Валерий викторович шульговский основы нейрофизиологии учебное пособие для студентов вузов. Физиология гиппокампа

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

хорошую работу на сайт">

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Нейрофизиология

Электронный учебник

По ФГОС-ВПО 2010

Катунова В.В.

Половинкина Е.О.

Нижний Новгород, 2013

Катунова В.В., Половинкина Е.О.,

Нейрофизиология: Электронный учебник. - Нижний Новгород: НИМБ, 2013.

Настоящий учебник представляет собой краткую адаптированную переработку учебно-методического издания: Шульговский В.В. Основы нейрофизиологии: Учебное пособие для студентов вузов. - М.: Аспект Пресс, 2005. - 277 с. нервный клетка мозг рефлекс

Здесь изложены современные представления о функции клеток и нервной регуляции, а также о комплексной иерархической регуляции основных видов деятельности организма.

Данный электронный учебник состоит из нескольких структурных блоков. Оно включает программу курса «Нейрофизиология», систему контроля знаний студентов, глоссарий и список основных научных литературных источников, рекомендованных к изучению в рамках данной дисциплины, а также опорный конспект лекций.

Курс знакомит студентов с основными принципами работы нервной ткани, функционирования различных структур центральной нервной системы.

Основными понятиями курса являются следующие: процессы возбуждения и торможения, безусловные и условные рефлексы, интегративная деятельность мозга, психофизиологические основы поведения. Данный курс базируется на теоретических позициях двух отечественных физиологических школ - И.П. Павлова и А.А. Ухтомского.

Большое внимание уделяется изучению сенсорной и корковой организации нервных процессов в связи с психической деятельностью человека, что помогает понять механизмы протекания психических процессов, взаимосвязь психического и физиологического компонента в поведении. Такое понимание особенно актуально в связи с тем, что оно позволяет студенту осознать сложную иерархическую структуру функционирования нервной системы и принципы контроля ею разнообразных функций организма.

Изложение материала ведется с расчетом на использование знаний из области нейрофизилогии и физиологии в психологической практике.

Нейрофизиология является основой для последующего освоения таких дисциплин, как: «Психофизиология», «Физиология высшей нервной деятельности», «Клиническая психология».

© Катунова В.В., 2013

© НОУ ВПО «Нижегородский институт менеджмента и бизнеса», 2013

ВВЕДЕНИЕ

Нейрофизиология - раздел физиологии животных и человека, изучающий функции нервной системы и ее основных структурных единиц - нейронов. При использовании современных электрофизиологических методик исследуются нейроны, нейронные ассамблеи, нервные центры и их взаимодействие.

Нейрофизиология необходима для понимания механизмов психофизиологических процессов, развития коммуникативных функций, таких как речь, мышление, внимание. Она тесно связана с нейробиологией, психологией, неврологией, клинической нейрофизиологией, электрофизиологией, этологией, нейроанатомией и другими науками, занимающимеся изучением мозга.

Основная трудность исследования нервной системы человека заключается в том, что ее физиологические процессы и психические функции чрезвычайно сложны. Психологи исследуют эти функции своими методами (например, при помощи специальных тестов изучают эмоциональную устойчивость человека, уровень умственного развития и другие свойства психики). Характеристики психики исследуются психологом без «привязки» к мозговым структурам, т. е. психолога интересуют вопросы организации самой психической функции, но не то, как работают отдельные части головного мозга при осуществлении этой функции. Только относительно недавно, несколько десятилетий назад, появились технические возможности для исследования методами физиологии (регистрация биоэлектрической активности головного мозга, исследование распределения тока крови и др.) некоторых характеристик психических функций - восприятия, внимания, памяти, сознания и др. Совокупность новых подходов к исследованию головного мозга человека, сфера научных интересов физиологов в области психологии и привели к появлению в пограничной области этих наук новой науки - психофизиологии. Это обусловило взаимопроникновение двух областей знаний - психологии и физиологии. Поэтому физиологу, который исследует функции головного мозга человека, необходимы знания психологии и применение этих знаний в своей практической работе. Но и психолог не может обойтись без регистрации и исследования объективных процессов головного мозга с помощью электроэнцефалограмм, вызванных потенциалов, томографических исследований и пр.

1. Программа курса

1.1 Пояснительная записка

В данной программе изложены основы нейрофизиологии в соответствии с требованиями действующего Федерального Государственного образовательного стандарта по данной дисциплине.

Подробно рассмотрены основные разделы физиологии центральной нервной системы, ее главные направления, проблемы, задачи. Любая форма психической деятельности во многом определяется деятельностью нервной системы человека, поэтому знание основных закономерностей ее функционирования абсолютно необходимо для психологов. Большинство из существующих учебников по физиологии центральной нервной системы десятилетия назад, а специальная литература по предмету мало доступна для студентам из-за недостаточной подготовки и труднодоступности материала. В лекционном курсе студенты знакомятся не только с устоявшимися представлениями о работе нервной системы, но и современными взглядами на ее функционирование.

Назначение дисциплины. Данный курс предназначен для студентов высших учебных заведений, обучающихся по направлению «Психология». Учебная дисциплина «Нейрофизиология» является составной частью базовой (общепрофессиональной) части профессионального цикла (Б.2) ООП по направлению подготовки «030300 Психология».

Цель изучения дисциплины. Дисциплина «Нейрофизиология» предполагает формирование и развитие у студентов представлений и умений осмысливать сложнейшие законы деятельности головного мозга высших животных и человека. Рассматривая законы деятельности головного мозга, в основе которых базируется принцип рефлекторного отражения внешнего мира, понять сложные проявления поведения животных и человека, включая психические процессы.

Задачи дисциплины:

Сформировать у студентов представление о важнейших закономерностях деятельности головного мозга;

О рефлекторном принципе функционирования центральной нервной системе;

О физиологических механизмах, лежащих в основе поведения животных и человека, включая психические процессы;

Об основных научных проблемах и дискуссионных вопросах в современной нейрофизиологии;

Подготовить студентов к применению полученных знаний при осуществлении конкретного физиологического исследования.

Требования к уровню подготовки студента, завершившего изучение данной дисциплины. В результате освоения данной дисциплины выпускник должен обладать следующими общекультурными компетенциями (ОК):

способностью и готовностью к:

Пониманию современных концепций картины мира на основе сформированного мировоззрения, овладения достижениями естественных и общественных наук, культурологии (ОК-2);

Владению культурой научного мышления, обобщением, анализом и синтезом фактов и теоретических положений (ОК-3);

Использованию системы категорий и методов, необходимых для решения типовых задач в различных областях профессиональной практики (ОК-4);

Проведению библиографической и информационно-поисковой работы с последующим использованием данных при решении профессиональных задач и оформлении научных статей, отчётов, заключений и пр. (ОК-9);

профессиональными компетенциями (ПК):

способностью и готовностью к:

Применению знаний по психологии как науки о психологических феноменах, категориях и методах изучения и описания закономерностей функционирования и развития психики (ПК-9);

Пониманию и постановке профессиональных задач в области научно-исследовательской и практической деятельности (ПК-10).

Компоненты формируемых компетенций в виде знаний, умений, владений. В результате освоения дисциплины «Нейрофизиология» обучающийся должен:

Основные понятия нейрофизиологии (согласно глоссария);

Основные процессы развития и формирования онтогенеза, филогенеза и микроструктуры нервной ткани;

Основные концепции функциональной организации отдельного нейр,она нейронов популяции и мозга в целом; антропометрические, анатомические и физиологические параметры жизнедеятельности человека в фило- и социогенезе.

Использовать основные законы, закономерности в функциональной организации в нейросубстрате мозга;

Использовать биологические параметры для понимания процессов жизнедеятельности человека;

Используя понятийный аппарат излагать и представлять нейрональную организацию различных структур мозга;

Анализировать иерархическую организацию построения моделей мозга

Изображать нейрональную организацию основных блоков головного мозга и сенсорных систем.

Современными информационными системами Интернет для проведения библиографической и информационно-поисковой работы в области анатомии ЦНС;

Основными теориями концепциями о функционировании отдельного нейрона, нейронных популяций сенсорных систем и мозга в целом

Основными схемами, моделями и конструкциями нейрональной организации центральной нервной системы;

Основными теориями и концепциями функциональной организации и развития центральной и периферической нервной системы.

Базовыми дисциплинами для курса «Нейрофизиология» являются анатомия центральной нервной системы, антропология, общая психология, общая психодиагностика. Для освоения курса необходимо также иметь общие знания по биологии (анатомии и физиологии человека и животных) в рамках требований школьной программы.

Формы работы: аудиторные и практические занятия, самостоятельная подготовка студентов.

Аудиторные занятия проводится с применением адекватных средств наглядности и активизации деятельности студентов. Программа освещает логику и содержание лекционных и самостоятельных занятий. В ней слушатели найдут литературу и задания, рекомендованные для подготовки по каждой теме.

Самостоятельная работа. Изучение учебного материала, перенесенного с аудиторных занятий на самостоятельную проработку и выявление информационных ресурсов в научных библиотеках и сети Internet по следующим направлениям:

· библиография по проблемам нейрофизиологии;

· публикации (в том числе электронные) источников по нейрофизиологии;

· научная литература по актуальным проблемам нейрофизиологии.

Материально-техническое обеспечение дисциплины. Лекционная аудитория с мультимедийным проектором, ноутбуком и интерактивной доской.

Формы контроля: программированное задание, зачет.

Часть 1. Введение в дисциплину

Физиология в системе биологических наук. Предмет и объект изучения нейрофизиологии. Методологич еские основы современной нейрофизиологии. Современная техника нейрофизиологического эксперимента.

Основные этапы развития нейрофизиологии. Ведущие отечественные и зарубежные ученые-нейрофизиологи, научные школы.

