Что такое сопротивление ом. Электрическое сопротивление — Гипермаркет знаний

Сопротивление проводника – способность материала препятствовать протеканию электрического тока. Включая случай скин-эффекта переменных высокочастотных напряжений.

Физические определения

Материалы делятся классами согласно удельному сопротивлению. Рассматриваемая величина – сопротивление – считается ключевой, позволит выполнить градацию всех веществ, встречающихся в природе:

  1. Проводники – материалы с удельным сопротивлением до 10 мкОм м. Касается большинства металлов, графита.
  2. Диэлектрики – удельное сопротивление 100 МОм м — 10 ПОм м. Приставка Пета используется в контексте пятнадцатой степени десятки.
  3. Полупроводники – группа электротехнических материалов с удельным сопротивлением в диапазоне от проводников до диэлектриков.

Удельным сопротивление называется, позволяя охарактеризовать параметры отреза провода длиной 1 метр, площадью 1 квадратный метр. Чаще цифрами пользоваться неудобно. Сечение реального кабеля намного меньше. К примеру, для ПВ-3 площадь составляет десятки миллиметров. Расчет упрощается, если пользоваться единицами Ом кв.мм/м (см. рис.).

Удельное сопротивление металлов

Удельное сопротивление обозначается греческой буквой «ро», для получения показателя сопротивления величину домножим на длину, разделив на площадь образца. Перевод меж стандартными единицами измерения Ом м чаще используемыми для расчета показывает: взаимосвязь устанавливается через шестую степень десятки. Иногда удастся найти среди табличных значениях сведения, касающиеся удельного сопротивления меди:

  • 168 мкОм м;
  • 0,00175 Ом кв. мм / м.

Легко убедиться, цифры расходятся примерно на 4%, убедитесь, выполнив приведение единиц. Значит, цифры приводятся сортамента меди. При необходимости точных вычислений вопрос уточняется дополнительно, отдельно. Сведения об удельном сопротивлении образца получают чисто опытным путем. Отрез провода с известными сечением, длиной подсоединяется к контактам мультиметра. Для получения ответа требуется показания разделить на протяженность образца, домножить площадью сечения. В тестах полагается выбирать образец подлиннее, сократив до минимума погрешность. Значительная часть тестеров наделена недостаточной точностью для получения годных значений.

Итак, боящимся физиков, отчаявшимся освоить китайские мультиметры работать с удельным сопротивлением неудобно. Гораздо проще взять готовый отрез (большей длины), оценить параметр полного куска. На практике доли Ома играют малую роль, указанные действия выполняются для оценки потерь. Напрямую определены активным сопротивлением участка цепи и квадратично зависят от тока. Учитывая сказанное, отметим: проводники в электротехнике принято делить на две категории по применяемости:

  1. Материалы высокой проводимости, высокого сопротивления. Первые применяются для создания кабелей, вторые – сопротивлений (резисторов). В таблицах не бывает четкого разграничения, учитывается практичность. Серебро с низким сопротивлением для создания проводов не применяют вовсе, для контактов приборов – редко. По очевидным причинам.
  2. Сплавы с высокой упругостью применяются для создания гибких токонесущих частей: пружин, рабочих частей контакторов. Сопротивление обычно должно быть минимальным. Понятно, для этих целей в корне непригодна обычная медь, которой присуща большая степень пластичности.
  3. Сплавы с высоким или низким температурным коэффициентом расширения. Первые служат основой создания биметаллических пластин, структурно служащих основой . Вторые образуют группу инварных сплавов. Часто требуются, где важна геометрическая форма. У держателей нити (замена дорогостоящему вольфраму) и вакуумплотных спаев на стыке со стеклом. Но еще чаще инварные сплавы никакого отношения к электричеству не имеют, используются в составе станков, приборов.

Формула связи удельного сопротивления с омическим

Физические основы электропроводности

Сопротивление проводника признано величиной, обратной электропроводности. В современной теории не установлено досконально, как происходит процесс образования тока. Физики часто упирались в стену, наблюдая явление, которое никак не могло быть объяснено с точки позиций ранее выдвигавшихся концепций. Сегодня доминирующей считается зонная теория. Требуется привести краткий экскурс развития представлений о строении вещества.

