Числовые последовательности и способы их задания. Задание для практической работы "Задание числовых последовательностей различными способами, вычисление членов последовательности

На этом уроке мы начнем изучение прогрессий. Здесь мы познакомимся с числовой последовательностью и способами ее задания.

Вначале напомним определение и свойства функций числовых аргументов и рассмотрим частный случай функции, когда х принадлежит множеству натуральных чисел. Дадим определение числовой последовательности и приведем несколько примеров. Покажем аналитический способ задания последовательности через формулу ее n-го члена и рассмотрим несколько примеров на задание и определение последовательности. Далее рассмотрим словесное и рекуррентное задание последовательности.

Тема: Прогрессии

Урок: Числовая последовательность и способы ее задания

1. Повторение

Числовая последовательность , как мы увидим, это частный случай функции, поэтому вспомним определение функции.

Функцией называется закон, по которому каждому допустимому значению аргумента ставится в соответствие единственное значение функции.

Вот примеры известных функций.

Рис. 1. График функции

Допустимы все значения, кроме 0. Графиком этой функции является гипербола (см. Рис.1).

2.. Допустимы все значения, .

Рис. 2. График функции

График квадратичной функции - парабола, характерные точки тоже отмечены (см. Рис.2).

3..

Рис. 3. График функции

Допустимы все значения х. График линейной функции - прямая (см. Рис.3).

2. Определение числовой последовательности

Если х принимает только натуральные значения (), то имеем частный случай, а именно числовую последовательность.

Напомним, что натуральными являются числа 1, 2, 3, …, n, …

Функцию , где , называют функцией натурального аргумента, или числовой последовательностью, и обозначают следующим образом: или , или .

Поясним, что обозначает, например, запись .

Это значение функции, когда n=1, т. е. .

Это значение функции, когда n=2, т. е. и т. д. …

Это значение функции, когда аргумент равен n, т. е. .

3. Примеры последовательностей

1. - это формула общего члена. Задаем различные значения n, получаем различные значения у - членов последовательности.

Когда n=1; , когда n=2 и т. д., .

Числа являются членами заданной последовательности, а точки лежат на гиперболе - графике функции (см. Рис.4).

Рис. 4. График функции

Если n=1, то ; если n=2, то ; если n=3, то и т. д.

Числа являются членами заданной последовательности, а точки лежат на параболе - графике функции (см. Рис.5).

Рис. 5. График функции

Рис. 6. График функции

Если n=1, то ; если n=2, то ; если n=3, то и т. д.

Числа являются членами заданной последовательности, а точки лежат на прямой - графике функции (см. Рис.6).

4. Аналитический способ задания последовательности

Существует три способа задания последовательностей: аналитический, словесный и рекуррентный. Рассмотрим каждый из них подробно.

Последовательность задана аналитически, если указана формула ее n-го члена .

Рассмотрим несколько примеров.

1. Найти несколько членов последовательности, которая задана формулой n-го члена: (аналитический способ задания последовательности).

Решение. Если n=1, то ; если n=2, то ; если n=3, то и т. д.

Для заданной последовательности найдем и .

.

.

2. Рассмотрим последовательность, заданную формулой n-го члена: (аналитический способ задания последовательности).

Найдем несколько членов этой последовательности.

Если n=1, то ; если n=2, то ; если n=3, то и т. д.

Вообще нетрудно понять, что членами этой последовательности являются те числа, которые при делении на 4 дают в остатке 1.

а. Для заданной последовательности найти .

Решение: . Ответ: .

б. Даны два числа: 821, 1282. Являются ли эти числа членами заданной последовательности?

Для того чтобы число 821 было членом последовательности, необходимо, чтобы выполнялось равенство: или . Последнее равенство является уравнением относительно n. Если решением данного уравнения является натуральное число, то ответ положительный.

В данном случае это так. .

Ответ: да, 821 - член заданной последовательности, .

Переходим ко второму числу. Аналогичные рассуждения приводят нас к решению уравнения: .

Ответ: поскольку n не является натуральным числом, то число 1282 не является членом заданной последовательности.

Формулы, которые аналитически задают последовательность, могут быть самыми разными: простыми, сложными и т. д. Требование к ним одно: каждому значению n должно соответствовать единственное число.

3. Дано: последовательность задана следующей формулой .

Найти три первых члена последовательности.

, , .

Ответ: , , .

4. Являются ли числа членами последовательности ?

а. , т. е. . Решая это уравнение, получаем, что . Это натуральное число.

Ответ: первое заданное число является членом данной последовательности, а именно пятым ее членом.

б. , т. е. . Решая это уравнение, получаем, что . Это натуральное число.

Ответ: второе заданное число тоже является членом данной последовательности, а именно девяносто девятым ее членом.

5. Словесный способ задания последовательности

Мы рассмотрели аналитический способ задания числовой последовательности. Он удобный, распространенный, но не единственный.

Следующий способ - это словесное задание последовательности.

Последовательность, каждый ее член, возможность вычисления каждого ее члена можно задать словами, не обязательно формулами.

Пример 1. Последовательность простых чисел.

Напомним, что простое число - это такое натуральное число, которое имеет ровно два различных делителя: 1 и само это число. Простыми являются числа 2, 3, 5, 7, 11, 13, 17, 19, 23 и т. д.

Их бесчисленное множество. Еще Евклид доказал, что последовательность этих чисел бесконечна, т. е. не существует самого большого простого числа. Последовательность задана, каждый член можно вычислить, утомительно, но можно вычислить. Эта последовательность задана словесно. Формулы, увы, не удается подобрать.

Пример 2. Рассмотрим число =1,41421…

Это иррациональное число, десятичная его запись предусматривает бесконечное число цифр. Рассмотрим последовательность десятичных приближений числа по недостатку: 1; 1,4; 1,41; 1,414; 1,4142; и т. д.