Характеристика современного этапа развития нейрофизиологии. Современные представления о функциях центральной нервной системы, центральных механизмах регуляции поведения и психических функций.

Часть 2. Физиология головного мозга человека

Глава 2.1. Клетка - основная единица нервной ткани

Нейрон как структурная функциональная единица ЦНС. Структурные и биофизические свойства нейрона. Концепция о распространении потенциалов по проводниковым структурам. Представление П.К. Анохина о внутринейрональной обработке и интегрировании синаптических возбуждений. Концепция П.К. Анохина об интегративной деятельности нейрона.

Глия. Виды глиальных клеток. Функции глиальных клеток.

Структура синапсов. Классификация синапсов. Механизм синаптической передачи ЦНС. Характеристика пресинаптических и постиснаптических процессов, трансмембранные ионные токи, место возникновения потенциала действия в нейроне. Особенности синаптической передачи возбуждения и проведения возбуждения по нейронным путям ЦНС. Медиаторы ЦНС.

Признаки процесса возбуждения. Центральное торможение (И.М.Сеченов). Основные виды центрального торможения. Пресинаптическое и постсинаптическое торможение. Реципрокное и возвратное торможение. Пессимальное торможение. Торможение вслед за возбуждением. Функциональное значение тормозных процессов. Тормозные нейронные цепи. Современные представления о механизмах центрального торможения.

Общие принципы координациационной деятельности ЦНС. Принцип реципрокности (Н.Е. Введенский, Ч. Шерингтон). Иррадиация возбуждения в ЦНС. Конвергенция возбуждения и принцип общего конечного пути. Окклюзия. Последовательная индукция. Принцип обратной связи и его физиологическая роль. Свойства доминантного очага. Современные представления об интегративной деятельности ЦНС.

Медиаторы нервной системы. Опиатные рецепторы и опиоиды мозга.

Глава 2.2. Активирующие системы мозга

Структурно-функциональная организация активирующих систем мозга. Ретикулярная формация, неспецифические ядра таламуса, лимбическая система. Роль нейромедиаторов и нейропептидов в регуляции сна и бодрствования. Характеристика ночного сна человека. Структура ночного сна взрослого человека.

Глава 2.3. Физиологические механизмы регуляции вегетативных функций и инстинктивного поведения

Структурно-функциональная организация вегетативной нервной системы. Рефлекторная дуга автономного рефлекса. Симпатический и парасимпатический отделы вегетативной нервной системы. Метасимпатическая нервная система и энтерический отдел автономной нервной системы. Формирование выходного сигнала в вегетативной нервной системе: роль гипоталамуса и ядра солитарного тракта. Нейромедиаторы и котрансмиттеры вегетативной нервной системы. Современные представления о функциональных особенностиях вегетативной нервной системы.

Контроль функций эндокринной системы. Регуляция температуры тела. Контроль водного баланса в организме. Регуляция пищевого поведения. Рег у ляция полового поведения. Нервные механизмы страха и ярости. Физиология миндалин. Физиология гиппокампа. Нейрофизиология мотиваций. Нейроф и зиология стресса.

Часть 3. Когнитивный мозг

Глава 3.1. Физиология движений

Рефлекторный принцип деятельности ЦНС. Рефлекторная теория И.П.Павлова. Принцип детерминизма, принцип структурности, принцип анализа и синтеза в деятельности ЦНС. Рефлекс и рефлекторная дуга (Р.Декарт, Й. Прохаска). Виды рефлексов. Рефлекторные дуги соматических и вегетативных рефлексов. Свойства нервных центров. Одностороннее, замедленное проведение возбуждения по нервному центру. Зависимость рефлекторного ответа от параметров раздражения. Суммация возбуждений. Трансформация ритма возбуждения. Последействие. Утомление нервных центров. Тонус нервных центров. Безусловные и условные рефлексы (И.П. Павлов).

Регуляция движений. Мышцы как эффекторы моторных систем. Мышечные проприорецепторы и спинальные рефлексы: рефлекс растяжения. Спинальные механизмы координации движений. Поза и ее регуляция. Произвольные движения. Моторные функции мозжечка и базальных ганглиев. Глазодвигательная система.

2. КОНСПЕКТ ЛЕКЦИЙ

2. 1 Введение в дисциплину

2.1.1 История развития науки

Нейрофизиология - специальный раздел физиологии, изучающий деятел ьность нервной системы, возникла намного позже. Практически до второй половины XIX века нейрофизиология развивалась как экспериментальная наука, базирующаяся на изучении животных. Действительно, «низшие» (базовые) проявления деятельности нервной системы одинаковы у животных и человека. К таким функциям нервной системы относятся проведение возбуждения по нервному волокну, переход возбуждения с одной нервной клетки на другую (например, нервную, мышечную, железистую), простые рефлексы (например, сгибания или разгибания конечности), восприятие относительно простых световых, звуковых, тактильных и других раздражителей и многие другие. Только в конце XIX столетия ученые перешли к исследованию некоторых сложных функций дыхания, поддержания в организме постоянства состава крови, тканевой жидкости и некоторых других. При проведении всех этих исследований ученые не находили существенных различий в функционировании нервной системы как в целом, так и ее частей у человека и животных, даже очень примитивных. Например, на заре современной экспериментальной физиологии основным объектом была лягушка. Только с открытием новых методов исследования (в первую очередь электрических проявлений деятельности нервной системы) наступил новый этап в изучении функций головного мозга, когда стало возможным исследовать эти функции, не разрушая мозг, не вмешиваясь в его функционирование, и вместе с тем изучать высшие проявления его деятельности - восприятие сигналов, функции памяти, сознания и многие другие.

Знания, которыми располагала физиология 50-100 лет тому назад, касались только процессов функционирования органов нашего тела (почек, сердца, желудка и др.), но не головного мозга. Представления ученых древности о функционировании головного мозга ограничивались только внешними наблюдениями: они считали, что в головном мозге - три желудочка, и в каждый из них древние врачи «помещали» одну из психических функций.

Перелом в понимании функций головного мозга наступил в XVIII столетии, когда стали изготавливать очень сложные часовые механизмы. Например, музыкальные шкатулки исполняли музыку, куклы танцевали, играли на музыкальных инструментах. Все это приводило ученых к мысли, что наш головной мозг чем-то очень похож на такой механизм. Только в XIX веке окончательно было установлено, что функции головного мозга осуществляются по рефлекторному (reflecto - «отражаю») принципу. Однако первые представления о рефлекторном принципе действия нервной системы человека были сформулированы еще в XVIII столетии философом и математиком Рене Декартом. Он полагал, что нервы представляют собой полые трубки, по которым от головного мозга, вместилища души, передаются животные духи к мышцам.

Предшествием возникновения нейрофизиологии стало накопления знаний об анатомии и гистологии нервной системы. Представления о рефлекторном принципе функционирования НС были выдвинуты еще в XVII в. Р. Декартом, а в XVIII в. и Й. Прохаской, однако как наука нейрофизиология начала развиваться лишь в 1-й половине XIX в., когда для изучения нервной системы стали применять экспериментальные методы. Развитию нейрофизиологии способствовало накопление данных об анатомическом и гистологическом строении нервной системы, в частности открытие ее структурной единицы - нервной клетки, или нейрона, а также разработка методов прослеживания нервных путей на основании наблюдения за перерождением нервных волокон после их отделения от тела нейрона.

В начале XX в. Ч. Белл (1811) и Ф. Мажанди (1822) независимо друг от друга установили, что после перерезки задних спинномозговых корешков исчезает чувствительность, а после перерезки передних - движения (т.е. задние корешки передают нервные импульсы к мозгу, а передние - от мозга). Вслед за тем стали широко пользоваться перерезками и разрушениями различных структур мозга, а затем и искусственным их раздражением для определения локализации той или иной функции в нервной системе.

Важным этапом было открытие И.М. Сеченовым (1863) центрального торможения - явления, когда раздражение определенного центра нервной системы вызывает не деятельное ее состояние - возбуждение, а подавление деятельности. Как было показано впоследствии, взаимодействие возбуждения и торможения лежит в основе всех видов нервной активности.

Во 2-й половине XIX - начале XX вв. были получены подробные сведения о функциональном значении различных отделов нервной системы и основных закономерностях их рефлекторной деятельности. Значительный вклад в изучение функций центральной нервной системы внесли Н.Е. Введенский, В.М. Бехтерев и Ч. Шеррингтон. Роль ствола головного мозга, главным образом в регуляции сердечно-сосудистой деятельности и дыхания, в значительной мере была выяснена Ф.В. Овсянниковым и Н.А. Миславским, а также П. Флурансом, роль мозжечка - Л. Лючиани. Ф.В. Овсянников определил роль ствола головного мозга и его влияние на сердечно-сосудистую деятельность и дыхания, а Л. Лючиани - роль мозжечка.

Экспериментальное изучение функций коры больших полушарий головного мозга было начато несколько позднее (немецкие ученые Г. Фрич и Э. Гитциг, 1870; Ф. Гольц, 1869; Г. Мунк и др.), хотя представление о возможности распространения рефлекторного принципа на деятельность коры было развито еще в 1863 Сеченовым в его «Рефлексах головного мозга».

Последовательное экспериментальное исследование функций коры было начато И.П. Павловым, открывшим условные рефлексы, а тем самым и возможность объективной регистрации нервных процессов, протекающих в коре.