Изначально предполагалось: вещество представлено субстанцией, заряженной положительно, в ней плавают электроны. Так считал небезызвестный лорд Кельвин (урожденный Томсон), в честь которого названа единица измерения абсолютной температуры. Впервые сделал предположение о планетарной структуре атомов Резерфорд. Теория, выдвинутая в 1911 году, была сооружена на факте отклонения альфа-излучения веществами с большой дисперсией (отдельные частицы изменяли угол полета на весьма значительную величину). На основе существующих предпосылок автор заключил: положительный заряд атома сосредоточен внутри малой области пространства, которую назвали ядром. Факт отдельных случаев сильного отклонения угла полета вызван тем, что путь частицы пролегал в непосредственной близости от ядра.

Так установлены пределы геометрических размеров отдельных элементов и для разных веществ. Заключили, что диаметр ядра золота укладывается областью 3 пм (пико – приставка к отрицательной двенадцатой степени десятки). Дальнейшее развитие теории строения веществ выполнил Бор в 1913 году. На основе наблюдения поведения ионов водорода сделал вывод: заряд атома составляет единицу, была определена масса, составившая примерно одну шестнадцатую веса кислорода. Бор предположил: электрон удерживается силами притяжения, определенными Кулоном. Следовательно, что-то удерживает от падения на ядро. Бор предположил, виновата центробежная сила, возникающая при вращении частицы по орбите.

Важную поправку к макету внес Зоммерфельд. Допустил эллиптичность орбит, ввел два квантовых числа, описывающих траекторию – n и k. Бор заметил: теория Максвелла для модели терпит крах. Движущаяся частица обязана порождать в пространстве магнитное поле, тогда постепенно электрон упал бы на ядро. Следовательно, приходится допустить: существуют орбиты, на которых излучения энергии в пространство не происходит. Легко заметить: предположения противоречат друг другу, лишний раз напоминая: сопротивление проводника, как физическую величину, сегодня неспособны объяснить физики.

Почему? Зонная теория выбрала базисом постулаты Бора, гласящие: положения орбит дискретны, вычисляются заранее, геометрические параметры связаны некоторыми соотношениями. Выводы ученого пришлось дополнить волновой механикой, поскольку сделанные математические модели бессильны оказались объяснить некоторые явления. Современная теория говорит: для каждого вещества предусмотрено в состоянии электронов три зоны:

  1. Валентная зона электронов, прочно связанных с атомами. Требуется большая энергия — разорвать связь. Электроны валентной зоны в проводимости не участвуют.
  2. Зона проводимости, электроны при возникновении в веществе напряженности поля образуют электрический ток (упорядоченное движение носителей заряда).
  3. Запрещенная зона – область энергетических состояний, где электроны в нормальных условиях находиться не могут.

Необъяснимый опыт Юнга

Согласно зонной теории, у проводника зона проводимости перекрывается валентной. Образуется электронное облако, легко увлекаемое напряженностью электрического поля, образуя ток. По этой причине сопротивление проводника имеет столь малое значение. Причем ученые прилагают бесполезные усилия объяснить, что представляет собой электрон. Известно только: элементарная частица проявляет волновые и корпускулярные свойства. Принцип неопределенности Гейзенберга ставит факты на места: нельзя с вероятностью 100% одновременно определить местоположение электрона и энергию.

Что касается эмпирической части, учеными подмечено: опыт Юнга, проделанный с электронами, дает любопытный результат. Ученый пропускал поток фотонов через две близкие щели щита, получалась интерференционная картина, составленная рядом полос. Предложили проделать тест с электронами, случился коллапс:

  1. Если электроны проходят пучком, минуя две щели, образуется интерференционная картина. Происходит, будто движутся фотоны.
  2. Если электроны выстреливать по одному, ничего не меняется. Следовательно… одна частица отражается сама от себя, существует сразу в нескольких местах?
  3. Тогда стали пытаться зафиксировать момент прохождения электроном плоскости щита. И… интерференционная картина пропала. Остались два пятна напротив щелей.

Эффект бессильны объяснить с научной точки зрения. Получается, электроны «догадываются» о проводимом наблюдении, перестают проявлять волновые свойства. Показывает ограниченность современных представлений физики. Хорошо, если бы этим можно было удовольствоваться! Очередной муж науки предложил вести наблюдение за частицами, когда они уже прошли сквозь щель (летели в определенном направлении). И что же? Снова электроны перестали проявлять волновые свойства.