Членов этой последовательности бесконечное множество, каждое из них можно вычислить. Задать эту последовательность формулой нельзя, поэтому описываем ее словесно.

6. Рекуррентный способ задания последовательности

Мы рассмотрели два способа задания числовой последовательности:

1. Аналитический способ, когда задается формула n-го члена.

2. Словесное задание последовательности.

И, наконец, существует рекуррентное задание последовательности, когда задаются правила вычисления n-го члена по предыдущим членам.

Рассмотрим

Пример 1. Последовательность Фибоначчи (13 век).

Историческая справка:

Леона́рдо Пиза́нский (около 1170 года, Пиза — около 1250 года) — первый крупный математик средневековой Европы. Наиболее известен под прозвищем Фибона́ччи (Fibonacci).

Значительную часть усвоенных им знаний он изложил в своей выдающейся «Книге абака» (Liber abaci, 1202 год; до наших дней сохранилась только дополненная рукопись 1228 года). Эта книга содержит почти все арифметические и алгебраические сведения того времени, изложенные с исключительной полнотой и глубиной. «Книга абака» резко возвышается над европейской арифметико-алгебраической литературой XII—XIV вв. разнообразием и силой методов, богатством задач, доказательностью изложения. Последующие математики широко черпали из неё как задачи, так и приёмы их решения. По первой книге многие поколения европейских математиков изучали индийскую позиционную систему счисления.

Задаются первые два члена и каждый последующий член - это сумма двух предыдущих

1; 1; 2; 3; 5; 8; 13; 21; 34; 55; … - первые несколько членов последовательности Фибоначчи.

Это последовательность задана рекуррентно, n-й член зависит от двух предыдущих.

Пример 2.

В этой последовательности каждый последующий член больше предыдущего на 2. Такая последовательность называется арифметической прогрессией.

Числа 1, 3, 5, 7 …- первые несколько членов этой последовательности.

Приведем еще один пример рекуррентного задания последовательности.

Пример 3.

Последовательность задается следующим образом:

Каждый последующий член этой последовательности получается умножением предыдущего члена на одно и то же число q. Такая последовательность имеет специальное название - геометрическая прогрессия. Арифметическая и геометрическая прогрессии будут объектами нашего изучения на следующих уроках.

Найдем несколько членов указанной последовательности при b=2 и q=3.

Числа 2; 6; 18; 54; 162 … - первые несколько членов этой последовательности.

Интересно, что эту последовательность можно задать и аналитическим способом, т. е. можно подобрать формулу. В данном случае формула будет таковой .

Действительно: если n=1, то ; если n=2, то ; если n=3, то и т. д.

Таким образом, мы констатируем: одна и та же последовательность может быть задана и аналитически и рекуррентно.

7. Итог урока

Итак, мы рассмотрели, что такое числовая последовательность и способы её задания.

На следующем уроке мы познакомимся со свойствами числовых последовательностей.

1. Макарычев Ю. Н. и др. Алгебра 9 класс (учебник для средней школы).-М.: Просвещение, 1992.

2. Макарычев Ю. Н., Миндюк Н. Г., Нешков, К. И. Алгебра для 9 класса с углубл. изуч. математики.-М.: Мнемозина, 2003.

3. Макарычев Ю. Н., Миндюк Н. Г Дополнительные главы к школьному учебнику алгебры 9 класса.-М.: Просвещение, 2002.

4. Галицкий М. Л., Гольдман А. М., Звавич Л. И. Сборник задач по алгебре для 8-9 классов (учебное пособие для учащихся школ и классов с углубл. изуч. математики).-М.: Просвещение, 1996.

5. Мордкович А. Г. Алгебра 9 класс, учебник для общеобразовательных учреждекний. - М.: Мнемозина, 2002.

6. Мордкович А. Г. , Мишутина Т. Н., Тульчинская Е. Е. Алгебра 9 класс, задачник для общеобразовательных учреждекний. - М.: Мнемозина, 2002.

7. Глейзер Г. И. История математики в школе. 7-8 классы (пособие для учителей).-М.: Просвещение, 1983.

1. Раздел College. ru по математике.

2. Портал Естественных Наук.

3. Exponenta. ru Образовательный математический сайт.

1. № 331, 335, 338 (Макарычев Ю. Н. и др. Алгебра 9 класс).

2. № 12.4 (Галицкий М. Л., Гольдман А. М., Звавич Л. И. Сборник задач по алгебре для 8-9 классов).

Алгебра. 9 класс
Урок № 32
Дата:_____________
Учитель: Горбенко Алена Сергеевна
Тема: Числовая последовательность, способы ее задания и свойства
Тип урока: комбинированный
Цель урока: дать понятие и определение числовой последовательности, рассмотреть способы
задания числовых последовательностей
Задачи:
Образовательные: ознакомить учащихся с понятием числовой последовательности и членом
числовой последовательности; ознакомиться с аналитическим, словесным, рекуррентным и
графическим способами задания числовой последовательности; рассмотреть виды числовой
последовательности; подготовка к ВОУД;
Развивающие: развитие математической грамотности, мышления, техники вычисления, навыки
сравнения при выборе формулы; привитие интереса к математике;
Воспитательные: воспитание навыков самостоятельной деятельности; четкость и
организованность в работе; дать каждому ученику достичь успеха;
Оборудование: Школьные принадлежности, доска, мел, учебник, раздаточный материал.
Ход урока
I. Организационный момент
 Взаимное приветствие;
 Фиксация отсутствующих;
 Объявление темы урока;
 Постановка целей и задач урока учащимися.
Последовательность ­ одно из самых основных понятий математики. Последовательность может
быть составлена из чисел, точек, функций, векторов и т.д.
Сегодня на уроке мы познакомимся с понятием " числовая последовательность", узнаем, какие
могут быть последовательности, познакомимся со знаменитыми последовательностями.