И.П. Павлов развил мысль И.М. Сеченова в виде «учения о физиологии условных рефлексов». Ему принадлежит заслуга в создании метода экспериментального исследования «высшего этажа» головного мозга коры - больших полушарий. Этот метод назван «методом условных рефлексов». Он установил фундаментальную закономерность предъявление животному (И.П. Павлов проводил исследования на собаках, но это верно и для человека) двух стимулов - вначале условного (например, звук зуммера), а затем безусловного (например, подкармливание собаки кусочками мяса). После некоторого числа сочетаний это приводит к тому, что при действии только звука зуммера (условного сигнала) у собаки развивается пищевая реакция (выделяется слюна, собака облизывается, скулит, смотрит в сторону миски), т. е. образовался пищевой условный рефлекс. Собственно этот прием при дрессировке был давно известен, но И.П. Павлов сделал его мощным инструментом научного исследования функций головного мозга.

Физиологические исследования в сочетании с изучением анатомии и морфологии головного мозга привели к однозначному заключению - именно головной мозг является инструментом нашего сознания, мышления, восприятия, памяти и других психических функций.

Наряду с этим в нейрофизиологии возникло направление, ставившее своей задачей изучение механизма деятельности нервных клеток и природы возбуждения и торможения. Этому способствовали открытие и разработка методов регистрации биоэлектрических потенциалов. Регистрация электрической активности нервной ткани и отдельных нейронов дала возможность объективно и точно судить о том, где появляется соответствующая активность, как она развивается, куда и с какой скоростью распространяется по нервной ткани, и т.д. Особенно способствовали изучению механизмов нервной деятельности Г. Гельмгольц, Э. Дюбуа-Реймон, Л. Герман, Э. Пфлюгер, а в России Н.Е. Введенский, использовавший для изучения электрических реакций нервной системы телефон (1884); В. Эйнтховен, а затем и А.Ф. Самойлов точно зарегистрировали краткие и слабые электрические реакции нервной системы при помощи струнного гальванометра; американские ученые Г. Бишоп. Дж. Эрлангер и Г. Гассер (1924) ввели в практику нейрофизиологии электронные усилители и осциллографы. Эти технические достижения были использованы затем для исследования деятельности отдельных нейромоторных единиц (электромиография), для регистрации суммарной электрической активности коры больших полушарий (электроэнцефалография) и пр.

2.1.2 Методы нейрофизиологии

Методы исследования головного мозга человека постоянно совершенствуются. Так, современные методы томографии позволяют увидеть строение головного мозга человека, не повреждая его. Согласно принципу одного из таких исследований - методу магнитно-резонансной томографии (МРТ), головной мозг облучают электромагнитным полем, применяя для этого специальный магнит. Под действием магнитного поля диполи жидкостей мозга (например, молекулы воды) принимают его направление. После снятия внешнего магнитного поля диполи возвращаются в исходное состояние, при этом возникает магнитный сигнал, который улавливается специальными датчиками. Затем это эхо обрабатывается с помощью мощного компьютера и методами компьютерной графики отображается на экране монитора. Благодаря тому, что внешнее магнитное поле, создаваемое внешним магнитом, можно сделать плоским, таким полем как своеобразным «хирургическим ножом» можно «резать» головной мозг на отдельные слои. На экране монитора ученые наблюдают серию последовательных «срезов» головного мозга, не нанося ему никакого вреда. Этот метод позволяет исследовать, например, злокачественные образования головного мозга.

Еще более высоким разрешением обладает метод позитронно-эмиссионной томографии (ПЭТ). Исследование основано на введении в мозговой кровоток позитрон-излучающего короткоживущего изотопа. Данные о распределении радиоактивности в мозге собираются компьютером в течение определенного времени сканирования и затем реконструируются в трехмерный образ. Метод позволяет наблюдать в головном мозге очаги возбуждения, например, при продумывании отдельных слов, при их проговаривании вслух, что свидетельствует о его высоких разрешающих возможностях. Вместе с тем многие физиологические процессы в головном мозге человека протекают значительно быстрее тех возможностей, которыми обладает томографический метод. В исследованиях ученых немаловажное значение имеет финансовый фактор, т. е. стоимость исследования.

В распоряжении физиологов имеются также различные электрофизиологические методы исследования. Они также совершенно не опасны для мозга человека и позволяют наблюдать течение физиологических процессов в диапазоне от долей миллисекунды (1 мс = 1/1000 с) до нескольких часов. Если томография - продукт научной мысли XX века, то электрофизиология имеет глубокие исторические корни.

В XVIII столетии итальянский врач Луиджи Гальвани заметил, что отпрепарированные лапки лягушки (сейчас мы называем такой препарат нервно-мышечным) сокращаются при соприкосновении с металлом. Гальвани обнародовал свое замечательное открытие, назвав его биоэлектричеством.

Пропустим значительный отрезок истории и обратимся к XIX столетию. К этому времени уже появились первые физические приборы (струнные гальванометры), которые позволяли исследовать слабые электрические потенциалы от биологических объектов. В Манчестере (Англия) Г. Катон впервые поместил электроды (металлические проволочки) на затылочные доли головного мозга собаки и зарегистрировал колебания электрического потенциала при освещении светом ее глаз. Подобные колебания электрического потенциала сейчас называют вызванными потенциалами и широко используют при исследовании мозга человека. Это открытие прославило имя Катона и дошло до нашего времени, но современники замечательного ученого глубоко чтили его как мэра Манчестера, а не как ученого.

В России подобные исследования проводил И.М. Сеченов: ему впервые удалось зарегистрировать биоэлектрические колебания от продолговатого мозга лягушки. Другой наш соотечественник, профессор Казанского университета И. Правдич-Неминский изучал биоэлектрические колебания мозга собаки при различных состояниях животного - в покое и при возбуждении. Собственно, это были первые электроэнцефалограммы. Однако мировое признание получили исследования, проведенные в начале XX века шведским исследователем Г. Бергером. Используя уже значительно более совершенные приборы, он зарегистрировал биоэлектрические потенциалы головного мозга человека, которые теперь называют электроэнцефалограммой. В этих исследованиях впервые был зарегистрирован основной ритм биотоков мозга человека - синусоидальные колебания с частотой 8-12 Гц, который получил название альфа-ритма. Это можно считать началом современной эры исследования физиологии головного мозга человека.

Современные методы клинической и экспериментальной электроэнцефалографии сделали значительный шаг вперед благодаря применению компьютеров. Обычно на поверхность скальпа при клиническом обследовании больного накладывают несколько десятков чашечковых электродов. Далее эти электроды соединяют с многоканальным усилителем. Современные усилители очень чувствительны и позволяют записывать электрические колебания от мозга амплитудой всего в несколько микровольт (1 мкВ = 1/1000000 В). Далее достаточно мощный компьютер обрабатывает ЭЭГ по каждому каналу. Психофизиолога или врача, в зависимости от того, исследуется мозг здорового человека или больного, интересуют многие характеристики ЭЭГ, которые отражают те или иные стороны деятельности мозга, например ритмы ЭЭГ (альфа, бета, тета и др.), характеризующие уровень активности мозга. В качестве примеpa можно привести применение этого метода в анестезиологии. В настоящее время во всех хирургических клиниках мира во время операций под наркозом наряду с электрокардиограммой регистрируется и ЭЭГ, ритмы которой могут очень точно указывать глубину наркоза и контролировать деятельность мозга. Ниже мы столкнемся с применением метода ЭЭГ и в других случаях.

Нейробиологический подход к исследованию нервной системы человека. В теоретических исследованиях физиологии головного мозга человека огромную роль играет изучение центральной нервной системы животных. Эта область знаний получила название нейробиологии. Дело в том, что мозг современного человека является продуктом длительной эволюции жизни на Земле. На пути этой эволюции, которая на Земле началась примерно 3-4 млрд. лет тому назад и продолжается в наше время, Природой перебирались многие варианты устройства центральной нервной системы и ее элементов. Например, нейроны, их отростки, процессы, протекающие в нейронах, остаются неизменными как у примитивных животных (например, членистоногих, рыб, амфибий, рептилий и др.), так и у человека. Это означает, что Природа остановилась на удачном образце своего творения и не изменяла его на протяжении сотен миллионов лет. Так произошло со многими структурами головного мозга. Исключение представляют большие полушария головного мозга. Они уникальны в мозге человека. Поэтому нейробиолог, имея в своем распоряжении огромное число объектов исследования, всегда может изучать тот или иной вопрос физиологии головного мозга человека на более простых, дешевых и доступных объектах. Такими объектами могут быть беспозвоночные животные. Например, один из классических объектов современной нейрофизиологии - головоногий моллюск кальмар; его нервное волокно (так называемый гигантский аксон), на котором были выполнены классические исследования по физиологии возбудимых мембран.

В последние годы для этих целей все шире применяют прижизненные срезы головного мозга новорожденных крысят и морских свинок и даже культуру нервной ткани, выращенную в лаборатории. Какие же вопросы способна решить нейробиология своими методами? Прежде всего - исследование механизмов функционирования отдельных нервных клеток и их отростков. Например, у головоногих моллюсков (кальмара, каракатицы) имеются очень толстые, гигантские аксоны (диаметром 500-1000 мкм), по которым из головного ганглия передается возбуждение на мускулатуру мантии. Молекулярные механизмы возбуждения исследуются на этом объекте. У многих моллюсков в нервных ганглиях, заменяющих у них головной мозг, есть очень большие нейроны - диаметром до 1000 мкм. Эти нейроны являются излюбленными объектами при изучении работы ионных каналов, открытие и закрытие которых управляется химическими веществами. Ряд вопросов передачи возбуждения от одного нейрона другому исследуется на нервно-мышечном соединении - синапсе (синапс в переводе с греческого означает контакт); эти синапсы по размерам в сотни раз больше подобных синапсов в головном мозге млекопитающих. Здесь протекают весьма сложные и до конца не изученные процессы. Например, нервный импульс в синапсе приводит к выбросу химического вещества, вследствие действия которого возбуждение передается на другой нейрон. Исследование этих процессов и их понимание лежат в основе целой современной индустрии производства лекарственных средств и других препаратов. Список вопросов, которые может решать современная нейробиология, бесконечно велик. Некоторые примеры мы рассмотрим далее.

