तीन संख्याओं के उदाहरणों का लघुत्तम समापवर्त्य। अल्पतम समापवर्त्य ज्ञात करना: विधियाँ, LCM ज्ञात करने के उदाहरण

एलसीएम की गणना कैसे करें यह समझने के लिए, आपको पहले "एकाधिक" शब्द का अर्थ निर्धारित करना चाहिए।


A का गुणज एक प्राकृत संख्या है जो बिना शेषफल के A से विभाज्य है। इस प्रकार, 15, 20, 25, इत्यादि को 5 का गुणज माना जा सकता है।


किसी विशेष संख्या के भाजक सीमित संख्या में हो सकते हैं, लेकिन अनंत गुणज होते हैं।


प्राकृत संख्याओं का एक उभयनिष्ठ गुणज एक ऐसी संख्या है जो उनके द्वारा शेषफल के बिना विभाज्य होती है।

संख्याओं का लघुत्तम समापवर्त्य कैसे ज्ञात करें

संख्याओं का लघुत्तम समापवर्त्य (LCM) (दो, तीन या अधिक) वह सबसे छोटी प्राकृत संख्या है जो इन सभी संख्याओं से समान रूप से विभाजित होती है।


एनओसी खोजने के लिए आप कई तरीकों का इस्तेमाल कर सकते हैं।


छोटी संख्याओं के लिए, इन संख्याओं के सभी गुणजों को एक पंक्ति में तब तक लिखना सुविधाजनक होता है जब तक कि उनमें से एक सामान्य न हो जाए। रिकॉर्ड में गुणकों को बड़े अक्षर K से दर्शाया जाता है।


उदाहरण के लिए, 4 के गुणज इस प्रकार लिखे जा सकते हैं:


के(4) = (8,12, 16, 20, 24, ...)


के(6) = (12, 18, 24, ...)


तो, आप देख सकते हैं कि संख्या 4 और 6 का सबसे छोटा सामान्य गुणक संख्या 24 है। यह प्रविष्टि इस प्रकार की जाती है:


एलसीएम(4, 6) = 24


यदि संख्याएँ बड़ी हैं, तो तीन या अधिक संख्याओं का सार्व गुणज ज्ञात कीजिए, तो LCM की गणना के लिए किसी अन्य तरीके का उपयोग करना बेहतर है।


कार्य को पूरा करने के लिए, प्रस्तावित संख्याओं को प्रमुख कारकों में विघटित करना आवश्यक है।


सबसे पहले आपको एक पंक्ति में सबसे बड़ी संख्याओं का विस्तार लिखना होगा, और उसके नीचे - बाकी।


प्रत्येक संख्या के विस्तार में भिन्न भिन्न गुणनखंड हो सकते हैं।


उदाहरण के लिए, आइए संख्या 50 और 20 को अभाज्य गुणनखंडों में गुणित करें।




छोटी संख्या के अपघटन में, उन कारकों को रेखांकित करना चाहिए जो पहली सबसे बड़ी संख्या के अपघटन में अनुपस्थित हैं, और फिर उन्हें इसमें जोड़ दें। प्रस्तुत उदाहरण में, एक ड्यूस गायब है।


अब हम 20 और 50 के लघुत्तम समापवर्त्य की गणना कर सकते हैं।


एलसीएम (20, 50) = 2 * 5 * 5 * 2 = 100


इस प्रकार, बड़ी संख्या के अभाज्य गुणनखंडों का गुणनफल और दूसरी संख्या के गुणनखंड, जो बड़ी संख्या के अपघटन में शामिल नहीं हैं, अल्पतम समापवर्तक होंगे।


तीन या अधिक संख्याओं का LCM ज्ञात करने के लिए, उन सभी को अभाज्य गुणनखंडों में विघटित किया जाना चाहिए, जैसा कि पिछले मामले में था।


उदाहरण के तौर पर, आप 16, 24, 36 संख्याओं का सबसे छोटा सा सामान्य गुणज ज्ञात कर सकते हैं।