II. Актуализация опорных знаний.
Вам известны функции, определённые на всей числовой прямой или на её непрерывных
III.
промежутках:
линейная функция у = кх+в,
квадратичная функция у = ах2+вх+с,


 функция у =



 функция у =|х|.
Подготовка к восприятию новых знаний
прямая пропорциональность у = кх,
обратная пропорциональность у =к/х,
кубическая функция у = х3,
,
Но бывают функции, заданные на других множествах.
Пример. Во многих семьях есть обычай, своего рода ритуал: в день рождения ребёнка
родители подводят его к дверному косяку и торжественно отмечают на нём рост именинника.
Ребёнок растёт, и на косяке с годами возникает целая лесенка отметок. Три, пять, два: Такова
последовательность приростов от года к году. Но есть и другая последовательность, и именно
её члены аккуратно выписывают рядом с засечками. Это ­ последовательность значений роста.
Две последовательности связаны друг с другом.
Вторая получается из первой сложением.
Рост ­ это сумма приростов за все предыдущие годы.
Рассмотреть ещё несколько задач.
Задача 1. На складе имеется 500 т угля, каждый день подвозят по 30 т. Сколько угля будет
на складе в 1 день? 2 день? 3 день? 4 день? 5 день?
(Ответы учащихся записываются на доске: 500, 530, 560, 590, 620).
Задача 2. В период интенсивного роста человек растёт в среднем на 5 см в год. Сейчас рост
у ученика С. ­ 180 см. Какого роста он будет в 2026 году? (2м 30 см). Но этого быть не
может. Почему?
Задача 3. Ежедневно каждый болеющий гриппом человек может заразить 4 окружающих.
Через сколько дней заболеют все ученики нашей школы (300 человек)? (Через 4 дня).
Это примеры функций, заданных на множестве натуральных чисел – числовые
последовательности.
Ставится цель урока: Найти способы нахождения любого члена последовательности.
Задачи урока: Выяснить, что такое числовая последовательность и как задаются
последовательности.
IV. Изучение нового материала
Определение: Числовая последовательность – это функция, заданная на множестве
натуральных чисел (последовательности составляют такие элементы природы, которые
можно пронумеровать).
Понятие числовой последовательности возникло и развилось задолго до создания учения о
функции. Вот примеры бесконечных числовых последовательностей, известных еще в
древности:
1, 2, 3, 4, 5, : ­ последовательность натуральных чисел;
2, 4, 6, 8, 10, :­ последовательность четных чисел;
1, 3, 5, 7, 9, : ­ последовательность нечетных чисел;
1, 4, 9, 16, 25, : ­ последовательность квадратов натуральных чисел;
2, 3, 5, 7, 11, : ­ последовательность простых чисел;
,
1,
Число членов каждого из этих рядов бесконечно; первые пять последовательностей ­
, :­ последовательность чисел, обратных натуральным.
,
монотонно возрастающие, последняя ­ монотонно убывающая.

Обозначение: у1, у2, у3, у4, у5,:
1, 2, 3, 4, 5, :п,:­порядковый номер члена последовательности.
(уп)­ последовательность, уп­ п­ый член последовательности.
(ап)­ последовательность, ап ­ п­ый член последовательности.
ап­1 ­предыдущий член последовательности,
ап+1 ­ последующий член последовательности.
Последовательности бывают конечными и бесконечными, возрастающие и убывающие.
Задания учащимся: Записать первые 5 членов последовательности:
От первого натурального числа увеличение на 3.
От 10 увеличение в 2 раза и уменьшение на 1.
От числа 6 чередовать увеличение на 2 и увеличение в 2 раза.
Эти числовые ряды тоже называются числовыми последовательностями.
Способы задания последовательностей:
Словесный способ.
Правила задания последовательности описываются словами, без указания формул или
когда закономерности между элементами последовательности нет.
Пример 1.Последовательность простых чисел: 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, .... .
Пример 2. Произвольный набор чисел: 1, 4, 12, 25, 26, 33, 39, ... .
Пример 3. Последовательность чётных чисел 2, 4, 6, 8, 10, 12, 14, 16, ...
Аналитический способ.
Любой n­й элемент последовательности можно определить с помощью формулы.
Пример 1. Последовательность чётных чисел: y = 2n.
Пример 2.Последовательность квадрата натуральных чисел: y = n2;
1, 4, 9, 16, 25, ..., n2, ... .
Пример 3. Стационарная последовательность: y = C; C, C, C, ...,C, ...
Частный случай: y = 5; 5, 5, 5, ..., 5, ... .
Пример 4. Последовательность y = 2n;
2, 22, 23, 24, ..., 2n, ... .
Рекуррентный способ.
Указывается правило, позволяющее вычислить n­й элемент последовательности, если
известны её предыдущие элементы.
Пример 1. Арифметическая прогрессия: a1=a, an+1=an+d, где a и d – заданные числа, d ­
разность арифметической прогрессии. Пусть a1=5, d=0,7, тогда арифметическая прогрессия
будет иметь вид: 5; 5,7; 6,4; 7,1; 7,8; 8,5; ... .
Пример 2. Геометрическая прогрессия: b1= b, bn+1= bnq, где b и q – заданные числа, b
0,
0; q – знаменатель геометрической прогрессии. Пусть b1=23, q=½, тогда геометрическая
q
прогрессия будет иметь вид: 23; 11,5; 5,75; 2,875; ... .
4) Графический способ. Числовая последовательность
задается графиком, который представляет собой
изолированные точки. Абсциссы этих точек - натуральные
числа: n=1; 2; 3; 4; ... . Ординаты - значения членов
последовательности: a1; a2; a3; a4;…
Пример: Запишите все пять членов числовой последовательности,
заданной графическим способом.
Решение.
Каждая точки в этой координатной плоскости имеет
координаты (n; an). Выпишем координаты отмеченных точек
по возрастанию абсциссы n.
Получаем: (1; ­3), (2; 1), (3; 4), (4; 6), (5; 7).
Следовательно, a1= ­3; a2=1; a3=4; a4=6; a5 =7.

