और आपके पास तैयारी के लिए समय होगा? शायद ऐसा ही है। लेकिन किसी भी मामले में, छात्र जितनी जल्दी प्रशिक्षण शुरू करता है, उतनी ही सफलतापूर्वक वह परीक्षा पास करता है। आज हमने लॉगरिदमिक असमानताओं के लिए एक लेख समर्पित करने का निर्णय लिया। यह उन कार्यों में से एक है, जिसका अर्थ है एक अतिरिक्त अंक प्राप्त करने का अवसर।

क्या आप पहले से ही जानते हैं कि लघुगणक (लॉग) क्या है? हम वास्तव में ऐसा आशा करते हैं। लेकिन अगर आपके पास इस सवाल का जवाब नहीं है, तो भी कोई समस्या नहीं है। यह समझना बहुत आसान है कि लघुगणक क्या है।

ठीक 4 क्यों? 81 प्राप्त करने के लिए आपको संख्या 3 को ऐसी शक्ति तक बढ़ाने की आवश्यकता है। जब आप सिद्धांत को समझते हैं, तो आप अधिक जटिल गणनाओं के लिए आगे बढ़ सकते हैं।

आप कुछ साल पहले असमानताओं से गुजरे थे। और तब से आप लगातार उनसे गणित में मिलते हैं। यदि आपको असमानताओं को हल करने में समस्या हो रही है, तो उपयुक्त अनुभाग देखें।
अब, जब हम अवधारणाओं से अलग-अलग परिचित हो जाते हैं, तो हम सामान्य रूप से उनके विचार पर विचार करेंगे।

सबसे सरल लघुगणकीय असमानता।

सबसे सरल लघुगणकीय असमानताएं इस उदाहरण तक सीमित नहीं हैं, तीन और हैं, केवल विभिन्न संकेतों के साथ। इसकी आवश्यकता क्यों है? बेहतर ढंग से समझने के लिए कि लघुगणक के साथ असमानता को कैसे हल किया जाए। अब हम एक अधिक लागू उदाहरण देते हैं, फिर भी काफी सरल, हम जटिल लघुगणकीय असमानताओं को बाद के लिए छोड़ देते हैं।

इसे कैसे हल करें? यह सब ODZ से शुरू होता है। यदि आप किसी भी असमानता को हमेशा आसानी से हल करना चाहते हैं तो आपको इसके बारे में और जानना चाहिए।

ODZ क्या है? लॉगरिदमिक असमानताओं के लिए डीपीवी

संक्षिप्त नाम मान्य मानों की श्रेणी के लिए है। परीक्षा के लिए असाइनमेंट में, यह शब्द अक्सर पॉप अप होता है। डीपीवी न केवल लघुगणकीय असमानताओं के मामले में आपके लिए उपयोगी है।

उपरोक्त उदाहरण को फिर से देखें। हम इसके आधार पर ODZ पर विचार करेंगे, ताकि आप सिद्धांत को समझ सकें, और लघुगणकीय असमानताओं के समाधान पर सवाल न उठें। यह लघुगणक की परिभाषा से इस प्रकार है कि 2x+4 शून्य से बड़ा होना चाहिए। हमारे मामले में, इसका मतलब निम्नलिखित है।

यह संख्या परिभाषा के अनुसार धनात्मक होनी चाहिए। ऊपर प्रस्तुत असमानता को हल करें। यह मौखिक रूप से भी किया जा सकता है, यहाँ यह स्पष्ट है कि X 2 से कम नहीं हो सकता। असमानता का समाधान स्वीकार्य मूल्यों की सीमा की परिभाषा होगी।
अब आइए सबसे सरल लघुगणकीय असमानता को हल करने के लिए आगे बढ़ते हैं।

हम असमानता के दोनों भागों से लघुगणक को स्वयं हटा देते हैं। परिणामस्वरूप हमारे लिए क्या बचा है? साधारण असमानता।

इसे हल करना आसान है। X -0.5 से बड़ा होना चाहिए। अब हम दो प्राप्त मूल्यों को सिस्टम में जोड़ते हैं। इस प्रकार,