36 = 2 * 2 * 3 * 3


24 = 2 * 2 * 2 * 3


16 = 2 * 2 * 2 * 2


तो, सोलह के अपघटन से केवल दो ड्यूस (एक चौबीस के अपघटन में है) एक बड़ी संख्या के गुणनखंड में प्रवेश नहीं किया।


इस प्रकार, उन्हें बड़ी संख्या के अपघटन में जोड़ने की आवश्यकता है।


एलसीएम (12, 16, 36) = 2 * 2 * 3 * 3 * 2 * 2 = 9


कम से कम सामान्य गुणक निर्धारित करने के विशेष मामले हैं। इसलिए, यदि किसी एक संख्या को शेषफल के बिना दूसरे से विभाजित किया जा सकता है, तो इनमें से बड़ी संख्या सबसे छोटी सामान्य गुणज होगी।


उदाहरण के लिए, बारह और चौबीस की एनओसी चौबीस होगी।


यदि ऐसे सहअभाज्य संख्याओं का लघुत्तम समापवर्तक ज्ञात करना आवश्यक है जिनमें समान भाजक नहीं हैं, तो उनका LCM उनके गुणनफल के बराबर होगा।


उदाहरण के लिए, एलसीएम(10, 11) = 110।

कम से कम सामान्य गुणक खोजने के तीन तरीकों पर विचार करें।

फैक्टरिंग द्वारा ढूँढना

पहला तरीका यह है कि दी गई संख्याओं को अभाज्य गुणनखंडों में विभाजित करके लघुत्तम समापवर्त्य ज्ञात किया जाए।

मान लीजिए हमें संख्याओं का एलसीएम ज्ञात करना है: 99, 30 और 28। ऐसा करने के लिए, हम इनमें से प्रत्येक संख्या को प्रमुख कारकों में विघटित करते हैं:

वांछित संख्या को 99, 30 और 28 से विभाज्य होने के लिए, यह आवश्यक और पर्याप्त है कि इसमें इन भाजक के सभी अभाज्य गुणनखंड शामिल हों। ऐसा करने के लिए, हमें इन संख्याओं के सभी अभाज्य गुणनखंडों को उच्चतम होने वाली घात तक ले जाना होगा और उन्हें एक साथ गुणा करना होगा:

2 2 3 2 5 7 11 = 13 860

तो एलसीएम (99, 30, 28) = 13,860। 13,860 से कम कोई अन्य संख्या 99, 30, या 28 से समान रूप से विभाज्य नहीं है।

दी गई संख्याओं में से कम से कम सामान्य गुणकों को खोजने के लिए, आपको उन्हें अभाज्य गुणनखंडों में विघटित करना होगा, फिर प्रत्येक अभाज्य गुणनखंड को सबसे बड़े घातांक के साथ लेना होगा जिसके साथ यह होता है, और इन कारकों को एक साथ गुणा करें।

चूँकि सहअभाज्य संख्याओं का कोई उभयनिष्ठ अभाज्य गुणनखंड नहीं होता है, उनका लघुत्तम समापवर्तक इन संख्याओं के गुणनफल के बराबर होता है। उदाहरण के लिए, तीन संख्याएँ: 20, 49 और 33 सहअभाज्य हैं। इसलिए

एलसीएम (20, 49, 33) = 20 49 33 = 32,340।

विभिन्न अभाज्य संख्याओं के लघुत्तम समापवर्त्य की खोज करते समय भी ऐसा ही किया जाना चाहिए। उदाहरण के लिए, एलसीएम (3, 7, 11) = 3 7 11 = 231।

चयन द्वारा ढूँढना

दूसरा तरीका यह है कि फिटिंग द्वारा कम से कम सामान्य गुणक का पता लगाया जाए।

उदाहरण 1. जब दी गई संख्याओं में से सबसे बड़ी संख्या अन्य दी गई संख्याओं से समान रूप से विभाज्य होती है, तो इन संख्याओं का LCM उनमें से बड़ी संख्या के बराबर होता है। उदाहरण के लिए, चार संख्याएँ दी गई हैं: 60, 30, 10 और 6. उनमें से प्रत्येक 60 से विभाज्य है, इसलिए:

एनओसी (60, 30, 10, 6) = 60

अन्य मामलों में, कम से कम सामान्य गुणक खोजने के लिए, निम्नलिखित प्रक्रिया का उपयोग किया जाता है:

  1. दी गई संख्याओं में से सबसे बड़ी संख्या ज्ञात कीजिए।
  2. इसके बाद, हम ऐसी संख्याएँ पाते हैं जो सबसे बड़ी संख्या के गुणज हैं, इसे आरोही क्रम में प्राकृतिक संख्याओं से गुणा करते हैं और जाँचते हैं कि क्या शेष दी गई संख्याएँ परिणामी गुणनफल से विभाज्य हैं।

उदाहरण 2. तीन संख्याएँ 24, 3 और 18 दी गई हैं। उनमें से सबसे बड़ी संख्या ज्ञात कीजिए - यह संख्या 24 है। इसके बाद, वे संख्याएँ ज्ञात कीजिए जो 24 के गुणज हैं, यह जाँचते हुए कि उनमें से प्रत्येक 18 और 3 से विभाज्य है या नहीं:

24 1 = 24 3 से विभाज्य है लेकिन 18 से विभाज्य नहीं है।

24 2 = 48 - 3 से विभाज्य लेकिन 18 से विभाज्य नहीं।

24 3 \u003d 72 - 3 और 18 से विभाज्य।

तो एलसीएम (24, 3, 18) = 72।

अनुक्रमिक खोज एलसीएम द्वारा ढूँढना

तीसरा तरीका एलसीएम को क्रमिक रूप से खोजकर कम से कम सामान्य गुणक खोजना है।

दो दी गई संख्याओं का LCM उनके सबसे बड़े सामान्य भाजक द्वारा विभाजित इन संख्याओं के गुणनफल के बराबर है।

उदाहरण 1. दो दी गई संख्याओं का एलसीएम खोजें: 12 और 8। उनका सबसे बड़ा सामान्य भाजक निर्धारित करें: जीसीडी (12, 8) = 4। इन संख्याओं को गुणा करें:

हम उत्पाद को उनके GCD में विभाजित करते हैं:

अत: LCM(12, 8) = 24.

तीन या अधिक संख्याओं का LCM ज्ञात करने के लिए, निम्नलिखित प्रक्रिया का उपयोग किया जाता है:

  1. सबसे पहले, दी गई संख्याओं में से किन्हीं दो का LCM ज्ञात किया जाता है।
  2. फिर, कम से कम सामान्य गुणक का एलसीएम और तीसरी दी गई संख्या।
  3. फिर, परिणामी कम से कम सामान्य गुणक और चौथी संख्या का एलसीएम, और इसी तरह।
  4. इस प्रकार एलसीएम खोज तब तक जारी रहती है जब तक संख्याएं होती हैं।

उदाहरण 2. आइए तीन दी गई संख्याओं का एलसीएम खोजें: 12, 8 और 9। हम पिछले उदाहरण में संख्याओं 12 और 8 के एलसीएम को पहले ही ढूंढ चुके हैं (यह संख्या 24 है)। यह 24 का सबसे छोटा सामान्य गुणक और तीसरी दी गई संख्या - 9 को खोजने के लिए बनी हुई है। उनका सबसे बड़ा सामान्य भाजक निर्धारित करें: gcd (24, 9) = 3. LCM को संख्या 9 से गुणा करें:

हम उत्पाद को उनके GCD में विभाजित करते हैं:

तो एलसीएम(12, 8, 9) = 72।

निम्नलिखित समस्या के समाधान पर विचार करें। लड़के का कदम 75 सेमी है, और लड़की का कदम 60 सेमी है। यह न्यूनतम दूरी ज्ञात करना आवश्यक है जिस पर दोनों एक पूर्णांक संख्या में कदम उठाएंगे।