Ответ: ­3; 1; 4; 6; 7.
V. Первичное закрепление изученного материала
Пример 1. Составить возможную формулу n­го элемента последовательности (yn):
а) 1, 3, 5, 7, 9, 11, ...;
б) 4, 8, 12, 16, 20, ...;
Решение.
а) Это последовательность нечётных чисел. Аналитически эту последовательность можно
задать формулой y = 2n+1.
б) Это числовая последовательность, у которой последующий элемент больше предыдущего
на 4. Аналитически эту последовательность можно задать формулой y = 4n.
Пример 2. Выписать первые десять элементов последовательности, заданной рекуррентно: y1=1,
y2=2, yn = yn­2+yn­1, если n = 3, 4, 5, 6, ... .
Решение.
Каждый последующий элемент этой последовательности равен сумме двух предыдущих
элементов.
y1=1;
y2=2;
y3=1+2=3;
y4=2+3=5;
y5=3+5=8;
y6=5+8=13;
y7=8+13=21;
y8=13+21=34;
y9=21+34=55;
y10=34+55=89.
VI. Подведение итогов урока. Рефлексия
1. Что у вас удалось при выполнении задания?
2. Была ли работа слаженной?
3. Что не получилось, на ваш взгляд?

Числовая последовательность – частный случай числовой функции, поэтому ряд свойств функций рассматриваются и для последовательностей.

1. Определение. Последовательность {y n } называют возрастающей, если каждый ее член (кроме первого) больше предыдущего:

y 1 < y 2 < y 3 < … < y n < y n +1 < ….

2. Определение.Последовательность {y n } называют убывающей, если каждый ее член (кроме первого) меньше предыдущего:

y 1 > y 2 > y 3 > … > y n > y n +1 > … .

3. Возрастающие и убывающие последовательности объединяют общим термином – монотонные последовательности.

Например: y 1 = 1; y n = n 2…– возрастающая последовательность. y 1 = 1; – убывающая последовательность. y 1 = 1; – эта последовательность не является не возрастающей не убывающей.

4. Определение. Последовательность называется периодической, если существует такое натуральное число T, что начиная с некоторого n, выполняется равенство yn = yn+T . Число T называется длиной периода.

5. Последовательность называется ограниченной снизу, если все ее члены не меньше некоторого числа.

6. Последовательность называется ограниченной сверху, если все ее члены не больше некоторого числа.

7. Последовательность называется ограниченной, если она ограничена и сверху, и снизу, т.е. есть такое положительное число, что все члены данной последовательности по модулю не превосходят это число. (Но ее ограниченность с двух сторон не обязательно означает, что она конечная).

8. Последовательность может иметь только один предел.

9. Любая неубывающая и ограниченная сверху последовательность имеет предел (lim).

10. Любая невозрастающая и ограниченная снизу последовательность имеет предел.

Предел последовательности – такая точка (число), в окрестностях которой расположено большинство членов последовательности, они плотно подходят к этому пределу, но не достигают его.

Геометрическая и арифметическая прогрессии являются частными случаями последовательности.

Способы задания последовательности:

Последовательности можно задавать различными способами, среди которых особенно важны три: аналитический, описательный и рекуррентный.

1. Последовательность задана аналитически, если задана формула ее n-го члена:

Пример. yn = 2n – 1 – последовательность нечетных чисел: 1, 3, 5, 7, 9, …

2. Описательный способ задания числовой последовательности состоит в том, что объясняется, из каких элементов строится последовательность.

Пример 1. «Все члены последовательности равны 1». Это значит, речь идет о стационарной последовательности 1, 1, 1, …, 1, ….

Пример 2. «Последовательность состоит из всех простых чисел в порядке возрастания». Таким образом, задана последовательность 2, 3, 5, 7, 11, …. При таком способе задания последовательности в данном примере трудно ответить, чему равен, скажем, 1000-й элемент последовательности.

3. Рекуррентный способ задания последовательности состоит в том, что указывается правило, позволяющее вычислить n-й член последовательности, если известны ее предыдущие члены. Название рекуррентный способ происходит от латинского слова recurrere – возвращаться. Чаще всего в таких случаях указывают формулу, позволяющую выразить n-й член последовательности через предыдущие, и задают 1–2 начальных члена последовательности.

Пример 1. y1 = 3; yn = yn–1 + 4, если n = 2, 3, 4,….

Здесь y1 = 3; y2 = 3 + 4 = 7; y3 = 7 + 4 = 11; ….

Можно видеть, что полученную в этом примере последовательность может быть задана и аналитически: yn = 4n – 1.

Пример 2. y 1 = 1; y 2 = 1; y n = y n –2 + y n –1 , если n = 3, 4,….

Здесь: y 1 = 1; y 2 = 1; y 3 = 1 + 1 = 2; y 4 = 1 + 2 = 3; y 5 = 2 + 3 = 5; y 6 = 3 + 5 = 8;

Последовательность, составленную в этом примере, специально изучают в математике, поскольку она обладает рядом интересных свойств и приложений. Ее называют последовательностью Фибоначчи – по имени итальянского математика 13 в. Задать последовательность Фибоначчи рекуррентно очень легко, а аналитически – очень трудно. n -е число Фибоначчи выражается через его порядковый номер следующей формулой .

На первый взгляд, формула для n -го числа Фибоначчи кажется неправдоподобной, так как в формуле, задающей последовательность одних только натуральных чисел, содержатся квадратные корни, но можно проверить «вручную» справедливость этой формулы для нескольких первых n .

История Фибоначчи:

Fibonacci (Leonardo of Pisa), ок. 1175–1250

Итальянский математик. Родился в Пизе, стал первым великим математиком Европы позднего Средневековья. В математику его привела практическая потребности установить деловые контакты. Он издавал свои книги по арифметике, алгебре и другим математическим дисциплинам. От мусульманских математиков он узнал о системе цифр, придуманной в Индии и уже принятой в арабском мире, и уверился в ее превосходстве (эти цифры были предшественниками современных арабских цифр).