Для регистрации биоэлектрической активности нейронов и их отростков применяют специальные приемы, которые называются микроэлектродной техникой. Микроэлектродная техника в зависимости от задач исследования имеет много особенностей. Обычно применяют два типа микроэлектродов - металлические и стеклянные. Металлические микроэлектроды часто изготавливают из вольфрамовой проволоки диаметром 0,3-1 мм. На первом этапе нарезают заготовки длиной по 10-20 см (это определяется глубиной, на которую будет погружен микроэлектрод в мозг исследуемого животного). Один конец заготовки электролитическим методом затачивают до диаметра 1-10 мкм. После тщательной промывки поверхности в специальных растворах ее покрывают лаком для электрической изоляции. Самый кончик электрода остается неизолированным (иногда через такой микроэлектрод пропускают слабый толчок тока, чтобы дополнительно разрушить изоляцию на самом кончике).

Для регистрации активности одиночных нейронов микроэлектрод закрепляют в специальном манипуляторе, который позволяет продвигать его в мозге животного с высокой точностью. В зависимости от задач исследования манипулятор может крепиться на черепе животного или отдельно. В первом случае это очень миниатюрные устройства, которые получили название микроманипуляторов. Характер регистрируемой биоэлектрической активности определяется диаметром кончика микроэлектрода. Например, при диаметре кончика микроэлектрода не более 5 мкм можно зарегистрировать потенциалы действия одиночных нейронов (в этих случаях кончик микроэлектрода должен приблизиться к исследуемому нейрону на расстояние около 100 мкм). При диаметре кончика микроэлектрода больше 10 мкм одновременно регистрируется активность десятков, а иногда сотен нейронов (мультиплай-активность).

Другой широко распространенный тип микроэлектродов изготавливают из стеклянных капилляров (трубочек). Для этой цели используются капилляры диаметром 1-3 мм. Далее на специальном устройстве, так называемой кузнице микроэлектродов, выполняют следующую операцию: капилляр в средней части разогревают до температуры плавления стекла и разрывают. В зависимости от параметров этой процедуры (температуры нагрева, величины зоны нагрева, скорости и силы разрыва и пр.) получают микропипетки с диаметром кончика до долей микрометра. На следующем этапе микропипетку заполняют раствором соли (например, 2М КCl) и получают микроэлектрод. Кончик такого микроэлектрода можно вводить внутрь нейрона (в тело или даже в его отростки), не сильно повреждая его мембрану и сохраняя его жизнедеятельность.

Еще одно направление исследования головного мозга человека возникло в годы Второй мировой войны - это нейропсихология. Одним из основоположников этого подхода был профессор Московского университета А.Р. Лурия. Метод представляет собой сочетание приемов психологического обследования с физиологическим исследованием человека с поврежденным головным мозгом. Результаты, полученные в таких исследованиях, будут многократно цитироваться далее.

Методы исследования головного мозга человека не исчерпываются описанными выше. Во введении автор скорее стремился показать современные возможности исследования головного мозга здорового и больного человека, а не описать все современные методы исследования. Эти методы возникли не на пустом месте - одни из них имеют уже многовековую историю, другие стали возможными только в век современных вычислительных стредств. При чтении книги читатель столкнется с другими методами иследования, суть которых будет разъясняться по ходу описания.

2.1.3 Современная нейрофизиология

На современном этапе функции нейрофизиологии построены на изучении интегративной деятельности нервной системы. Изучение осуществляется п осредством поверхностных и вживленных электродов, а также температурных раздражителей нервной системы. Также не перестает развиваться изучение клеточных механизмов нервной системы, в которой используется современная микроэлектродная техника. Микроэлектроды вводятся внутрь нейрона и, таким образом получают информацию о развитии процессов возбуждения и торможения. Кроме того, новинкой в изучении нервной системы человека стало использование электронной микроскопии, которая позволила нейрофизиологам изучать способы кодировки и передачи информации в головном мозге. В некоторых исследовательских центрах уже проводятся работы, которые позволяют моделировать отдельные нейроны и нервные сети. На современном этапе нейрофизиология тесно связана с такими науками как нейрокибернетика, нейрохимия и нейробионика. С помощью нейрофизиологических методов (электроэнцефалография, миография, нистагмография и т.д.) осуществляется диагностика и лечения таких заболеваний как инсульт, нарушение двигательного аппарата, эпилепсия, рассеянный склероз, а также редкие нейропатологические заболевания и др.

2.2 Физиология головного мозга человека

Головной мозг человека устроен чрезвычайно сложно. Даже сейчас, когда мы знаем так много о мозге не только человека, но и ряда животных, мы, по-видимому, еще очень далеки от понимания физиологических механизмов многих психических функций. Можно сказать, что эти вопросы только включены в повестку дня современной науки. В первую очередь это касается таких психических процессов, как мышление, восприятие окружающего мира и памяти и многих других. Вместе с тем сейчас четко определены основные проблемы, которые придется решать в III тысячелетии. Что же может предъявить современная наука человеку, интересующемуся, как функционирует мозг человека? Прежде всего, то, что в нашем мозге «работают» несколько систем, по крайней мере три. Каждую из этих систем можно даже назвать отдельным мозгом, хотя в здоровом мозге каждая из них работает в тесном сотрудничестве и взаимодействии. Что же это за системы? Это активирующий мозг, мотивационный мозг и познающий, или когнитивный (от лат. сognitio - «знание»), мозг. Как уже указывалось, не следует понимать, что эти три системы, подобно матрешкам, вложены одна в другую. Каждая из них, помимо своей основной функции, например активирующая система (мозг), как участвует в определении состояния нашего сознания, циклов сон - бодрствование, так и является неотъемлемой частью познавательных процессов нашего мозга. Действительно, если у человека нарушен сон, то невозможен процесс учебы и другой деятельности. Нарушение биологических мотиваций может быть несовместимым с жизнью. Эти примеры можно множить, но главная мысль состоит в том, что мозг человека единый орган, обеспечивающий жизнедеятельность и психические функции, однако для удобства описания будем выделять в нем три указанных выше блока.

2.2.1 Клетка - основная единица нервной ткани

Головной мозг человека состоит из огромного количества разнообразных клеток. Клетка - основная единица биологического организма. Наиболее просто организованные животные могут иметь всего одну клетку. Сложные организмы состоят из мириадов клеток и являются, таким образом, многоклеточными. Но во всех этих случаях единицей биологического организма остается клетка. Клетки разных организмов - от человека до амебы - устроены очень, похоже. Клетка окружена мембраной, которая отделяет цитоплазму от окружающей среды. Центральное место в клетке занимает ядро, в котором находится генетический аппарат, хранящий генетический код строения всего нашего организма. Но каждая клетка использует в своей жизнедеятельности только незначительную часть этого кода. Кроме ядра, в цитоплазме находится много других органелл (частиц). Среди них одной из самых важных является эндоплазматический ретикулум, составленный из многочисленных мембран, на которых закреплено множество рибосом. На рибосомах происходит сборка молекул белка из отдельных аминокислот по программе генетического кода. Часть эндоплазматического ретикулума представлена аппаратом Гольджи. Таким образом, эндоплазматический ретикулум - это своеобразная фабрика, оснащенная всем необходимым для производства белковых молекул. Другими очень важными органеллами клетки являются митохондрии, благодаря деятельности которых в клетке постоянно поддерживается необходимое количество АТФ (аденозинтрифосфата) - универсального «горючего» клетки.

Нейрон, являющийся структурной основной единицей нервной ткани, имеет все перечисленные выше структуры. Вместе с тем нейрон предназначен природой для обработки информации и в связи с этим имеет определенные особенности, которые биологи называют специализацией. Выше был описан самый общий план строения клетки. На самом деле любая клетка нашего организма приспособлена природой для выполнения строго определенной, специализированной функции. Например, клетки, составляющие сердечную мышцу, обладают способностью сокращаться, а клетки кожи защищают наш организм от проникновения микроорганизмов.

Нейрон

Нейрон является главной клеткой центральной нервной системы. Формы нейронов чрезвычайно многообразны, но основные части неизменны у всех типов нейронов. Нейрон состоит из следующих частей: сомы (тела) и многочисленных разветвленных отростков. У ка ждого нейрона есть два типа отростков: аксон, по которому возбуждение передается от нейрона к другому нейрону, и многочисленные дендриты (от греч. «дерево»), на которых заканчиваются синапсами (от греч. контакт) аксоны от других нейронов. Нейрон проводит возбуждение только от дендрита к аксону.

Основным свойством нейрона является способность возбуждаться (генерировать электрический импульс) и передавать (проводить) это возбуждение к другим нейронам, мышечным, железистым и другим клеткам.

Нейроны разных отделов мозга выполняют очень разнообразную работу, и в соответствии с этим форма нейронов из разных частей головного мозга также многообразна. Нейроны, расположенные на выходе нейронной сети какой-то структуры, имеют длинный аксон, по которому возбуждение покидает данную мозговую структуру.