फेसला।लोग जिस पूरे रास्ते से गुजरेंगे, वह बिना किसी शेषफल के 60 और 70 से विभाज्य होना चाहिए, क्योंकि उनमें से प्रत्येक को पूर्णांक संख्या में कदम उठाने होंगे। दूसरे शब्दों में, उत्तर 75 और 60 दोनों का गुणज होना चाहिए।

सबसे पहले, हम संख्या 75 के लिए सभी गुणजों को लिखेंगे। हमें प्राप्त होता है:

  • 75, 150, 225, 300, 375, 450, 525, 600, 675, … .

अब आइए उन संख्याओं को लिखें जो 60 का गुणज हों। हमें प्राप्त होता है:

  • 60, 120, 180, 240, 300, 360, 420, 480, 540, 600, 660, … .

अब हम उन संख्याओं को ज्ञात करते हैं जो दोनों पंक्तियों में हैं।

  • संख्याओं का सामान्य गुणज संख्याएँ, 300, 600 आदि होंगी।

उनमें से सबसे छोटी संख्या 300 है। इस स्थिति में, इसे 75 और 60 की संख्याओं का लघुत्तम समापवर्तक कहा जाएगा।

समस्या की स्थिति में लौटते हुए, सबसे छोटी दूरी जिस पर लोग पूर्णांक संख्या में कदम उठाते हैं वह 300 सेमी होगा।लड़का 4 चरणों में इस तरह से जाएगा, और लड़की को 5 कदम उठाने की आवश्यकता होगी।

कम से कम सामान्य गुणक ढूँढना

  • दो प्राकृत संख्याओं a और b का लघुत्तम समापवर्त्य वह सबसे छोटी प्राकृत संख्या है जो a और b दोनों का गुणज है।

दो संख्याओं का लघुत्तम समापवर्तक ज्ञात करने के लिए, इन संख्याओं के सभी गुणजों को एक पंक्ति में लिखना आवश्यक नहीं है।

आप निम्न विधि का उपयोग कर सकते हैं।

कम से कम सामान्य गुणक कैसे खोजें

सबसे पहले, आपको इन संख्याओं को अभाज्य गुणनखंडों में विघटित करना होगा।

  • 60 = 2*2*3*5,
  • 75=3*5*5.

अब हम उन सभी गुणनखंडों को लिखते हैं जो पहली संख्या (2,2,3,5) के विस्तार में हैं और दूसरी संख्या (5) के विस्तार से सभी लुप्त गुणनखंडों को इसमें जोड़ते हैं।

नतीजतन, हमें अभाज्य संख्याओं की एक श्रृंखला मिलती है: 2,2,3,5,5। इन संख्याओं का गुणनफल इन संख्याओं के लिए अल्पतम समापवर्तक होगा। 2*2*3*5*5 = 300.

अल्पतम समापवर्त्य ज्ञात करने की सामान्य योजना

  • 1. संख्याओं को अभाज्य गुणनखंडों में विघटित करें।
  • 2. उन अभाज्य कारकों को लिखिए जो उनमें से किसी एक का भाग हैं।
  • 3. इन कारकों में उन सभी को जोड़ें जो शेष के अपघटन में हैं, लेकिन चयनित में नहीं हैं।
  • 4. लिखे गए सभी कारकों का गुणनफल ज्ञात कीजिए।

यह विधि सार्वभौमिक है। इसका उपयोग प्राकृतिक संख्याओं की किसी भी संख्या के सबसे छोटे सामान्य गुणकों को खोजने के लिए किया जा सकता है।

परिभाषा।वह सबसे बड़ी प्राकृत संख्या जिससे a और b शेषफल के बिना विभाज्य हैं, कहलाती हैं सबसे बड़ा सामान्य भाजक (जीसीडी)ये नंबर।

आइए संख्या 24 और 35 का सबसे बड़ा सामान्य भाजक ज्ञात करें।
24 के भाजक संख्या 1, 2, 3, 4, 6, 8, 12, 24 और 35 के भाजक संख्या 1, 5, 7, 35 होंगे।
हम देखते हैं कि संख्याएँ 24 और 35 का केवल एक उभयनिष्ठ भाजक है - संख्या 1. ऐसी संख्याएँ कहलाती हैं सह अभाज्य.