Леонардо из Пизы, известный как Фибоначчи, был первым из великих математиков Европы позднего Средневековья. Будучи рожденным в Пизе в богатой купеческой семье, он пришел в математику благодаря сугубо практической потребности установить деловые контакты. В молодости Леонардо много путешествовал, сопровождая отца в деловых поездках. Например, мы знаем о его длительном пребывании в Византии и на Сицилии. Во время таких поездок он много общался с местными учеными.

Числовой ряд, носящий сегодня его имя, вырос из проблемы с кроликами, которую Фибоначчи изложил в своей книге «Liber abacci», написанной в 1202 году:

Человек посадил пару кроликов в загон, окруженный со всех сторон стеной. Сколько пар кроликов за год может произвести на свет эта пара, если известно, что каждый месяц, начиная со второго, каждая пара кроликов производит на свет одну пару?

Можете убедиться, что число пар в каждый из двенадцати последующих месяцев месяцев будет соответственно 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, ...

Иными словами, число пар кроликов создает ряд, каждый член в котором - сумма двух предыдущих. Он известен как ряд Фибоначчи, а сами числа - числа Фибоначчи. Оказывается, эта последовательность имеет множество интересных с точки зрения математики свойств. Вот пример: вы можете разделить линию на два сегмента, так что соотношение между большим и меньшим сегментом будет пропорционально соотношению между всей линией и большим сегментом. Этот коэффициент пропорциональности, приблизительно равный 1,618, известен как золотое сечение. В эпоху Возрождения считалось, что именно эта пропорция, соблюденная в архитектурных сооружениях, больше всего радует глаз. Если вы возьмете последовательные пары из ряда Фибоначчи и будете делить большее число из каждой пары на меньшее, ваш результат будет постепенно приближаться к золотому сечению.

С тех пор как Фибоначчи открыл свою последовательность, были найдены даже явления природы, в которых эта последовательность, похоже, играет немаловажную роль. Одно из них - филлотаксис (листорасположение) - правило, по которому располагаются, например, семечки в соцветии подсолнуха. Семечки у подсолнуха упорядочены в две спирали. Числа, обозначающие количество семечек в каждой из спиралей, являются членами удивительной математической последовательности. Семечки упорядочены в два ряда спиралей, один из которых идет по часовой стрелке, другой против. И каково же число семян в каждом случае? 34 и 55.

Задача№1:

Напишите первые пять членов последовательности.

1. а n =2 n +1/2 n

а n =2 n +1/2 n

Задача№2:

Напишите формулу общего члена последовательности натуральных чисел, кратных 3.

Ответ: 0,3,6,9,12,15,.... 3n, а n =3n

Задача№3:

Напишите формулу общего члена последовательности натуральных чисел, которые при делении на 4 дают в остатке 1.

Ответ:5,9,13,17,21....... 4 n +1 , а n =4n+1

№19. Функция.

Функция (отображение, оператор, преобразование) - математическое понятие, отражающее связь между элементами множеств. Можно сказать, что функция - это «закон», по которому каждому элементу одного множества (называемому областью определения) ставится в соответствие некоторый элемент другого множества (называемого областью значений).

Функция – это зависимость одной переменной величины от другой. Другими словами, взаимосвязь между величинами.

Математическое понятие функции выражает интуитивное представление о том, как одна величина полностью определяет значение другой величины. Так значение переменной х однозначно определяет значение выражения , а значение месяца однозначно определяет значение следующего за ним месяца, также любому человеку можно сопоставить другого человека - его отца. Аналогично, некоторый задуманный заранее алгоритм по варьируемым входным данным выдаёт определённые выходные данные.

Часто под термином «функция» понимается числовая функция; то есть функция, которая ставит одни числа в соответствие другим. Эти функции удобно представляются на рисунках в виде графиков.

Можно дать и другое определение. Функция – это определенное действие над переменной.

Это означает, что мы берем величину , делаем с ней определенное действие (например, возводим в квадрат или вычисляем ее логарифм) – и получаем величину .

Дадим еще одно определение функции – то, что чаще всего встречается в учебниках.

Функция – это соответствие между двумя множествами, причем каждому элементу первого множества соответствует один и только один элемент второго множества.

Например, функция каждому действительному числу ставит в соответствие число в два раза большее, чем .

Множество элементов некоторой Ф., подставляемых вместо х, называют областью ее определения, а множество элементов у некоторой Ф. называют областью ее значений.

История термина:

Термин «функция» (в некотором более узком смысле) был впервые использован Лейбницем (1692 год). В свою очередь, Иоганн Бернулли в письме к тому же Лейбницу употребил этот термин в смысле, более близком к современному. Первоначально, понятие функции было неотличимо от понятия аналитического представления. Впоследствии появилось определение функции, данное Эйлером (1751 год), затем - у Лакруа (1806 год) - уже практически в современном виде. Наконец, общее определение функции (в современной форме, но для числовых функций) было дано Лобачевским (1834 год) и Дирихле (1837 год). К концу XIX века понятие функции переросло рамки числовых систем. Первыми это сделали векторные функции, вскоре Фреге ввёл логические функции (1879), а после появления теории множеств Дедекинд (1887) и Пеано (1911) сформулировали современное универсальное определение.

№20. Способы задания функции.

Различают 4 способа задания функции:

1. табличный Довольно распространенный, заключается в задании таблицы отдельных

значений аргумента и соответствующих им значений функции. Такой способ задания функции применяется в том случае, когда область определения функции является дискретным конечным множеством.

Удобен, когда f --конечное множество, когда же f бесконечное, указывается лишь избранные пары (х,у).

При табличном способе задания функции можно приближенно вычислить не содержащиеся в таблице значения функции, соответствующие промежуточным значениям аргумента. Для этого используют способ интерполяции.