यह माना लॉगरिदमिक असमानता के लिए स्वीकार्य मूल्यों का क्षेत्र होगा।

ODZ की बिल्कुल आवश्यकता क्यों है? यह गलत और असंभव उत्तरों को हटाने का एक अवसर है। यदि उत्तर स्वीकार्य मूल्यों की सीमा के भीतर नहीं है, तो उत्तर का कोई मतलब नहीं है। यह लंबे समय तक याद रखने योग्य है, क्योंकि परीक्षा में अक्सर ODZ की खोज करने की आवश्यकता होती है, और यह न केवल लघुगणकीय असमानताओं की चिंता करता है।

लॉगरिदमिक असमानता को हल करने के लिए एल्गोरिदम

समाधान में कई चरण होते हैं। सबसे पहले, स्वीकार्य मूल्यों की सीमा को खोजना आवश्यक है। ODZ में दो मान होंगे, हमने इसे ऊपर माना है। अगला कदम असमानता को ही हल करना है। समाधान के तरीके इस प्रकार हैं:

  • गुणक प्रतिस्थापन विधि;
  • अपघटन;
  • युक्तिकरण विधि।

स्थिति के आधार पर, उपरोक्त विधियों में से एक का उपयोग किया जाना चाहिए। चलिए सीधे समाधान पर चलते हैं। हम सबसे लोकप्रिय विधि प्रकट करेंगे जो लगभग सभी मामलों में यूएसई कार्यों को हल करने के लिए उपयुक्त है। अगला, हम अपघटन विधि पर विचार करेंगे। यदि आप विशेष रूप से "मुश्किल" असमानता का सामना करते हैं तो यह मदद कर सकता है। तो, लघुगणक असमानता को हल करने के लिए एल्गोरिथ्म।

समाधान उदाहरण :

यह व्यर्थ नहीं है कि हमने ऐसी असमानता को ठीक किया! आधार पर ध्यान दें। याद रखें: यदि यह एक से अधिक है, तो मान्य मानों की सीमा का पता लगाने पर चिह्न वही रहता है; अन्यथा, असमानता के संकेत को बदलना होगा।

परिणामस्वरूप, हमें असमानता मिलती है:

अब हम बायीं ओर को शून्य के बराबर समीकरण के रूप में लाते हैं। "से कम" चिह्न के बजाय, हम "बराबर" डालते हैं, हम समीकरण को हल करते हैं। इस प्रकार, हम ODZ पाएंगे। हम आशा करते हैं कि आपको ऐसे सरल समीकरण को हल करने में कोई समस्या नहीं होगी। उत्तर -4 और -2 हैं। वह सब कुछ नहीं हैं। आपको इन बिंदुओं को चार्ट पर प्रदर्शित करने की आवश्यकता है, "+" और "-" रखें। इसके लिए क्या करने की जरूरत है? अंतराल से व्यंजक में संख्याएँ रखें। जहां मान सकारात्मक हैं, हम वहां "+" डालते हैं।

जवाब: x -4 से बड़ा और -2 से छोटा नहीं हो सकता।

हमने केवल बाईं ओर के लिए मान्य मानों की सीमा पाई, अब हमें दाईं ओर के लिए मान्य मानों की श्रेणी खोजने की आवश्यकता है। यह किसी भी तरह से आसान नहीं है। उत्तर: -2। हम दोनों प्राप्त क्षेत्रों को काटते हैं।

और केवल अब हम असमानता को ही हल करना शुरू करते हैं।

आइए इसे तय करना आसान बनाने के लिए इसे जितना संभव हो उतना सरल करें।

हम समाधान में फिर से अंतराल विधि का उपयोग करते हैं। आइए गणनाओं को छोड़ दें, उसके साथ पिछले उदाहरण से सब कुछ पहले से ही स्पष्ट है। जवाब।

लेकिन यह विधि उपयुक्त है यदि लॉगरिदमिक असमानता के समान आधार हैं।

विभिन्न आधारों के साथ लघुगणकीय समीकरणों और असमानताओं को हल करने में एक आधार में प्रारंभिक कमी शामिल है। फिर उपरोक्त विधि का प्रयोग करें। लेकिन एक और पेचीदा मामला भी है। लॉगरिदमिक असमानताओं के सबसे जटिल प्रकारों में से एक पर विचार करें।

चर आधार के साथ लघुगणकीय असमानताएँ

ऐसी विशेषताओं वाली असमानताओं को कैसे हल करें? हां, और ऐसा परीक्षा में पाया जा सकता है। असमानताओं को निम्नलिखित तरीके से हल करने से आपकी शैक्षिक प्रक्रिया पर भी लाभकारी प्रभाव पड़ेगा। आइए इस मुद्दे को विस्तार से देखें। आइए सिद्धांत को एक तरफ रख दें और सीधे अभ्यास पर जाएं। लघुगणकीय असमानताओं को हल करने के लिए, उदाहरण के साथ खुद को परिचित करना पर्याप्त है।