परिभाषा।प्राकृत संख्याएँ कहलाती हैं सह अभाज्ययदि उनका सबसे बड़ा सामान्य भाजक (gcd) 1 है।

सबसे बड़ा सामान्य भाजक (जीसीडी)दी गई संख्याओं के सभी भाजक को लिखे बिना पाया जा सकता है।

संख्या 48 और 36 का गुणनखंडन करने पर, हम प्राप्त करते हैं:
48 = 2 * 2 * 2 * 2 * 3, 36 = 2 * 2 * 3 * 3.
इनमें से पहली संख्या के विस्तार में शामिल कारकों में से, हम उन संख्याओं को हटा देते हैं जो दूसरी संख्या (यानी, दो ड्यूस) के विस्तार में शामिल नहीं हैं।
गुणनखंड 2*2*3 रहता है। उनका गुणनफल 12 होता है। यह संख्या 48 और 36 का सबसे बड़ा सामान्य भाजक है। तीन या अधिक संख्याओं का सबसे बड़ा सामान्य भाजक भी पाया जाता है।

ढूँढ़ने के लिए महत्तम सामान्य भाजक

2) इनमें से किसी एक संख्या के विस्तार में शामिल कारकों में से, उन संख्याओं को काट दें जो अन्य संख्याओं के विस्तार में शामिल नहीं हैं;
3) शेष कारकों का गुणनफल ज्ञात कीजिए।

यदि दी गई सभी संख्याएँ उनमें से किसी एक से विभाज्य हैं, तो यह संख्या है महत्तम सामान्य भाजकदिए गए नंबर।
उदाहरण के लिए, 15, 45, 75 और 180 का सबसे बड़ा सामान्य भाजक 15 है, क्योंकि यह अन्य सभी संख्याओं को विभाजित करता है: 45, 75 और 180।

कम से कम सामान्य एकाधिक (एलसीएम)

परिभाषा। कम से कम सामान्य एकाधिक (एलसीएम)प्राकृत संख्याएँ a और b सबसे छोटी प्राकृत संख्या है जो a और b दोनों का गुणज है। 75 और 60 की संख्याओं का लघुत्तम समापवर्तक (LCM) इन संख्याओं के गुणजों को एक पंक्ति में लिखे बिना पाया जा सकता है। ऐसा करने के लिए, हम 75 और 60 को सरल कारकों में विघटित करते हैं: 75 \u003d 3 * 5 * 5, और 60 \u003d 2 * 2 * 3 * 5।
आइए इनमें से पहली संख्या के विस्तार में शामिल कारकों को लिखें, और उनमें दूसरी संख्या के विस्तार से लुप्त गुणनखंड 2 और 2 जोड़ें (अर्थात, हम गुणनखंडों को जोड़ते हैं)।
हमें पाँच गुणनखंड 2 * 2 * 3 * 5 * 5 मिलते हैं, जिनका गुणनफल 300 है। यह संख्या 75 और 60 की संख्याओं का सबसे छोटा सा सामान्य गुणज है।

तीन या अधिक संख्याओं का लघुत्तम समापवर्त्य भी ज्ञात कीजिए।

सेवा कम से कम सामान्य गुणक खोजेंकई प्राकृतिक संख्याएँ, आपको चाहिए:
1) उन्हें प्रमुख कारकों में विघटित करें;
2) किसी एक संख्या के प्रसार में शामिल कारकों को लिखिए;
3) उनमें शेष संख्याओं के प्रसार से लुप्त गुणनखंडों को जोड़ें;
4) परिणामी कारकों के उत्पाद का पता लगाएं।