Достоинства : точность, быстрота, по таблице значений легко найти нужное значение функции. Преимущества табличного способа задания функции состоят в том, что он дает возможность определить те или другие конкретные значения сразу, без дополнительных измерений или вычислений.

Недостатки : неполнота, отсутствие наглядности. В некоторых случаях таблица определяет функцию не полностью, а лишь для некоторых значений аргумента и не дает наглядного изображения характера изменения функции в зависимости от изменения аргумента.

2. аналитический (формулы). Чаще всего закон, устанавливающий связь между

аргументом и функцией, задается посредством формул. Такой способ задания функции называется аналитическим. Является наиболее важным для МА (мат.анализа), поскольку методы МА (дифференциального, интегрального счисления) предполагают этот способ задания. Одна и та же функция может быть задана различными формулами: y =∣sin(x )∣y =√1−cos2(x ) Иногда в различных частях своих областей определяемая функция может быть задана различными формулами f (x )={f 1(x ),x D 1 fn (x ),x Dn nk =1Dk =D (f ) . Часто при этом способе задания функции область определения не указывается, тогда под областью определения понимается естественная область определения, т.е. множество всех значений x при которых функция принимает действительное значение.

Этот способ дает возможность по каждому численному значению аргумента x найти соответствующее ему численное значение функции y точно или с некоторой точностью.

Частным случаем аналитического способа задания функции является задание функции уравнением вида F(x,y)=0 (1) Если это уравнение обладает свойством, что ∀x ∈Дсопоставляется единственное y , такое, что F (x ,y )=0, то говорят, что уравнение (1) на Д неявно задает функцию. Еще один частный случай задания функции -- параметрический, при этом каждая пара (x ,y )∈f задается с помощью пары функций x =ϕ(t ),y =ψ(t ) где t M .

Приводится определение числовой последовательности. Рассмотрены примеры неограниченно возрастающих, сходящихся и расходящихся последовательностей. Рассмотрена последовательность, содержащая все рациональные числа.

Определение .
Числовой последовательностью { x n } называется закон (правило), согласно которому, каждому натуральному числу n = 1, 2, 3, . . . ставится в соответствие некоторое число x n .
Элемент x n называют n-м членом или элементом последовательности.

Последовательность обозначается в виде n -го члена, заключенного в фигурные скобки: . Также возможны следующие обозначения: . В них явно указывается, что индекс n принадлежит множеству натуральных чисел и сама последовательность имеет бесконечное число членов. Вот несколько примеров последовательностей:
, , .

Другими словами числовая последовательность - это функция, областью определения которой является множество натуральных чисел. Число элементов последовательности бесконечно. Среди элементов могут встречаться и члены, имеющие одинаковые значения. Также последовательность можно рассматривать как нумерованное множество чисел, состоящее из бесконечного числа членов.

Главным образом нас будет интересовать вопрос - как ведут себя последовательности, при n стремящемся к бесконечности: . Этот материал излагается в разделе Предел последовательности – основные теоремы и свойства . А здесь мы рассмотрим несколько примеров последовательностей.

Примеры последовательностей

Примеры неограниченно возрастающих последовательностей

Рассмотрим последовательность . Общий член этой последовательности . Выпишем несколько первых членов:
.
Видно, что с ростом номера n , элементы неограниченно возрастают в сторону положительных значений. Можно сказать, что эта последовательность стремится к : при .

Теперь рассмотрим последовательность с общим членом . Вот ее несколько первых членов:
.
С ростом номера n , элементы этой последовательности неограниченно возрастают по абсолютной величине, но не имеют постоянного знака. То есть эта последовательность стремится к : при .

Примеры последовательностей, сходящихся к конечному числу

Рассмотрим последовательность . Ее общий член . Первые члены имеют следующий вид:
.
Видно, что с ростом номера n , элементы этой последовательности приближаются к своему предельному значению a = 0 : при . Так что каждый последующий член ближе к нулю, чем предыдущий. В каком-то смысле можно считать, что есть приближенное значение для числа a = 0 с погрешностью . Ясно, что с ростом n эта погрешность стремится к нулю, то есть выбором n , погрешность можно сделать сколь угодно малой. Причем для любой заданной погрешности ε > 0 можно указать такой номер N , что для всех элементов с номерами большими чем N : , отклонение числа от предельного значения a не превзойдет погрешности ε : .

Далее рассмотрим последовательность . Ее общий член . Вот несколько ее первых членов:
.
В этой последовательности члены с четными номерами равны нулю. Члены с нечетными n равны . Поэтому, с ростом n , их величины приближаются к предельному значению a = 0 . Это следует также из того, что
.
Также как и в предыдущем примере, мы можем указать сколь угодно малую погрешность ε > 0 , для которой можно найти такой номер N , что элементы, с номерами большими чем N , будут отклоняться от предельного значения a = 0 на величину, не превышающую заданной погрешности. Поэтому эта последовательность сходится к значению a = 0 : при .

Примеры расходящихся последовательностей

Рассмотрим последовательность со следующим общим членом:

Вот ее первые члены:


.
Видно, что члены с четными номерами:
,
сходятся к значению a 1 = 0 . Члены с нечетными номерами:
,
сходятся к значению a 2 = 2 . Сама же последовательность, с ростом n , не сходится ни к какому значению.

Последовательность с членами, распределенными в интервале (0;1)

Теперь рассмотрим более интересную последовательность. На числовой прямой возьмем отрезок . Поделим его пополам. Получим два отрезка. Пусть
.
Каждый из отрезков снова поделим пополам. Получим четыре отрезка. Пусть
.
Каждый отрезок снова поделим пополам. Возьмем


.
И так далее.

В результате получим последовательность, элементы которой распределены в открытом интервале (0; 1) . Какую бы мы ни взяли точку из закрытого интервала , мы всегда можем найти члены последовательности, которые окажутся сколь угодно близко к этой точке, или совпадают с ней.