Получается, элементарные частицы вернулись обратно во времени. В тот момент, когда проходили щель. Проникли в тайну будущего, узнав, будет ли вестись наблюдение. В зависимости от факта скорректировали поведение. Понятно, ответ не может быть попаданием в яблочко. Загадка ждет разрешения по сей день. Кстати, теория Эйнштейна, выдвинутая в начале XX века, теперь опровергнута: найдены частицы, скорость которых превышает световую.

Как образуется сопротивление проводников

Современные воззрения говорят: свободные электроны перемещаются по проводнику со скоростью порядка 100 км/с. Под действием возникающего внутри поля дрейф упорядочивается. Скорость перемещения носителей вдоль линий напряженности мала, составляет единицы сантиметров в минуту. В ходе движения электроны сталкиваются с атомами кристаллической решетки, некая доля энергии переходит в тепло. И меру этого преобразования принято называть сопротивлением проводника. Чем выше, тем больше электрической энергии переходит в тепло. На этом основан принцип действия обогревателей.

Параллельно контексту идет численное выражение проводимости материала, которое можно увидеть на рисунке. Для получения сопротивления полагается единицу разделить на указанное число. Ход дальнейших преобразований рассмотрен выше. Видно, что сопротивление зависит от параметров — температурное движение электронов и длина их свободного пробега, что прямо приводит к строению кристаллической решётки вещества. Объяснение — сопротивление проводников отличается. У меди меньше алюминия.

§ 15. Электрическое сопротивление

Направленному движению электрических зарядов в любом проводнике препятствуют молекулы и атомы этого проводника. Поэтому как внешний участок цепи, так и внутренний (внутри самого источника энергии) оказывают препятствие прохождению тока. Величина, характеризующая противодействие электрической цепи прохождению электрического тока, называется электрическим сопротивлением .
Источник электрической энергии, включенный в замкнутую электрическую цепь, расходует энергию на преодоление сопротивления внешней и внутренней цепей.
Электрическое сопротивление обозначается буквой r и изображается на схемах так, как показано на рис. 14, а.

Единицей измерения сопротивления является ом. Омом называется электрическое сопротивление такого линейного проводника, в котором при неизменяющейся разности потенциалов в один вольт протекает ток силой в один ампер, т. е.

При измерении больших сопротивлений используют единицы в тысячу и в миллион раз больше ома. Они называются килоомом (ком ) и мегомом (Мом ), 1 ком = 1000 ом ; 1 Мом = 1 000 000 ом .
В различных веществах содержится разное количество свободных электронов, а атомы, между которыми эти электроны перемещаются, имеют различное расположение. Поэтому сопротивление проводников электрическому току зависит от материала, из которого они изготовлены, от длины и площади поперечного сечения проводника. Если сравнить два проводника из одного и того же материала, то более длинный проводник имеет большее сопротивление при равных площадях поперечных сечений, а проводник с большим поперечным сечением имеет меньшее сопротивление при равных длинах.
Для относительной оценки электрических свойств материала проводника служит его удельное сопротивление. Удельное сопротивление - это сопротивление металлического проводника длиной 1м и площадью поперечного сечения 1 мм 2 ; обозначается буквой ρ, и измеряется в
Если проводник, изготовленный из материала с удельным сопротивлением ρ, имеет длину l метров и площадь поперечного сечения q квадратных миллиметров, то сопротивление этого проводника

Формула (18) показывает, что сопротивление проводника прямо пропорционально удельному сопротивлению материала, из которого он изготовлен, а также его длине и обратно пропорционально площади поперечного сечения.
Сопротивление проводников зависит от температуры. Сопротивление металлических проводников с повышением температуры увеличивается. Зависимость эта достаточно сложная, но в относительно узких пределах изменения температуры (примерно до 200° С) можно считать, что для каждого металла существует определенный, так называемый температурный, коэффициент сопротивления (альфа), который выражает прирост сопротивления проводника Δ r при изменении температуры на 1° С, отнесенный к 1 ом начального сопротивления.
Таким образом, температурный коэффициент сопротивления

и прирост сопротивления

Δ r = r 2 - r 1 = α r 2 (T 2 - T 1) (20)