ध्यान दें कि यदि इनमें से एक संख्या अन्य सभी संख्याओं से विभाज्य है, तो यह संख्या इन संख्याओं में सबसे छोटी सामान्य गुणज है।
उदाहरण के लिए, 12, 15, 20 और 60 का सबसे छोटा सामान्य गुणक 60 होगा, क्योंकि यह सभी दी गई संख्याओं से विभाज्य है।

पाइथागोरस (छठी शताब्दी ईसा पूर्व) और उनके छात्रों ने संख्याओं की विभाज्यता के मुद्दे का अध्ययन किया। एक संख्या जो अपने सभी भाजक के योग के बराबर होती है (बिना संख्या के), वे पूर्ण संख्या कहलाती हैं। उदाहरण के लिए, संख्याएँ 6 (6 = 1 + 2 + 3), 28 (28 = 1 + 2 + 4 + 7 + 14) पूर्ण हैं। अगली पूर्ण संख्याएँ 496, 8128, 33,550,336 हैं। पाइथागोरस केवल पहली तीन पूर्ण संख्याएँ जानते थे। चौथा - 8128 - पहली शताब्दी में ज्ञात हुआ। एन। इ। पांचवां - 33 550 336 - 15वीं शताब्दी में पाया गया था। 1983 तक, 27 पूर्ण संख्याएँ पहले से ही ज्ञात थीं। लेकिन अब तक, वैज्ञानिक यह नहीं जानते हैं कि क्या विषम पूर्ण संख्याएँ होती हैं, क्या सबसे बड़ी पूर्ण संख्या होती है।
अभाज्य संख्याओं में प्राचीन गणितज्ञों की रुचि इस तथ्य के कारण है कि कोई भी संख्या या तो अभाज्य होती है या उसे अभाज्य संख्याओं के गुणनफल के रूप में दर्शाया जा सकता है, अर्थात अभाज्य संख्याएँ ईंटों की तरह होती हैं जिनसे शेष प्राकृतिक संख्याएँ बनती हैं।
आपने शायद ध्यान दिया होगा कि प्राकृत संख्याओं की श्रृंखला में अभाज्य संख्याएँ असमान रूप से आती हैं - श्रृंखला के कुछ हिस्सों में उनमें से अधिक होती हैं, अन्य में - कम। लेकिन हम संख्या श्रृंखला के साथ जितना आगे बढ़ते हैं, अभाज्य संख्याएँ उतनी ही दुर्लभ होती हैं। प्रश्न उठता है: क्या अंतिम (सबसे बड़ी) अभाज्य संख्या मौजूद है? प्राचीन यूनानी गणितज्ञ यूक्लिड (तीसरी शताब्दी ईसा पूर्व), अपनी पुस्तक "बिगिनिंग्स" में, जो दो हजार वर्षों तक गणित की मुख्य पाठ्यपुस्तक थी, ने साबित किया कि असीम रूप से कई अभाज्य संख्याएँ हैं, अर्थात प्रत्येक अभाज्य संख्या के पीछे एक सम है। अधिक अभाज्य संख्या।
अभाज्य संख्याएँ ज्ञात करने के लिए, उसी समय के एक अन्य यूनानी गणितज्ञ, एराटोस्थनीज ने ऐसी विधि का आविष्कार किया। उसने 1 से लेकर किसी संख्या तक की सभी संख्याओं को लिख दिया, और फिर उस इकाई को काट दिया, जो न तो अभाज्य है और न ही भाज्य संख्या है, फिर 2 के बाद सभी संख्याओं में से एक को काट दिया (वे संख्याएँ जो 2 के गुणज हैं, अर्थात 4, 6, 8, आदि)। 2 के बाद पहली शेष संख्या 3 थी। फिर, दो के बाद, 3 के बाद की सभी संख्याओं को काट दिया गया (वे संख्याएँ जो 3 के गुणज हैं, अर्थात 6, 9, 12, आदि)। अंत में, केवल अभाज्य संख्याएँ ही बिना क्रॉस के रह गईं।