Например, нейроны двигательной коры головного мозга, так называемые пирамиды Беца (названные в честь киевского анатома Б. Беца, впервые их описавшего в середине XIX века), имеют у человека аксон около 1 м, он соединяет двигательную кору больших полушарий с сегментами спинного мозга. По этому аксону передаются «двигательные команды», например «пошевелить пальцами ноги». Как возбуждается нейрон? Основная роль в этом процессе принадлежит мембране, котораяотделяет цитоплазму клетки от окружающей среды. Мембрана нейрона, как и любой другой клетки, устроена очень сложно. В своей основе все известные биологические мембраны имеют однообразное строение: слой молекул белка, затем слой молекул липидов и еще один слой молекул белка. Вся эта конструкция напоминает два бутерброда, сложенных маслом друг к другу. Толщина такой мембраны составляет 7-11 нм. В такую мембрану встроены разнообразные частицы. Одни из них являются частицами белка и пронизывают мембрану насквозь (интегральные белки), они образуют места прохождения для ряда ионов: натрия, калия, кальция, хлора. Это так называемые ионные каналы. Другие частицы прикреплены на внешней поверхности мембраны и состоят не только из молекул белка, но и из полисахаридов. Это рецепторы для молекул биологически активных веществ, например медиаторов, гормонов и др. Часто в состав рецептора, кроме места для связывания специфической молекулы, входит и ионный канал.

Главную роль в возбуждении нейрона играют ионные каналы мембраны. Эти каналы бывают двух видов: одни работают постоянно и откачивают из нейрона ионы натрия и накачивают в цитоплазму ионы калия. Благодаря работе этих каналов (их называют еще насосными каналами или ионным насосом), постоянно потребляющих энергию, в клетке создается разность концентраций ионов: внутри клетки концентрация ионов калия примерно в 30 раз превышает их концентрацию вне клетки, тогда как концентрация ионов натрия в клетке очень небольшая -примерно в 50 раз меньше, чем снаружи клетки. Свойство мембраны постоянно поддерживать разность ионных концентраций между цитоплазмой и окружающей средой характерно не только для нервной, но и для любой клетки организма. В результате между цитоплазмой и внешней средой на мембране клетки возникает потенциал: цитоплазма клетки заряжается отрицательно на величину около 70мВ относительно внешней среды клетки. Измерить этот потенциал можно в лаборатории стеклянным электродом, если в клетку ввести очень тонкую (меньше 1 мкм) стеклянную трубочку, заполненную раствором соли. Стекло в таком электроде играет роль хорошего изолятора, а раствор соли - проводника. Электрод соединяют с усилителем электрических сигналов и на экране осциллографа регистрируют этот потенциал. Оказывается, потенциал порядка - 70 мВ сохраняется в отсутствие ионов натрия, но зависит от концентрации ионов калия. Другими словами, в создании этого потенциала участвуют только ионы калия, в связи, с чем этот потенциал получил название «калиевый потенциал покоя», или просто «потенциал покоя». Таким образом, это потенциал любой покоящейся клетки нашего организма, в том числе и нейрона.

Глия - морфология и функция

Головной мозг человека состоит из сотен миллиардов клеток, причем нервные клетки (нейроны) не составляют большинство. Большая часть объема нервной ткани (до 9 / 10 в некоторых областях мозга) занята клетками глии. Дело в том, что нейрон выполняет в нашем организме гиганскую очень тонкую и трудную работу, для чего неоходимо освободить такую клетку от будничной деятельности, связанной с питанием, удалением шлаков, защитой от механических повреждений и т.д. - это обеспечивается другими, обслуживающими клетками, т.е. клетками глии (рис. 3). В головном мозге выделяются три типа клеток глии: микроглию, олигодендроглию и астроглию, каждая из которых обеспечивает только ей предназначенную функцию. Клетки микроглии участвут в образовании мозговых оболочек, олигодендроглии - в образовании оболочек (милеиновх чехлов) вокруг отдельных отростков нервных клеток. Миелиновые оболочки вокруг периферических нервных волокон образуются специальными гниальными клетками - шванновскими клетками. Астроциты находятся вокруг нейронов, обеспечивая их механическую защиту, а кроме того, доставляют в нейрон питательные вещества и убирают шлаки. Клетки глии обеспечивают также электическуюизоляцию отдельных нейронов от воздействия других нейронов. Важной особенностью клеток глии является то, что в отличие от нейронов они сохраняют способность делиться на протяжении всей своей жизни. Это деление в некоторых случаях приводит к опухолевым заболеваниям головного мозга человека. Нервная клетка настолько специализирована, что утеряла способность к делению. Таким образом, нейроны нашего мозга, однажды образовавшись из клеток-предшественников (нейробластов), живут с нами всю нашу жизнь. На этом длительном пути мы только теряем нейроны нашего мозга.

Возбуждение нейрона

Нейрон в отличие от других клеток способен возбуждаться. Под возбуждением нейрона понимают генерацию нейроном поте нциала действия. Основная роль в возбуждении принадлежит другому типу ионных каналов, при открытии которых ионы натрия устремляются в клетку. Напомним, что благодаря постоянной работе насосных каналов концентрация натриевых ионов вне клетки примерно в 50 раз больше, чем в клетке, поэтому при открытии натриевых каналов ионы натрия устремляются в клетку, а ионы калия через открытые калиевые каналы начинают выходить из клетки. Для каждого типа ионов - натрия и калия - имеется свой собственный тип ионного канала. Движение ионов по этим каналам происходит по концентрационным градиентам, т.е. из места высокой концентрации в место с более низкой концентрацией.

В покоящемся нейроне натриевые каналы мембраны закрыты и на мембране, как это уже описывалось выше, регистрируется потенциал покоя порядка-70 мВ (отрицательность в цитоплазме). Если потенциал мембраны деполяризовать (уменьшить поляризацию мембраны) примерно на 10 мВ, натриевый ионный канал открывается.

Действительно, в канале имеется своеобразная заслонка, которая реагирует на потенциал мембраны, открывая этот канал при достижении потенциала определенной величины. Такой канал называется потенциалзависимым. Как только канал открывается, в цитоплазму нейрона устремляются из межклеточной среды ионы натрия, которых там примерно в 50 раз больше, чем в цитоплазме. Такое движение ионов является следствием простого физического закона: ионы движутся по концентрационному градиенту. Таким образом, в нейрон поступают ионы натрия, они заряжены положительно. Другими словами, через мембрану будет протекать входящий ток ионов натрия, который будет смещать потенциал мембраны в сторону деполяризации, т. е. уменьшать поляризацию мембраны. Чем больше ионов натрия войдет в цитоплазму нейрона, тем больше его мембрана деполяризуется.

Потенциал на мембране будет увеличиваться, открывая все большее количество натриевых каналов. Но этот потенциал будет расти не бесконечно, а только до тех пор, пока не станет равным примерно +55 мВ. Этот потенциал соответствует присутствующим в нейроне и вне его концентрациям ионов натрия, поэтому его называют натриевым равновесным потенциалом. Вспомним, что в покое мембрана имела потенциал -70 мВ, тогда абсолютная амплитуда потенциала составит величину около 125 мВ. Мы говорим «около», «примерно» потому, что у клеток разного размера и типов этот потенциал может несколько отличаться, что связано с формой этих клеток (например, количеством отростков), а также с особенностями их мембран.

Все изложенное выше можно формально описать следующим образом. В покое клетка ведет себя как «калиевый электрод», а при возбуждении - как «натриевый электрод». Однако после того как потенциал на мембране достигнет своего максимального значения +55 мВ, натриевый ионный канал со стороны, обращенной в цитоплазму, закупоривается специальной белковой молекулой. Это так называемая «натриевая инактивация» она наступает примерно через 0,5-1 мс и не зависит от потенциала на мембране. Мембрана становится непроницаемой для натриевых ионов. Для того чтобы потенциал мембраны вернулся к исходному состоянию-состоянию покоя, необходимо, чтобы из клетки выходил ток положительных частиц. Такими частицами в нейронах являются ионы калия. Они начинают выходить через открытые калиевые каналы. Вспомните, что в клетке в состоянии покоя накапливаются ионы калия, поэтому при открывании калиевых каналов эти ионы покидают нейрон, возвращая мембранный потенциал к исходному уровню (уровню покоя). В результате этих процессов мембрана нейрона возвращается к состоянию покоя (-70 мВ) и нейрон готовится к следующему акту возбуждения. Таким образом, выражением возбуждения нейрона является генерация на мембране нейрона потенциала действия. Его длительность в нервных клетках составляет величину около 1 /1000 с (1 мс). Подобные потенциалы действия могут возникать и в других клетках, назначение которых - возбуждаться и передавать это возбуждение другим клеткам. Например, сердечная мышца имеет в своем составе специальные мышечные волокна, обеспечивающие бесперебойную работу сердца в автоматическом режиме. В этих клетках также генерируются потенциалы действия. Однако они имеют затянутую, почти плоскую вершину, и длительность такого потенциала действия может затянуться до нескольких сот миллисекунд (сравните с 1 мс у нейрона). Такой характер потенциала действия мышечной клетки сердца физиологически оправдан, так как возбуждение сердечной мышцы должно быть длительным, чтобы кровь успела покинуть желудочек. С чем же связан такой затянутый потенциал действия у этого типа клетки? Оказалось, в мембране этих клеток натриевые ионные каналы не так быстро закрываются, как в нейронах, т. е. натриевая инактивация затянута.

...

Подобные документы

    Нейробиологические концепции нервной системы. Составляющие нервной системы, характеристика их функций. Рефлекс - основная форма нервной деятельности. Понятие рефлекторной дуги. Особенности процессов возбуждения и торможения в центральной нервной системе.

    реферат , добавлен 13.07.2013

    Общая характеристика нервной системы. Рефлекторная регуляция деятельности органов, систем и организма. Физиологические роли частных образований центральной нервной системы. Деятельность периферического соматического и вегетативного отдела нервной системы.

    курсовая работа , добавлен 26.08.2009

    Функции нервной системы в организме человека. Клеточное строение нервной системы. Виды нервных клеток (функциональная классификация). Рефлекторный принцип работы нервной системы. Отделы центральной нервной системы. Учение о высшей нервной деятельности.