где r 1 - сопротивление проводника при температуре T 1 ;
r 2 - сопротивление того же проводника при температуре T 2 .
Поясним выражение температурного коэффициента сопротивления на примере. Положим, что медный линейный провод при температуре T 1 = 15° имеет сопротивление r 1 = 50 ом , а при температуре T 2 = 75° - r 2 - 62 ом . Следовательно, прирост сопротивления при изменении температуры на 75 - 15 = 60° составляет 62 - 50 = 12 ом . Таким образом, прирост сопротивления, соответствующий изменению температуры на 1°, равен:

Температурный коэффициент сопротивления для меди равен приросту сопротивления, отнесенному к 1 ом начального сопротивления, т. е. разделенному на 50:

На основе формулы (20) можно установить соотношение между сопротивлениями r 2 и r 1:

(21)

Следует иметь в виду, что эта формула представляет собой лишь приближенное выражение зависимости сопротивления от температуры и для измерений сопротивлений при температурах, превышающих 100° С, ее использовать нельзя.
Регулируемые сопротивления называются реостатами (рис. 14, б). Реостаты изготовляют из проволоки с большим удельным сопротивлением, например из нихрома. Сопротивление реостатов может изменяться равномерно или ступенями. Применяют также жидкостные реостаты, представляющие собой металлический сосуд, наполненный каким-либо раствором, проводящим электрический ток, например раствором соды в воде.
Способность проводника пропускать электрический ток характеризуется проводимостью, которая представляет собой величину, обратную сопротивлению, и обозначается буквой g . Единицей измерения проводимости в СИ является (сименс).

Таким образом, соотношение между сопротивлением и проводимостью проводника следующее.

Под электрическим сопротивлением понимается любое противодействие, которое обнаруживает ток при прохождении через замкнутый контур, ослабление или торможение свободного потока электрических зарядов.

Jpg?x15027" alt="Измерение сопротивления мультиметром" width="600" height="490">

Измерение сопротивления мультиметром

Физическое понятие сопротивления

Электроны при прохождении тока циркулируют в проводнике организованным образом в соответствии с сопротивлением, с которым они сталкиваются на своем пути. Чем меньше эта сопротивляемость, тем больше существующий порядок в микромире электронов. Но когда сопротивляемость высокая, они начинают сталкиваться друг с другом и выделять тепловую энергию. В связи с этим, температура проводника всегда немного повышается, на большую величину, чем выше электроны находят противодействия своему движению.

Используемые материалы

Все известные металлы обладают большей или меньшей устойчивостью к прохождению тока, включая лучшие проводники. Наименьшей сопротивляемостью обладают золото и серебро, но они дорогие, поэтому самый часто используемый материал – медь, имеющая высокую электропроводность. В меньших масштабах применяется алюминий.

Наибольшая устойчивость к прохождению тока у нихромной проволоки (сплав никеля (80%) и хрома (20%)). Она широко применяется в резисторах.

Другим широко используемым резисторным материалом является уголь. Из него фиксированные сопротивления и реостаты изготавливаются для использования в электронных схемах. Фиксированные резисторы и потенциометры применяются для регулирования значений тока и напряжения, например, при контроле громкости и тона аудиоусилителей.

Расчет сопротивлений

Для вычисления величины нагрузочного сопротивления формулу, выведенную из закона Ома, используют, как основную, если известны значения тока и напряжения:

Единицей измерения является Ом.

Для последовательного соединения резисторов общее сопротивление находится путем суммирования отдельных значений:

R = R1 + R2 + R3 + …..

При параллельном соединении используется выражение:

1/R = 1/R1 + 1/R2 + 1/R3 + …

А как найти электрическое сопротивление для провода, учитывая его параметры и материал изготовления? Для этого существует другая формула сопротивления:

R = ρ х l/S, где:

  • l – длина провода,
  • S – размеры его поперечного сечения,
  • ρ – удельное объемное сопротивление материала провода.

Data-lazy-type="image" data-src="http://elquanta.ru/wp-content/uploads/2018/03/2-1-600x417.png?.png 600w, https://elquanta.ru/wp-content/uploads/2018/03/2-1-768x533..png 792w" sizes="(max-width: 600px) 100vw, 600px">

Формула сопротивления

Геометрические размеры провода можно измерить. Но чтобы рассчитать сопротивление по этой формуле, надо знать коэффициент ρ.