छात्रों को गणित के बहुत सारे असाइनमेंट दिए जाते हैं। उनमें से, अक्सर निम्नलिखित सूत्रीकरण के साथ कार्य होते हैं: दो मूल्य होते हैं। दी गई संख्याओं का लघुत्तम समापवर्त्य कैसे ज्ञात करें? ऐसे कार्यों को करने में सक्षम होना आवश्यक है, क्योंकि अर्जित कौशल का उपयोग भिन्न हर के साथ भिन्नों के साथ काम करने के लिए किया जाता है। लेख में, हम विश्लेषण करेंगे कि एलसीएम और बुनियादी अवधारणाओं को कैसे खोजा जाए।

एलसीएम कैसे खोजें, इस प्रश्न का उत्तर खोजने से पहले, आपको बहु शब्द को परिभाषित करने की आवश्यकता है. अक्सर, इस अवधारणा का शब्दांकन इस प्रकार है: कुछ मान A का गुणज एक प्राकृतिक संख्या है जो बिना शेष के A से विभाज्य होगी। इसलिए, 4, 8, 12, 16, 20 और इसी तरह, तक आवश्यक सीमा।

इस मामले में, किसी विशेष मान के लिए भाजक की संख्या सीमित की जा सकती है, और अपरिमित रूप से कई गुणज होते हैं। प्राकृतिक मूल्यों के लिए भी वही मूल्य है। यह एक संकेतक है जो उनके द्वारा शेषफल के बिना विभाजित किया जाता है। कुछ संकेतकों के लिए सबसे छोटे मूल्य की अवधारणा से निपटने के बाद, आइए इसे कैसे खोजें, इस पर आगे बढ़ते हैं।

एनओसी का पता लगाना

दो या दो से अधिक घातांकों का सबसे छोटा गुणज वह सबसे छोटी प्राकृत संख्या होती है जो दी गई सभी संख्याओं से पूर्णतः विभाजित हो जाती है।

इस तरह के मूल्य को खोजने के कई तरीके हैं।आइए निम्नलिखित विधियों पर विचार करें:

  1. यदि संख्याएँ छोटी हैं, तो उस पंक्ति में सभी विभाज्य लिखिए। ऐसा तब तक करते रहें जब तक आपको उनमें कुछ समान न मिल जाए। रिकॉर्ड में, उन्हें K अक्षर से दर्शाया जाता है। उदाहरण के लिए, 4 और 3 के लिए, सबसे छोटा गुणज 12 है।
  2. यदि ये बड़े हैं या आपको 3 या अधिक मानों के लिए एक गुणक खोजने की आवश्यकता है, तो आपको यहां एक अलग तकनीक का उपयोग करना चाहिए, जिसमें संख्याओं को अभाज्य गुणनखंडों में शामिल करना शामिल है। सबसे पहले, सबसे बड़ा संकेत दिया गया है, फिर बाकी सभी। उनमें से प्रत्येक के अपने गुणक हैं। एक उदाहरण के रूप में, 20 (2*2*5) और 50 (5*5*2) को विघटित करते हैं। उनमें से छोटे के लिए, कारकों को रेखांकित करें और सबसे बड़े में जोड़ें। परिणाम 100 होगा, जो उपरोक्त संख्याओं का सबसे छोटा सामान्य गुणक होगा।
  3. 3 नंबर (16, 24 और 36) खोजने पर सिद्धांत अन्य दो के समान ही होते हैं। आइए उनमें से प्रत्येक का विस्तार करें: 16 = 2*2*2*2, 24=2*2*2*3, 36=2*2*3*3। संख्या 16 के विस्तार से केवल दो ड्यूस सबसे बड़े के अपघटन में शामिल नहीं थे। हम उन्हें जोड़ते हैं और 144 प्राप्त करते हैं, जो पहले से संकेतित संख्यात्मक मानों के लिए सबसे छोटा परिणाम है।