Тогда из исходной последовательности можно выделить такую подпоследовательность, которая будет сходиться к произвольной точке из интервала . То есть с ростом номера n , члены подпоследовательности будут все ближе подходить к наперед выбранной точке.

Например, для точки a = 0 можно выбрать следующую подпоследовательность:
.
= 0 .

Для точки a = 1 выберем такую подпоследовательность:
.
Члены этой подпоследовательности сходятся к значению a = 1 .

Поскольку существуют подпоследовательности, сходящиеся к различным значениям, то сама исходная последовательность не сходится ни к какому числу.

Последовательность, содержащая все рациональные числа

Теперь построим последовательность, которая содержит все рациональные числа. Причем каждое рациональное число будет входить в такую последовательность бесконечное число раз.

Рациональное число r можно представить в следующем виде:
,
где - целое; - натуральное.
Нам нужно каждому натуральному числу n поставить в соответствие пару чисел p и q так, чтобы любая пара p и q входила в нашу последовательность.

Для этого на плоскости проводим оси p и q . Проводим линии сетки через целые значения p и q . Тогда каждый узел этой сетки с будет соответствовать рациональному числу. Все множество рациональных чисел будет представлено множеством узлов. Нам нужно найти способ пронумеровать все узлы, чтобы не пропустить ни один узел. Это легко сделать, если нумеровать узлы по квадратам, центры которых расположены в точке (0; 0) (см. рисунок). При этом нижние части квадратов с q < 1 нам не нужны. Поэтому они не отображены на рисунке.


Итак, для верхней стороны первого квадрата имеем:
.
Далее нумеруем верхнюю часть следующего квадрата:

.
Нумеруем верхнюю часть следующего квадрата:

.
И так далее.

Таким способом мы получаем последовательность, содержащую все рациональные числа. Можно заметить, что любое рациональное число входит в эту последовательность бесконечное число раз. Действительно, наряду с узлом , в эту последовательность также будут входить узлы , где - натуральное число. Но все эти узлы соответствуют одному и тому же рациональному числу .

Тогда из построенной нами последовательности, мы можем выделить подпоследовательность (имеющую бесконечное число элементов), все элементы которой равны наперед заданному рациональному числу. Поскольку построенная нами последовательность имеет подпоследовательности, сходящиеся к различным числам, то последовательность не сходится ни к какому числу.

Заключение

Здесь мы дали точное определение числовой последовательности. Также мы затронули вопрос о ее сходимости, основываясь на интуитивных представлениях. Точное определение сходимости рассматривается на странице Определение предела последовательности . Связанные с этим свойства и теоремы изложены на странице

Урок № 32 Дата ____________

Алгебра

Класс: 9 «Б»

Тема: « Числовая последовательность и способы её задания».

Цель урока: учащиеся должны знать, что такое числовая последовательность; способы задания числовой последовательности; уметь различать различные способы задания числовых последовательностей.

Дидактические материалы: раздаточный материал, опорные конспекты.

Технические средства обучения: презентация по теме «Числовые последовательности».

Ход урока.

1.Организационный момент.

2.Постановка целей урока.

Сегодня на уроке вы, ребята, узнаете:

    Что такое последовательность?

    Какие виды последовательностей существуют?

    Как задаётся числовая последовательность?

    Научитесь записывать последовательность с помощью формулы и множества ее элементов.

    Научитесь находить члены последовательности.

3.Работа над изучаемым материалом.

3.1. Подготовительный этап.

Ребята, давайте проверим ваши логические способности. Я называю несколько слов, а вы должны продолжить:

–понедельник, вторник,…..

– январь, февраль, март…;

– Глебова Л, Гановичев Е, Дряхлов В, Ибраева Г,…..(список класса);

–10,11,12,…99;

Из ответов ребят делается вывод, что вышеназванные задания – это последовательности, то есть какой-то упорядоченный ряд чисел или понятий, когда каждое число или понятие стоит строго на своем месте, и, если поменять местами члены, то последовательность нарушится (вторник, четверг, понедельник – это просто перечисление дней недели). Итак, тема урока – числовая последовательность.

3.1. Объяснение нового материала. (Демонстрационный материал)

Анализируя ответы учащихся, дать определение числовой последовательности и показать способы задания числовых последовательностей.

(Работа с учебником с. 66 – 67)

Определение 1. Функцию y = f(x), xN называют функцией натурального аргумента или числовой последовательностью и обозначают: y = f(n) или y 1 , y 2 , y 3 , ..., y n , ... или (y n).

В данном случае независимая переменная – натуральное число.

Чаще всего последовательности будем обозначать так: (а n ), (b n ), (с n ) и т.д.

Определение 2. Члены последовательности .

Элементы, образующие последовательность, называются членами последовательности.

Новые понятия: предыдущий и последующий член последовательности,

а 1 …а п. (1-ый и п-ый член последовательности)

Способы задания числовой последовательности.

    Аналитический способ.

Любой n-й элемент последовательности можно определить с помощью формулы.(демонстрационный материал)

Разобрать примеры

Пример 1. Последовательность чётных чисел: y = 2n.

Пример 2. Последовательность квадрата натуральных чисел: y = n 2 ;

1, 4, 9, 16, 25, ..., n 2 , ... .

Пример 3. Стационарная последовательность: y = C;

C, C, C, ...,C, ... .

Частный случай: y = 5; 5, 5, 5, ..., 5, ... .

Пример 4 . Последовательность y = 2 n ;

2, 2 2 , 2 3 , 2 4 , ..., 2 n , ... .

    Словесный способ.

Правила задания последовательности описываются словами, без указания формул или когда закономерности между элементами последовательности нет.

Пример 1. Приближения числа π.

Пример 2. Последовательность простых чисел: 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, .... .

Пример 3. Последовательность чисел делящихся на 5.