Важно! Значения уд. объемного сопротивления уже рассчитаны для разных материалов и сведены в специальные таблицы.

Значение коэффициента позволяет сравнивать сопротивление разных типов проводников при заданной температуре в соответствии с их физическими свойствами без учета размеров. Это можно проиллюстрировать на примерах.

Пример расчета электросопротивления медного провода, длиной 500 м:

  1. Если размеры сечения провода неизвестны, можно замерить его диаметр штангенциркулем. Допустим, это 1,6 мм;
  2. При расчетах площади сечения используется формула:

Тогда S = 3,14 х (1,6/2)² = 2 мм²;

  1. По таблице нашли значение ρ для меди, равное 0,0172 Ом х м/мм²;
  2. Теперь электросопротивление рассчитываемого проводника будет:

R = ρ х l/S = 0,0172 х 500/2 = 4,3 Ом.

Другой пример нихромовая проволока сечением 0,1 мм², длиной 1 м:

  1. Показатель ρ для нихрома – 1,1 Ом х м/мм²;
  2. R = ρ х l/S = 1,1 х 1/0,1 = 11 Ом.

На двух примерах наглядно видно, что нихромовая проволока метровой длины и сечением, в 20 раз меньшим, имеет электрическое сопротивление в 2,5 раза больше, чем 500 метров медного провода.

Jpg?.jpg 600w, https://elquanta.ru/wp-content/uploads/2018/03/3-6-768x381..jpg 960w" sizes="(max-width: 600px) 100vw, 600px">

Удельное сопротивление некоторых металлов

Важно! На сопротивление оказывает влияние температура, с ростом которой оно увеличивается и, наоборот, уменьшается со снижением.

Импеданс

Импеданс – более общий термин сопротивления, который учитывает реактивную нагрузку. Расчет сопротивления в контуре переменного тока заключается в вычислении импеданса.

В то время, как резистор создает активное сопротивление для решения определенных задач, реактивная составляющая является неудачным побочным продуктом некоторых компонентов электроцепи.

Два типа реактивного сопротивления:

  1. Индуктивное. Создается катушками. Формула расчета:

X (L) = 2π x f x L, где:

  • f – частота тока (Гц),
  • L – индуктивность (Гн);
  1. Емкостное. Создается конденсаторами. Рассчитывается по формуле:

X (C) = 1/(2π x f x C),

где С – емкость (Ф).

Как и активный аналог, реактивное сопротивление выражается в омах и также ограничивает поток тока через контур. Если в цепи присутствует и емкость, и катушка индуктивности, то общее сопротивление равно:

X = X (L) – X (C).

Jpg?.jpg 600w, https://elquanta.ru/wp-content/uploads/2018/03/4-3.jpg 622w" sizes="(max-width: 600px) 100vw, 600px">

Активное, индуктивное и емкостное сопротивление

Важно! Из формул реактивной нагрузки следуют интересные особенности. С увеличением частоты переменного тока и индуктивности растет X (L). И, наоборот, чем выше частоты и емкость, тем меньше X (С).

Нахождение импеданса (Z ) не является простым складыванием активной и реактивной составляющих:

Z = √ (R² + X²).

Пример 1

Катушка в контуре с током промышленной частоты обладает активным сопротивлением 25 Ом и индуктивностью 0,7 Гн. Вычислить импеданс можно:

  1. X (L) = 2π x f x L = 2 х 3,14 х 50 х 0,7 = 218,45 Ом;
  2. Z = √ (R² + X (L)²) = √ (25² + 218,45²) = 219,9 Ом.

tg φ = X (L)/R = 218,45/25 = 8,7.

Угол φ примерно равен 83 градуса.

Пример 2

Имеется конденсатор емкостью 100 мкФ и внутренним сопротивлением 12 Ом. Вычислить импеданс можно:

  1. X (C) =1/(2π x f x C) = 1/ 2 х 3,14 х 50 х 0, 0001 = 31,8 Ом;
  2. Z = √ (R² + X (С)²) = √ (12² + 31,8²) = 34 Ом.

В интернете можно найти калькулятор онлайн для упрощения вычисления сопротивлений и импеданса всей электроцепи или ее участков. Там нужно просто вести свои расчетные данные и зафиксировать результаты расчета.