    реферат , добавлен 15.02.2011

    Характеристика законов высшей нервной деятельности человека. Особенности процессов возбуждения и торможения, которые лежат в основе деятельности центральной нервной системы. Принцип доминанты. Особенности условных рефлексов и их биологическое значение.

    реферат , добавлен 07.12.2010

    Значение нервной системы в приспособлении организма к окружающей среде. Общая характеристика нервной ткани. Строение нейрона и их классификация по количеству отростков и по функциям. Черепно-мозговые нервы. Особенности внутреннего строения спинного мозга.

    шпаргалка , добавлен 23.11.2010

    Рассмотрение понятия и этапов осуществления рефлексов. Общие свойства нервных центров. Организация реципрокного, возвратного, тонического и пессимального видов торможения в центральной нервной системе. Принципы координационной деятельности мозга.

    реферат , добавлен 10.07.2011

    Основные анатомические закономерности в деятельности центральной нервной системы. Распространение нервных импульсов. Анатомия спинного и головного мозгов. Характеристика проводящих путей спинного мозга. Клеточные элементы нервной ткани, типы нейронов.

    презентация , добавлен 17.12.2015

    Координация нервной системой деятельности клеток, тканей и органов. Регуляция функций организма, взаимодействие его с окружающей средой. Вегетативная, соматическая (сенсорная, моторная) и центральная нервная система. Строение нервных клеток, рефлексы.

    реферат , добавлен 13.06.2009

    Общая физиология центральной нервной системы. Нервная система позвоночных. Рефлекторный тонус нервных центров. Значение процесса торможения. Принципы координации в деятельности центральной нервной системы. Физиологические принципы исследования почек.

    контрольная работа , добавлен 21.02.2009

    Физиология высшей нервной деятельности. Иван Петрович Павлов - основоположник науки о высшей нервной деятельности. Образование условных рефлексов, взаимодействие процессов возбуждения и торможения, протекающих в коре больших полушарий головного мозга.

Психология – одна из древнейших наук в современной системе научного знания. Она возникла как результат осознания человеком самого себя. Само название этой науки – психология (psyche – душа, logos – учение) указывает, что основное ее предназначение – познание своей души и ее проявлений – воли, восприятия, внимания, памяти и т.д. Нейрофизиология – специальный раздел физиологии, изучающий деятельность нервной системы, возникла намного позже. Практически до второй половины XIX века нейрофизиология развивалась как экспериментальная наука, базирующаяся на изучении животных. Действительно, «низшие» (базовые) проявления деятельности нервной системы одинаковы у животных и человека. К таким функциям нервной системы относятся проведение возбуждения по нервному волокну, переход возбуждения с одной нервной клетки на другую (например, нервную, мышечную, железистую), простые рефлексы (например, сгибания или разгибания конечности), восприятие относительно простых световых, звуковых, тактильных и других раздражителей и многие другие. Только в конце XIX столетия ученые перешли к исследованию некоторых сложных функций дыхания, поддержания в организме постоянства состава крови, тканевой жидкости и некоторых других. При проведении всех этих исследований ученые не находили существенных различий в функционировании нервной системы как в целом, так и ее частей у человека и животных, даже очень примитивных. Например, на заре современной экспериментальной физиологии излюбленным объектом была лягушка. Только с открытием новых методов исследования (в первую очередь электрических проявлений деятельности нервной системы) наступил новый этап в изучении функций головного мозга, когда стало возможным исследовать эти функции, не разрушая мозг, не вмешиваясь в его функционирование, и вместе с тем изучать высшие проявления его деятельности – восприятие сигналов, функции памяти, сознания и многие другие.

Как уже указывалось, психология как наука намного старше, чем физиология, и на протяжении многих веков психологи в своих исследованиях обходились без знаний физиологии. Конечно, это связано прежде всего с тем, что знания, которыми располагала физиология 50–100 лет тому назад, касались только процессов функционирования органов нашего тела (почек, сердца, желудка и др.), но не головного мозга. Представления ученых древности о функционировании головного мозга ограничивались только внешними наблюдениями: они считали, что в головном мозге – три желудочка, и в каждый из них древние врачи «помещали» одну из психических функций (рис. 1).

Перелом в понимании функций головного мозга наступил в XVIII столетии, когда стали изготавливать очень сложные часовые механизмы. Например, музыкальные шкатулки исполняли музыку, куклы танцевали, играли на музыкальных инструментах. Все это приводило ученых к мысли, что наш головной мозг чем-то очень похож на такой механизм. Только в XIX веке окончательно было установлено, что функции головного мозга осуществляются по рефлекторному (reflecto – отражаю) принципу. Однако первые представления о рефлекторном принципе действия нервной системы человека были сформулированы еще в XVIII столетии философом и математиком Рене Декартом. Он полагал, что нервы представляют собой полые трубки, по которым от головного мозга, вместилища души, передаются животные духи к мышцам. На рис. 2 видно, что мальчик обжег ногу, и этот стимул запустил всю цепь реакций: вначале «животный дух» направляется к головному мозгу, отражается от него и по соответствующим нервам (трубкам) направляется к мышцам, раздувая их. Здесь без труда можно увидеть простую аналогию с гидравлическими машинами, которые во времена Р. Декарта были вершиной достижения инженерной мысли. Проведение аналогии между действием искусственных механизмов и деятельностью головного мозга – излюбленный прием при описании функций мозга. Например, наш великий соотечественник И. П. Павлов сравнивал функцию коры больших полушарий головного мозга с телефонным узлом, на котором барышня-телефонистка соединяет абонентов между собой. В наше время головной мозг и его деятельность чаще всего сравнивают с мощным компьютером. Однако любая аналогия весьма условна. Не вызывает сомнений, что головной мозг действительно выполняет огромный объем вычислений, но принцип его деятельности отличен от принципов действия компьютера. Но вернемся к вопросу: зачем психологу знать физиологию головного мозга?

Вспомним идею рефлекса, высказанную еще в XVIII веке Р. Декартом. Собственно зерном этой идеи было признание того, что реакции живых организмов обусловлены внешними раздражениями благодаря деятельности головного мозга, а не «по воле Божьей». В России эта идея была с воодушевлением воспринята научной и литературной общественностью. Вершиной этого был выход в свет знаменитого труда Ивана Михайловича Сеченова «Рефлексы головного мозга» (1863), оставившего глубокий след в мировой культуре. Свидетельством служит тот факт, что в 1965 г., когда исполнилось столетие со дня выхода этой книги в свет, в Москве под патронажем ЮНЕСКО прошла международная конференция, на которой присутствовали многие ведущие нейрофизиологи мира. И. М. Сеченов впервые полно и убедительно доказал, что психическая деятельность человека должна стать объектом изучения физиологами.

И. П. Павлов развил эту мысль в виде «учения о физиологии условных рефлексов».

Ему принадлежит заслуга в создании метода экспериментального исследования «высшего этажа» головного мозга коры – больших полушарий. Этот метод назван «методом условных рефлексов». Он установил фундаментальную закономерность: предъявление животному (И. П. Павлов проводил исследования на собаках, но это верно и для человека) двух стимулов – вначале условного (например, звук зуммера), а затем безусловного (например, подкармливание собаки кусочками мяса). После некоторого числа сочетаний это приводит к тому, что при действии только звука зуммера (условного сигнала) у собаки развивается пищевая реакция (выделяется слюна, собака облизывается, скулит, смотрит в сторону миски), т.е. образовался пищевой условный рефлекс (рис. 3). Собственно этот прием при дрессировке был давно известен, но И. П. Павлов сделал его мощным инструментом научного исследования функций головного мозга.

Физиологические исследования в сочетании с изучением анатомии и морфологии головного мозга привели к однозначному заключению – именно головной мозг является инструментом нашего сознания, мышления, восприятия, памяти и других психических функций.

Основная трудность исследования заключается в том, что психические функции чрезвычайно сложны. Психологи исследуют эти функции своими методами (например, при помощи специальных тестов изучают эмоциональную устойчивость человека, уровень умственного развития и другие свойства психики). Характеристики психики исследуются психологом без «привязки» к мозговым структурам, т.е. психолога интересуют вопросы организации самой психической функции, но не то, как работают отдельные части головного мозга при осуществлении этой функции. Только относительно недавно, несколько десятилетий назад, появились технические возможности для исследования методами физиологии (регистрация биоэлектрической активности головного мозга, исследование распределения тока крови и др., подробнее см. далее) некоторых характеристик психических функций – восприятия, внимания, памяти, сознания и др. Совокупность новых подходов к исследованию головного мозга человека, сфера научных интересов физиологов в области психологии и привели к появлению в пограничной области этих наук новой науки – психофизиологии. Это обусловило взаимопроникновение двух областей знаний – психологии и физиологии. Поэтому физиологу, который исследует функции головного мозга человека, необходимы знания психологии и применение этих знаний в своей практической работе. Но и психолог не может обойтись без регистрации и исследования объективных процессов головного мозга с помощью электроэнцефалограмм, вызванных потенциалов, томографических исследований и пр. Какие же подходы к исследованию физиологии головного мозга человека привели ученых к современной сумме знаний?

Валерий Викторович Шульговский

Основы нейрофизиологии

Учебное пособие для студентов вузов

ВВЕДЕНИЕ

Почему нужно знать физиологию головного мозга психологу?