Пример 2. Произвольный набор чисел: 1, 4, 12, 25, 26, 33, 39, ... .

Пример 3. Последовательность чётных чисел 2, 4, 6, 8, 10, 12, 14, 16, ... .

    Рекуррентный способ.

Рекуррентный способ заключается в том, что указывается правило, позволяющее вычислить n-й член последовательности, если указаны ее несколько первых членов (как минимум один первый член) и формула, позволяющая по предыдущим членам вычислить ее следующий член. Термин рекуррентный произошло от латинского слова recurrere , что означает возвращаться . При вычислении членов последовательности по этому правилу мы как бы все время возвращаемся назад, вычисляя следующий член на основе предыдущего. Особенностью этого способа является то, что для определения, например, 100-го члена последовательности необходимо сначала определить все предыдущие 99 членов.

Пример 1 . a 1 =a, a n+1 =a n +0,7. Пусть a 1 =5, тогда последовательность будет иметь вид: 5; 5,7; 6,4; 7,1; 7,8; 8,5; ... .

Пример 2. b 1 = b, b n +1 = ½ b n . Пусть b 1 =23, тогда последовательность будет иметь вид: 23; 11,5; 5,75; 2,875; ... .

Пример 3. Последовательность Фибоначчи. Эта последовательность легко задаётся рекуррентно: y 1 =1, y 2 =1,y n -2 +y n -1 , если n=3, 4, 5, 6, ... . Она будет иметь вид:

1, 1,2, 3, 5, 8, 13, 21, 34, 55, ... . (п -ый член этой последовательности равен сумме двух предыдущих членов)

Аналитически последовательность Фибоначчи задать трудно, но возможно. Формула, по которой определяется любой элемент этой последовательности, выглядит так:

Дополнительная информация:

Итальянский купец Леонардо из Пизы (1180-1240), более известный под прозвищем Фибоначчи был значительным математиком средневековья. С помощью данной последовательности Фибоначчи определил число φ (фи); φ=1,618033989.

    Графический способ

Члены последовательности можно изображать точками на координатной плоскости. Для этого по горизонтальной оси откладывают номер, а по вертикальной – значение соответствующего члена последовательности.

Для закрепления способов задания прошу привести несколько примеров последовательностей, которые задаются или словесным, или аналитическим, или рекуррентным способом.

Виды числовых последовательностей

( На перечисленных ниже последовательностях отрабатываются виды последовательностей ).

Работа с учебником стр.69-70

1) Возрастающая – если каждый член меньше следующего за ним, т.е. a n a n +1.

2) Убывающая – если каждый член больше следующего за ним, т.е. a n a n +1 .

3) Бесконечная.

4) Конечная.

5) Знакочередующаяся.

6) Постоянная (стационарная).

Возрастающую или убывающую последовательность называют монотонными.

    3; 6; 9; 12; 15; 18;…

  1. –1; 2; –3; 4; –5; …

    1, 4, 9, 16 ,…

    –1; 2; –3; 4; –5; 6; …

    3; 3; 3; 3; …; 3; … .

Работа с учебником: выполним устно №150, 159 стр.71, 72

3.2. Закрепление нового материала. Решение задач.

Для закрепления знаний выбираются примеры в зависимости от уровня подготовки учащихся.

Пример 1. Составить возможную формулу n-го элемента последовательности (y n):

а) 1, 3, 5, 7, 9, 11, ...;

б) 4, 8, 12, 16, 20, ...;

Решение.

а) Это последовательность нечётных чисел. Аналитически эту последовательность можно задать формулой y = 2n+1.

б) Это числовая последовательность, у которой последующий элемент больше предыдущего на 4. Аналитически эту последовательность можно задать формулой y = 4n.

Пример 2 . Выписать первые десять элементов последовательности, заданной рекуррентно: y 1 =1, y 2 =2, y n = y n -2 +y n -1 , если n = 3, 4, 5, 6, ... .

Решение.

Каждый последующий элемент этой последовательности равен сумме двух предыдущих элементов.

Пример 3. Последовательность (y n) задана рекуррентно: y 1 =1, y 2 =2,y n =5y n -1 - 6y n -2 . Задать эту последовательность аналитически.

Решение.

Найдём несколько первых элементов последовательности.

y 3 =5y 2 -6y 1 =10-6=4;

y 4 =5y 3 -6y 2 =20-12=8;

y 5 =5y 4 -6y 3 =40-24=16;

y 6 =5y 5 -6y 4 =80-48=32;

y 7 =5y 6 -6y 5 =160-96=64.

Получаем последовательность: 1; 2; 4; 8; 16; 32; 64; ..., которую можно представить в виде

2 0 ; 2 1 ; 2 2 ; 2 3 ; 2 4 ; 2 5 ; 2 6 ... .

n = 1; 2; 3; 4; 5; 6; 7... .

Анализируя последовательность, получаем следующую закономерность: y = 2 n -1 .

Пример 4. Дана последовательность y n =24n+36-5n 2 .

а) Сколько в ней положительных членов?

б) Найти наибольший элемент последовательности.

в) Есть в данной последовательности наименьший элемент?

Данная числовая последовательность – это функция вида y = -5x 2 +24x+36, где x

а) Найдём значения функции, при которых -5x 2 +24x+360. Решим уравнение -5x 2 +24x+36=0.

D = b 2 -4ac=1296, X 1 =6, X 2 =-1,2.

Уравнение оси симметрии параболы y = -5x 2 +24x+36 можно найти по формуле x=, получим: x=2,4.

Неравенство -5x 2 +24x+360 выполняется при -1,2 В этом интервале находится пять натуральных чисел (1, 2, 3, 4, 5). Значит в заданной последовательности пять положительных элементов последовательности.

б) Наибольший элемент последовательности определяется методом подбора и он равен y 2 =64.

в) Наименьшего элемента нет.

3.4.Задания для самостоятельной работы

Loading...Loading...