Видео

Понятие об электрическом сопротивлении и проводимости

Любое тело, по которому протекает электрический ток, оказывает ему определенное сопротивление. Свойство материала проводника препятствовать прохождению через него электрического тока называется электрическим сопротивлением.

Электронная теория так объясняет сущность электрического сопротивления металлических проводников. Свободные электроны при движении по проводнику бесчисленное количество раз встречают на своем пути атомы и другие электроны и, взаимодействуя с ними, неизбежно теряют часть своей энергии. Электроны испытывают как бы сопротивление своему движению. Различные металлические проводники, имеющие различное атомное строение, оказывают различное сопротивление электрическому току.

Точно тем же объясняется сопротивление жидких проводников и газов прохождению электрического тока. Однако не следует забывать, что в этих веществах не электроны, а заряженные частицы молекул встречают сопротивление при своем движении.

Сопротивление обозначается латинскими буквами R или r .

За единицу электрического сопротивления принят ом.

Ом есть сопротивление столба ртути высотой 106,3 см с поперечным сечением 1 мм2 при температуре 0° С.

Если, например, электрическое сопротивление проводника составляет 4 ом, то записывается это так: R = 4 ом или r = 4ом.

Для измерения сопротивлений большой величины принята единица, называемая мегомом.

Один мегом равен одному миллиону ом.

Чем больше сопротивление проводника, тем хуже он проводит электрический ток, и, наоборот, чем меньше сопротивление проводника, тем легче электрическому току пройти через этот проводник.

Следовательно, для характеристики проводника (с точки зрения прохождения через него электрического тока) можно рассматривать не только его сопротивление, но и величину, обратную сопротивлению и называемую, проводимостью.

Электрической проводимостью называется способность материала пропускать через себя электрический ток.

Так как проводимость есть величина, обратная сопротивлению, то и выражается она как 1/R ,обозначается проводимость латинской буквой g.

Влияние материала проводника, его размеров и окружающей температуры на величину электрического сопротивления

Сопротивление различных проводников зависит от материала, из которого они изготовлены. Для характеристики электрического сопротивления различных материалов введено понятие так называемого удельного сопротивления.

Удельным сопротивлением называется сопротивление проводника длиной 1 м и площадью поперечного сечения 1 мм2. Удельное сопротивление обозначается буквой греческого алфавита р. Каждый материал, из которого изготовляется проводник, обладает своим удельным сопротивлением.

Например, удельное сопротивление меди равно 0,017, т. е. медный проводник длиной 1 м и сечением 1 мм2 обладает сопротивлением 0,017 ом. Удельное сопротивление алюминия равно 0,03, удельное сопротивление железа - 0,12, удельное сопротивление константана - 0,48, удельное сопротивление нихрома - 1-1,1.



Сопротивление проводника прямо пропорционально его длине, т. е. чем длиннее проводник, тем больше его электрическое сопротивление.

Сопротивление проводника обратно пропорционально площади его поперечного сечения, т. е. чем толще проводник, тем его сопротивление меньше, и, наоборот, чем тоньше проводник, тем его сопротивление больше.

Чтобы лучше понять эту зависимость, представьте себе две пары сообщающихся сосудов, причем у одной пары сосудов соединяющая трубка тонкая, а у другой - толстая. Ясно, что при заполнении водой одного из сосудов (каждой пары) переход ее в другой сосуд по толстой трубке произойдет гораздо быстрее, чем по тонкой, т. е. толстая трубка окажет меньшее сопротивление течению воды. Точно так же и электрическому току легче пройти по толстому проводнику, чем по тонкому, т. е. первый оказывает ему меньшее сопротивление, чем второй.

Электрическое сопротивление проводника равно удельному сопротивлению материала, из которого этот проводник сделан, умноженному на длину проводника и деленному на площадь площадь поперечного сечения проводника :

R = р l / S ,

Где - R - сопротивление проводника, ом, l - длина в проводника в м, S - площадь поперечного сечения проводника, мм 2 .

Площадь поперечного сечения круглого проводника вычисляется по формуле:

S = π d 2 / 4

Где π - постоянная величина, равная 3,14; d - диаметр проводника.

А так определяется длина проводника:

l = S R / p ,

Эта формула дает возможность определить длину проводника, его сечение и удельное сопротивление, если известны остальные величины, входящие в формулу.