प्रस्तुत रूप की लघुगणकीय असमानता को हल करने के लिए, समान आधार के साथ लघुगणक के दाईं ओर को कम करना आवश्यक है। सिद्धांत समकक्ष संक्रमण जैसा दिखता है। नतीजतन, असमानता इस तरह दिखेगी।

वास्तव में, यह लघुगणक के बिना असमानताओं की एक प्रणाली बनाने के लिए बनी हुई है। युक्तिकरण विधि का उपयोग करते हुए, हम असमानताओं की एक समान प्रणाली को पास करते हैं। जब आप उचित मूल्यों को प्रतिस्थापित करते हैं और उनके परिवर्तनों का पालन करते हैं तो आप नियम को स्वयं समझेंगे। प्रणाली में निम्नलिखित असमानताएँ होंगी।

असमानताओं को हल करते समय युक्तिकरण विधि का उपयोग करते हुए, आपको निम्नलिखित को याद रखने की आवश्यकता है: आपको आधार से एक घटाना होगा, x, लघुगणक की परिभाषा के अनुसार, असमानता के दोनों भागों (बाएं से दाएं) से घटाया जाता है, दो व्यंजकों को गुणा किया जाता है और शून्य के सापेक्ष मूल चिह्न के अंतर्गत सेट किया जाता है।

आगे का समाधान अंतराल विधि द्वारा किया जाता है, यहां सब कुछ सरल है। समाधान विधियों में अंतर को समझना आपके लिए महत्वपूर्ण है, फिर सब कुछ आसानी से काम करना शुरू कर देगा।

लॉगरिदमिक असमानताओं में कई बारीकियां हैं। उनमें से सबसे सरल हल करने में काफी आसान हैं। इसे कैसे बनाया जाए ताकि उनमें से प्रत्येक को बिना किसी समस्या के हल किया जा सके? आपको इस लेख में सभी उत्तर पहले ही मिल चुके हैं। अब आपके सामने एक लंबा अभ्यास है। परीक्षा के भीतर विभिन्न समस्याओं को हल करने का लगातार अभ्यास करें और आप उच्चतम अंक प्राप्त करने में सक्षम होंगे। आपके कठिन कार्य में शुभकामनाएँ!

एक असमानता को लघुगणक कहा जाता है यदि इसमें एक लघुगणकीय कार्य होता है।

लॉगरिदमिक असमानताओं को हल करने के तरीके दो चीजों को छोड़कर अलग नहीं हैं।

सबसे पहले, जब लघुगणकीय असमानता से सबलॉगरिदमिक कार्यों की असमानता से गुजरते हैं, तो यह इस प्रकार है परिणामी असमानता के संकेत का पालन करें. यह निम्नलिखित नियम का पालन करता है।

यदि लघुगणकीय फलन का आधार $1$ से अधिक है, तो लघुगणकीय असमानता से सबलॉगरिदमिक फलनों की असमानता में जाने पर, असमानता का चिह्न संरक्षित रहता है, और यदि यह $1$ से कम है, तो इसे उलट दिया जाता है।

दूसरे, किसी भी असमानता का समाधान एक अंतराल है, और इसलिए, उप-वर्गीय कार्यों की असमानता के समाधान के अंत में, दो असमानताओं की एक प्रणाली की रचना करना आवश्यक है: इस प्रणाली की पहली असमानता की असमानता होगी सबलॉगरिदमिक फ़ंक्शंस, और दूसरा लॉगरिदमिक असमानता में शामिल लॉगरिदमिक फ़ंक्शंस की परिभाषा के डोमेन का अंतराल होगा।

अभ्यास।

आइए असमानताओं को हल करें:

1. $\log_(2)((x+3)) \geq 3.$

$D(y): \x+3>0.$

$x \in (-3;+\infty)$

लघुगणक का आधार $2>1$ है, इसलिए चिह्न नहीं बदलता है। लघुगणक की परिभाषा का उपयोग करते हुए, हम प्राप्त करते हैं:

$x+3 \geq 2^(3),$

$x \in )

लोड हो रहा है...लोड हो रहा है...