Психология – одна из древнейших наук в современной системе научного знания. Она возникла как результат осознания человеком самого себя. Само название этой науки – психология (psyche – душа, logos – учение) указывает, что основное ее предназначение – познание своей души и ее проявлений – воли, восприятия, внимания, памяти и т.д. Нейрофизиология – специальный раздел физиологии, изучающий деятельность нервной системы, возникла намного позже. Практически до второй половины XIX века нейрофизиология развивалась как экспериментальная наука, базирующаяся на изучении животных. Действительно, «низшие» (базовые) проявления деятельности нервной системы одинаковы у животных и человека. К таким функциям нервной системы относятся проведение возбуждения по нервному волокну, переход возбуждения с одной нервной клетки на другую (например, нервную, мышечную, железистую), простые рефлексы (например, сгибания или разгибания конечности), восприятие относительно простых световых, звуковых, тактильных и других раздражителей и многие другие. Только в конце XIX столетия ученые перешли к исследованию некоторых сложных функций дыхания, поддержания в организме постоянства состава крови, тканевой жидкости и некоторых других. При проведении всех этих исследований ученые не находили существенных различий в функционировании нервной системы как в целом, так и ее частей у человека и животных, даже очень примитивных. Например, на заре современной экспериментальной физиологии излюбленным объектом была лягушка. Только с открытием новых методов исследования (в первую очередь электрических проявлений деятельности нервной системы) наступил новый этап в изучении функций головного мозга, когда стало возможным исследовать эти функции, не разрушая мозг, не вмешиваясь в его функционирование, и вместе с тем изучать высшие проявления его деятельности – восприятие сигналов, функции памяти, сознания и многие другие.

Как уже указывалось, психология как наука намного старше, чем физиология, и на протяжении многих веков психологи в своих исследованиях обходились без знаний физиологии. Конечно, это связано прежде всего с тем, что знания, которыми располагала физиология 50–100 лет тому назад, касались только процессов функционирования органов нашего тела (почек, сердца, желудка и др.), но не головного мозга. Представления ученых древности о функционировании головного мозга ограничивались только внешними наблюдениями: они считали, что в головном мозге – три желудочка, и в каждый из них древние врачи «помещали» одну из психических функций (рис. 1).

Перелом в понимании функций головного мозга наступил в XVIII столетии, когда стали изготавливать очень сложные часовые механизмы. Например, музыкальные шкатулки исполняли музыку, куклы танцевали, играли на музыкальных инструментах. Все это приводило ученых к мысли, что наш головной мозг чем-то очень похож на такой механизм. Только в XIX веке окончательно было установлено, что функции головного мозга осуществляются по рефлекторному (reflecto – отражаю) принципу. Однако первые представления о рефлекторном принципе действия нервной системы человека были сформулированы еще в XVIII столетии философом и математиком Рене Декартом. Он полагал, что нервы представляют собой полые трубки, по которым от головного мозга, вместилища души, передаются животные духи к мышцам. На рис. 2 видно, что мальчик обжег ногу, и этот стимул запустил всю цепь реакций: вначале «животный дух» направляется к головному мозгу, отражается от него и по соответствующим нервам (трубкам) направляется к мышцам, раздувая их. Здесь без труда можно увидеть простую аналогию с гидравлическими машинами, которые во времена Р. Декарта были вершиной достижения инженерной мысли. Проведение аналогии между действием искусственных механизмов и деятельностью головного мозга – излюбленный прием при описании функций мозга. Например, наш великий соотечественник И. П. Павлов сравнивал функцию коры больших полушарий головного мозга с телефонным узлом, на котором барышня-телефонистка соединяет абонентов между собой. В наше время головной мозг и его деятельность чаще всего сравнивают с мощным компьютером. Однако любая аналогия весьма условна. Не вызывает сомнений, что головной мозг действительно выполняет огромный объем вычислений, но принцип его деятельности отличен от принципов действия компьютера. Но вернемся к вопросу: зачем психологу знать физиологию головного мозга?

Вспомним идею рефлекса, высказанную еще в XVIII веке Р. Декартом. Собственно зерном этой идеи было признание того, что реакции живых организмов обусловлены внешними раздражениями благодаря деятельности головного мозга, а не «по воле Божьей». В России эта идея была с воодушевлением воспринята научной и литературной общественностью. Вершиной этого был выход в свет знаменитого труда Ивана Михайловича Сеченова «Рефлексы головного мозга» (1863), оставившего глубокий след в мировой культуре. Свидетельством служит тот факт, что в 1965 г., когда исполнилось столетие со дня выхода этой книги в свет, в Москве под патронажем ЮНЕСКО прошла международная конференция, на которой присутствовали многие ведущие нейрофизиологи мира. И. М. Сеченов впервые полно и убедительно доказал, что психическая деятельность человека должна стать объектом изучения физиологами.

И. П. Павлов развил эту мысль в виде «учения о физиологии условных рефлексов».

Ему принадлежит заслуга в создании метода экспериментального исследования «высшего этажа» головного мозга коры – больших полушарий. Этот метод назван «методом условных рефлексов». Он установил фундаментальную закономерность: предъявление животному (И. П. Павлов проводил исследования на собаках, но это верно и для человека) двух стимулов – вначале условного (например, звук зуммера), а затем безусловного (например, подкармливание собаки кусочками мяса). После некоторого числа сочетаний это приводит к тому, что при действии только звука зуммера (условного сигнала) у собаки развивается пищевая реакция (выделяется слюна, собака облизывается, скулит, смотрит в сторону миски), т.е. образовался пищевой условный рефлекс (рис. 3). Собственно этот прием при дрессировке был давно известен, но И. П. Павлов сделал его мощным инструментом научного исследования функций головного мозга.

Физиологические исследования в сочетании с изучением анатомии и морфологии головного мозга привели к однозначному заключению – именно головной мозг является инструментом нашего сознания, мышления, восприятия, памяти и других психических функций.

Основная трудность исследования заключается в том, что психические функции чрезвычайно сложны. Психологи исследуют эти функции своими методами (например, при помощи специальных тестов изучают эмоциональную устойчивость человека, уровень умственного развития и другие свойства психики). Характеристики психики исследуются психологом без «привязки» к мозговым структурам, т.е. психолога интересуют вопросы организации самой психической функции, но не то, как работают отдельные части головного мозга при осуществлении этой функции. Только относительно недавно, несколько десятилетий назад, появились технические возможности для исследования методами физиологии (регистрация биоэлектрической активности головного мозга, исследование распределения тока крови и др., подробнее см. далее) некоторых характеристик психических функций – восприятия, внимания, памяти, сознания и др. Совокупность новых подходов к исследованию головного мозга человека, сфера научных интересов физиологов в области психологии и привели к появлению в пограничной области этих наук новой науки – психофизиологии. Это обусловило взаимопроникновение двух областей знаний – психологии и физиологии. Поэтому физиологу, который исследует функции головного мозга человека, необходимы знания психологии и применение этих знаний в своей практической работе. Но и психолог не может обойтись без регистрации и исследования объективных процессов головного мозга с помощью электроэнцефалограмм, вызванных потенциалов, томографических исследований и пр. Какие же подходы к исследованию физиологии головного мозга человека привели ученых к современной сумме знаний?

Успехи в исследовании мозга человека в настоящее время

В биологии существует принцип, который может быть сформулирован как принцип единства структуры и функции. Например, функция сердца (проталкивать кровь по сосудам нашего организма) полностью определяется строением и желудочков сердца, и клапанов, и прочего. Этот же принцип соблюдается и для головного мозга. Поэтому вопросы морфологии и анатомии головного мозга всегда считались очень важными при изучении деятельности этого сложнейшего органа.

Гиппокамп располагается в медиальной части височной доли. Особое место в системе связей гиппокампа занимает участок новой коры в районе гиппокампа (так называемая энторинальная кора). Этот участок коры получает многочисленные афференты практически от всех областей неокортекса и других отделов головного мозга (миндалины, передних ядер таламуса и др.) и является основным источником афферентов к гиппокампу. Гиппокамп получает также входы от зрительной, обонятельной и слуховой систем. Самой крупной проводящей системой гиппокампа является свод, который связывает гиппокамп с гипоталамусом. Кроме этого, гиппокампы обоих полушарий связаны между собой комиссурой (plasterium).

Повреждение гиппокампа приводит к характерным нарушениям памяти и способности к обучению. В 1887 г. русский психиатр С. С. Корсаков описал грубые расстройства памяти у больных алкоголизмом (синдром Корсакова). Посмертно у них были обнаружены дегенеративные повреждения гиппокампа. Нарушение памяти проявлялось в том, что больной помнил события отдаленного прошлого, в том числе детства, но не помнил о том, что произошло с ним несколько дней или даже минут тому назад. Например, он не мог запомнить своего лечащего врача: если врач выходил из палаты на 5 мин, больной его не узнавал при повторном посещении.

Обширные повреждения гиппокампа у животных характерным образом нарушают протекание условнорефлекторной деятельности. Например, крысу довольно легко научить находить приманку в 8-лучевом лабиринте (лабиринт представляет собой центральную камеру, от которой радиально отходят 8 коридоров) только в каждом втором или четвертом рукаве. Крыса с поврежденным гиппокампом не обучается этому навыку и продолжает обследовать каждый рукав.

Нейрофизиология мотиваций

В организме под влиянием определенной физиологической потребности развивается эмоционально окрашенное состояние - мотивация. Эффективным методом исследования нейрофизиологических механизмов различных мотиваций является метод самостимуляции, предложенный американским ученым Дж. Олдсом (1953).

Крысе в различные участки головного мозга вживляют специальные металлические электроды. Если при случайном нажатии на рычаг животное произведет электрическую стимуляцию собственного мозга через вживленные в различные его участки электроды, то в зависимости от локализации приложения тока наблюдается различный характер поведения. При нахождении электродов в одних структурах мозга животное стремится к повторному раздражению, в других -избегает его, а в третьих-остается безразличным. На рис. 4.12 показана схема эксперимента для получения у крысы реакции самостимуляции. Пункты мозга, охотно стимулируемые животным,-положительные зоны-находятся главным образом в медиальной области головного мозга, простирающейся от ядер миндалины через гипоталамус к покрышке среднего мозга (рис. 4.13). В области покрышки среднего мозга, заднего гипоталамуса (ростральное мамиллярных тел) и перегородки частота самостимуляции, например, у крыс, была наибольшей и достигала 7000 в час. Отдельные животные нажимали на рычаг до полного изнеможения, отказываясь от пищи и воды.