Если же необходимо определить площадь поперечного сечения проводника, то формулу приводят к следующему виду:

S = р l / R

Преобразуя ту же формулу и решив равенство относительно р, найдем удельное сопротивление проводника:

р = R S / l

Последней формулой приходится пользоваться в тех случаях, когда известны сопротивление и размеры проводника, а его материал неизвестен и к тому же трудно определим по внешнему виду. Для этого надо определить удельное сопротивление проводника и, пользуясь таблицей, найти материал, обладающий таким удельным сопротивлением.

Еще одной причиной, влияющей на сопротивление проводников, является температура .

Установлено, что с повышением температуры сопротивление металлических проводников возрастает, а с понижением уменьшается. Это увеличение или уменьшение сопротивления для проводников из чистых металлов почти одинаково и в среднем равно 0,4% на 1°C . Сопротивление жидких проводников и угля с увеличением температуры уменьшается.

Электронная теория строения вещества дает следующее объяснение увеличению сопротивления металлических проводников с повышением температуры. При нагревании проводник получает тепловую энергию, которая неизбежно передается всем атомам вещества, в результате чего возрастает интенсивность их движения. Возросшее движение атомов создает большее сопротивление направленному движению свободных электронов, отчего и возрастает сопротивление проводника. С понижением же температуры создаются лучшие условия для направленного движения электронов, и сопротивление проводника уменьшается. Этим объясняется интересное явление - сверхпроводимость металлов .

Сверхпроводимость , т. е. уменьшение сопротивления металлов до нуля, наступает при огромной отрицательной температуре - 273° C , называемой абсолютным нулем. При температуре абсолютного нуля атомы металла как бы застывают на месте, совершенно не препятствуя движению электронов.

Закон Ома является основным законом электрических цепей. При этом он позволяет объяснять многие явления природы. Например, можно понять, почему электричество не "бьет" птиц, которые сидят на проводах. Для физики закон Ома является крайне значимым. Без его знания невозможно было бы создавать стабильно работающие электрические цепи или вовсе не было бы электроники.

Зависимость I = I(U) и ее значение

История открытия сопротивления материалов напрямую связана с вольт-амперной характеристикой. Что это такое? Возьмем цепь с постоянным электрическим током и рассмотрим любой ее элемент: лампу, газовую трубку, металлический проводник, колбу электролита и т. д.

Меняя напряжение U (часто обозначается как V), подаваемое на рассматриваемый элемент, будем отслеживать изменение силы тока (I), проходящего через него. Как итог, мы получим зависимость вида I = I (U), которая носит название "вольт-амперная характеристика элемента" и является прямым показателем его электрических свойств.

Вольт-амперная характеристика может выглядеть по-разному для различных элементов. Самый простой ее вид получается при рассмотрении металлического проводника, что и сделал Георг Ом(1789 - 1854).

Вольт-амперная характеристика - это линейная зависимость. Поэтому ее графиком служит прямая линия.

Закон в простой форме

Исследования Ома по изучению вольт-амперных характеристик проводников показали, что сила тока внутри металлического проводника пропорциональна разности потенциалов на его концах (I ~ U) и обратно пропорциональна некоему коэффициенту, то есть I ~ 1/R. Этот коэффициент стал называться "сопротивление проводника", а единица измерения электрического сопротивления - Ом или В/А.

Стоит отметить еще вот что. Закон Ома часто используется для расчета сопротивления в цепях.

Формулировка закона

Закон Ома говорит, что сила тока (I) отдельно взятого участка цепи пропорциональна напряжению на этом участке и обратно пропорциональна его сопротивлению.

Следует заметить, что в таком виде закон остается верным только для однородного участка цепи. Однородной называется та часть электрической цепи, которая не содержит источника тока. Как пользоваться законом Ома в неоднородной цепи, будет рассмотрено ниже.

Позже опытным путем было установлено, что закон остается справедливым и для растворов электролитов в электрической цепи.

Физический смысл сопротивления

Сопротивление - это свойство материалов, веществ или сред препятствовать прохождению электрического тока. Количественно сопротивление в 1 Ом означает, что в проводнике при напряжении 1 В на его концах способен проходить электрический ток силой 1 А.