अब हम जानते हैं कि दो, तीन या अधिक मानों के लिए सबसे छोटा मान ज्ञात करने की सामान्य तकनीक क्या है। हालाँकि, निजी तरीके भी हैं, एनओसी की खोज में मदद करना, अगर पिछले वाले मदद नहीं करते हैं।

जीसीडी और एनओसी कैसे खोजें।

खोजने के निजी तरीके

किसी भी गणितीय खंड की तरह, एलसीएम खोजने के विशेष मामले हैं जो विशिष्ट स्थितियों में मदद करते हैं:

  • यदि एक संख्या शेष के बिना अन्य से विभाज्य है, तो इन संख्याओं में से सबसे छोटी गुणज इसके बराबर है (एनओसी 60 और 15 15 के बराबर है);
  • Coprime संख्याओं में सामान्य अभाज्य भाजक नहीं होते हैं। इनका सबसे छोटा मान इन संख्याओं के गुणनफल के बराबर होता है। इस प्रकार, संख्या 7 और 8 के लिए, यह 56 होगा;
  • विशेष मामलों सहित अन्य मामलों के लिए भी यही नियम काम करता है, जिसके बारे में विशेष साहित्य में पढ़ा जा सकता है। इसमें मिश्रित संख्याओं के अपघटन के मामले भी शामिल होने चाहिए, जो अलग-अलग लेखों और यहां तक ​​कि पीएच.डी. शोध प्रबंधों के विषय हैं।

मानक उदाहरणों की तुलना में विशेष मामले कम आम हैं। लेकिन उनके लिए धन्यवाद, आप सीख सकते हैं कि जटिलता की अलग-अलग डिग्री के अंशों के साथ कैसे काम किया जाए। यह अंशों के लिए विशेष रूप से सच है।, जहां विभिन्न भाजक हैं।

कुछ उदाहरण

आइए कुछ उदाहरण देखें, जिसकी बदौलत आप सबसे छोटा गुणज ज्ञात करने के सिद्धांत को समझ सकते हैं:

  1. हम एलसीएम (35; 40) पाते हैं। हम पहले 35 = 5*7, फिर 40 = 5*8 बिछाते हैं। हम सबसे छोटी संख्या में 8 जोड़ते हैं और NOC 280 प्राप्त करते हैं।
  2. एनओसी (45; 54)। हम उनमें से प्रत्येक को बिछाते हैं: 45 = 3*3*5 और 54 = 3*3*6। हम संख्या 6 को 45 में जोड़ते हैं। हमें 270 के बराबर NOC मिलती है।
  3. खैर, आखिरी उदाहरण। 5 और 4 हैं। उनके लिए कोई सरल गुणज नहीं हैं, इसलिए इस मामले में सबसे छोटा सामान्य गुणज उनका गुणनफल होगा, जो 20 के बराबर होगा।

उदाहरणों के लिए धन्यवाद, आप समझ सकते हैं कि एनओसी कैसे स्थित है, क्या बारीकियां हैं और इस तरह के जोड़तोड़ का अर्थ क्या है।

एनओसी ढूंढना पहले की तुलना में बहुत आसान है। ऐसा करने के लिए, एक सरल अपघटन और एक दूसरे के लिए सरल मूल्यों के गुणन दोनों का उपयोग किया जाता है।. गणित के इस खंड के साथ काम करने की क्षमता गणितीय विषयों के आगे के अध्ययन में मदद करती है, विशेष रूप से जटिलता की अलग-अलग डिग्री के अंश।

विभिन्न तरीकों से उदाहरणों को समय-समय पर हल करना न भूलें, इससे तार्किक तंत्र विकसित होता है और आपको कई शब्दों को याद रखने की अनुमति मिलती है। इस तरह के एक संकेतक को खोजने के तरीकों को जानें और आप बाकी गणितीय वर्गों के साथ अच्छी तरह से काम करने में सक्षम होंगे। गणित सीखने में खुशी!

वीडियो

यह वीडियो आपको यह समझने और याद रखने में मदद करेगा कि कम से कम सामान्य गुणक कैसे खोजें।

लोड हो रहा है...लोड हो रहा है...