Удельное электрическое сопротивление

Экспериментальным методом было установлено, что сопротивление электрического тока проводника зависит от его размеров: длина, ширина, высота. А также от его формы (сфера, цилиндр) и материала, из которого он сделан. Таким образом, формула удельного сопротивления, например, однородного цилиндрического проводника будет: R = р*l/S.

Если в этой формуле положить s = 1 м 2 и l = 1 м, то R численно будет равен р. Отсюда вычисляется единица измерения для коэффициента удельного сопротивления проводника в СИ - это Ом*м.

В формуле удельного сопротивления р - это коэффициент сопротивления, определяемый химическими свойствами материала, из которого изготовлен проводник.

Для рассмотрения дифференциальной формы закона Ома, необходимо рассмотреть еще несколько понятий.

Как известно, электрический ток - это строго упорядоченное движение любых заряженных частиц. Например, в металлах носителями тока выступают электроны, а в проводящих газах - ионы.

Возьмем тривиальный случай, когда все носители тока однородны - металлический проводник. Мысленно выделим в этом проводнике бесконечно малый объем и обозначим через u среднюю (дрейфовую, упорядоченную) скорость электронов во взятом объеме. Далее пусть n обозначает концентрацию носителей тока в единице объема.

Теперь проведем бесконечно малую площадь dS перпендикулярно вектору u и построим вдоль скорости бесконечно малый цилиндр с высотой u*dt, где dt - обозначает время, за которое все носители скорости тока, содержавшиеся в рассматриваемом объеме, пройдут сквозь площадку dS.

При этом электронами сквозь площадку будет перенесен заряд, равный q = n*e*u*dS*dt, где e - заряд электрона. Таким образом, плотность электрического тока - это вектор j = n*e*u, обозначающий количество заряда, переносимого в единицу времени через единицу площади.

Один из плюсов дифференциального определения закона Ома заключается в том, что часто можно обойтись без расчета сопротивления.

Электрический заряд. Напряженность электрического поля

Напряженность поля наряду с электрическим зарядом является фундаментальным параметром в теории электричества. При этом количественное представление о них можно получить из простых опытов, доступных школьникам.

Для простоты рассуждений будем рассматривать электростатическое поле. Это электрическое поле, которое не изменяется со временем. Такое поле может быть создано неподвижными электрическими зарядами.

Также для наших целей необходим пробный заряд. В его качестве будем использовать заряженное тело - настолько малое, что оно не способно вызывать какие-либо возмущения (перераспределение зарядов) в окружающих объектах.

Рассмотрим поочередно два взятых пробных заряда, последовательно помещенных в одну точку пространства, находящуюся под воздействием электростатического поля. Получается, что заряды будут подвергаться неизменному во времени воздействию с его стороны. Пусть F 1 и F 2 - это силы, воздействующие на заряды.

В результате обобщения опытных данных было установлено, что силы F 1 и F 2 направлены либо в одну, либо в противоположные стороны, а их отношение F 1 /F 2 является независимым от точки пространства, куда были поочередно помещены пробные заряды. Следовательно, отношение F 1 /F 2 является характеристикой исключительно самих зарядов, и никак не зависит от поля.

Открытие данного факта позволило охарактеризовать электризацию тел и в дальнейшем было названо электрическим зарядом. Таким образом, по определению получается q 1 /q 2 = F 1 /F 2 , где q 1 и q 2 - величина зарядов, помещаемых в одну точку поля, а F 1 и F 2 - силы, действующие на заряды со стороны поля.

Из подобных соображений были экспериментально установлены величины зарядов различных частиц. Условно положив в соотношение один из пробных зарядов равным единице, можно вычислить величину другого заряда, измерив соотношение F 1 /F 2 .

Через известный заряд можно охарактеризовать любое электрическое поле. Таким образом, сила, действующая на единичный пробный заряд, находящийся в состоянии покоя, называется напряженностью электрического поля и обозначается E. Из определения заряда получаем, что вектор напряженности имеет следующий вид: E = F/q.

Связь векторов j и E. Другая форма закона Ома

Также отметим, что определение удельного сопротивления цилиндра можно обобщить для проводов, состоящих из одного материала. В таком случае площадь поперечного сечения из формулы удельного сопротивления будет равна сечению провода, а l - его длине.

Loading...Loading...