Пункты мозга, связанные с избеганием стимуляции (отрицательные зоны), находились преимущественно в дорсальной части среднего мозга и латеральной части заднего гипоталамуса. В мозге крысы пункты положительной самостимуляции составляют примерно 35%, отрицательные - 5% и нейтральные - 60% (см. рис. 4.13). Обширная система положительного подкрепления включает ряд подсистем, соответствующих основным видам мотиваций - пищевой, половой и др. У отдельных животных голод увеличивает, а насыщение снижает частоту самостимуляции через электроды в гипоталамусе. У самцов после кастрации уменьшается частота самостимуляции определенных точек мозга. Введение тестостерона восстанавливает исходную чувствительность к току. В тех пунктах мозга, где голод повышает частоту самостимуляции, введенные андрогены снижали ее, и наоборот.

Мотивация, вызываемая искусственно, не менее эффективна, чем естественные мотивации, соответствующие основным видам физиологических потребностей, таким, как потребление пищи, воды и пр. Ради «приятной» стимуляции мозга животные даже переносят сильное болевое раздражение, направляясь к рычагу через электрифицированный пол камеры. Вместе с тем вопрос о соответствии механизмов положительного подкрепления при самостимуляции механизмам естественных мотиваций остается дискуссионным. Однако существенно, что при определенной интенсивности тока, пропущенного через пункты самостимуляции, можно вызвать такие реакции, как прием пищи, питье, спаривание, и другие специфические виды поведения. Локализация этих пунктов, как правило, совпадает с центрами, имеющими отношение к контролю различных биологических видов мотиваций. Кроме того, самостимуляция может обеспечивать необходимую мотивацию для обучения животного. Неизвестно, что чувствует животное при самостимуляции. Наблюдения над больными людьми с хронически вживленными в мозг электродами с целью диагностики и лечения показывают, что в ряде случаев у них возникают реакции самостимуляции, которые часто воспринимаются ими как снятие напряжения, облегчение и т.д. Однако у отдельных больных стремление к самостимуляции связано с чувством удовольствия.

Наш организм постоянно подвергается неблагоприятным воздействиям, которые могут иметь физический характер. Например, сильное охлаждение или перегрев тела, потеря крови и различные травмы. Неблагоприятными воздействиями на организм могут быть лишения необходимых потребностей, например голод, жажда. Наконец, эти воздействия могут быть направлены на психику, например утеря близких родственников и друзей, присутствие при насилии и т.д. Оказывается, несмотря на различие таких неблагоприятных воздействий, они вызывают в организме довольно однообразные изменения, которые называются стрессом.

Концепция стресса была сформулирована канадским ученым Гансом Селье в 1936 г. Согласно этим представлениям под влиянием различных вредящих агентов, стрессоров (холод, токсичные вещества в сублетальных дозах, чрезмерная мышечная нагрузка, кровопотеря и т. д.) возникает характерный синдром, который не зависит от природы вызвавшей его причины и называется стрессом. В своем развитии синдром проходит три стадии. В первой - стадии тревоги - в течение 6-48 ч после начала повреждения наблюдается быстрое уменьшение вилочковой железы, селезенки, печени, лимфатических желез, меняется состав крови (исчезают эозинофилы), в слизистой оболочке желудочно-кишечного тракта появляются язвы. Во второй стадии - резистентности (устойчивости) - прекращается секреция из гипоталамуса соматотропного и гонадотропного гормонов, и значительно увеличиваются надпочечники. В зависимости от силы воздействия на этой стадии либо происходит увеличение сопротивляемости организма и восстановление исходного состояния, либо организм теряет сопротивляемость, что приводит к третьей стадии - стадии истощения. Селье рассматривал стресс как генерализованное неспецифическое усилие организма приспособиться к новым условиям и поэтому назвал его (общим адаптационным синдромом).

Стереотипный характер синдрома определяется рядом нервных и нейроэндокринных механизмов. Наиболее типичное проявление синдрома развивается в результате освобождения из гипофиза адренокортикотропного гормона (АКТГ), который действует на надпочечники. Важную роль в развитии проявлений стресса играет соматотропный гормон, ослабляющий эффект АКТГ. Изъязвление слизистой оболочки кишечника и желудка при стрессе имеет чисто нервную природу. Этот симптом можно вызвать в эксперименте на животном хронической механической или электрической стимуляцией переднего гипоталамуса.

Вопросы

1. Функции нервной вегетативной системы.

2. Симпатические и парасимпатические отделы нервной системы: строение рефлекторных дуг, медиаторы, характер действия.

3. Нервный контроль гормональной системы.

4. Основные элементы функциональной системы.

5. Биологические мотивации потребления пищи, воды, ярости, размножения; мозговые механизмы.

Литература

Нейроэндокринология/Под, ред. А. Л. Поленова. СПб., 1993.

Ноздрачев А. Д. Физиология нервной вегетативной системы. М., 1983.

Потемкин В. В. Эндокринология. М., 1986.

Симонов П. В. Лекции о работе головного мозга. М.: ИП РАН, 1998.

Шульговский В. В. Физиология центральной нервной системы. М.: Изд-во Моск. ун-та, 1997.

Лекции по нейрофизиологии

Таким образом, в основе управления произвольными движениями человека лежат два различных физиологических механизма: 1) программное управление по механизму центральных команд и 2) рефлекторное кольцевое регулирование.

ВОПРОСЫ К ЭКЗАМЕНУ ПО КУРСУ «НЕЙРОФИЗИОЛОГИЯ».

Экзамен сдается по билетам. Билет включает три вопроса из разных разделов курса:

Первый вопрос билета – вопрос по общей нейрофизиологии:

1. Предмет и задачи нейрофизиологии

2. Методы исследования в нейрофизиологии.

3. Нейроны - особенности строения, функциональная организация клеточной мембраны

4. Виды и механизмы трансмембранного транспорта. Ионные каналы и калий-натриевый насос.

5. Общие представления о раздражимости и возбудимости.

6. Мембранный потенциал нейрона - потенциал покоя, его природа и механизм возникновения.

7. Потенциал действия, его фазы, основные параметры и свойства.

8. Потенциал действия, механизм его возникновение.

9. Нервные волокна, виды и механизм проведения возбуждения.

10. Законы проведения нервного импульса.

11. Функциональная организация синапсов. Проведение возбуждения по электрическим синапсам.



12. Функциональная организация химических синапсов, механизм проведение возбуждения.

13. Компоненты и виды рефлексов.

14. Понятие и общие свойства нейронных объединений - нервных центров, особенности проведения возбуждения.

15. Распространение возбуждения в ЦНС: дивергенция, конвергенция, суммация, окклюзия, и реверберация.

16. Виды торможения в центральной нервной системе; тормозные нейроны.

17. Функциональная система П.К.Анохина.

Второй вопрос билета - вопрос по частной нейрофизиологии и ВНД:

1. Спинальные рефлексы, взаимодействие рефлексов

2. Функциональная организация продолговатого мозга и моста

3. Функциональная организация среднего мозга

4. Функциональная организация мозжечка

5. Функциональная организация таламуса

6. Функциональная организация гипоталамуса

7. Функциональная организация базальных ганглиев

8. Функциональная организация коры больших полушарий.

9. Общие принципы управления движениями.

10. Общие принципы строения и работы вегетативной нервной системы человека.

11. Функциональная организация лимбической системы. Нейрофизиологические механизмы эмоций.

12. Асимметрия функций коры больших полушарий.

13. Безусловные и условные рефлексы. Принципы выработки условных рефлексов.

14. Торможение условных рефлексов и его виды.

15. Учение И.П. Павлова о типах высшей нервной деятельности.

16. Первая и вторая сигнальные системы. Нейрофизиология речевой функции.

Третий вопрос билета – вопрос по физиологии сенсорных систем:

1. Общий план строения и принцип работы сенсорных систем.

2. Основные способы кодирования сенсорной информации

3. Функциональная организация соматосенсорной системы (кожная чувствительность).

4. Функциональная организация соматосенсорной системы (проприоцептивная чувствительность).

5. Функциональная организация соматосенсорной системы (интероцептивная чувствительность).



6. Функциональная организация слуховой сенсорной системы (периферический отдел анализатора).

7. Функциональная организация слуховой сенсорной системы (центральный отдел анализатора).

8. Функциональная организация вестибулярной системы

9. Функциональная организация зрительной системы (периферический отдел анализатора).

10. Функциональная организация зрительной системы (центральный отдел анализатора).

11. Функциональная организация вкусовой системы.

12. Функциональная организация обонятельной сенсорной системы.

Лекции по нейрофизиологии

Тема 1. Предмет и задачи нейрофизиологии.. 2

Тема 2. Современные методы исследования физиологии головного мозга. 4

Тема 3. Физиология нервной клетки.. 9

Тема 4. Физиология межклеточной передачи. 16

Тема 5. Физиология нейронных систем. Рефлексы. 22

Тема 6. Нейрофизиология спинного мозга. 31

Тема 7. Нейрофизиология ствола мозга. 37

Тема 8. Нейрофизиология мозжечка. 43

Тема 9. Нейрофизиология промежуточного мозга.. 47

Тема 10. Нейрофизиология конечного мозга. 54

ТЕМА 11. НЕЙРОФИЗИОЛОГИЯ ВЕГЕТАТИВНОЙ НЕРВНОЙ СИСТЕМЫ... 65

Тема 12. ОБЩИЕ ПРИНЦИПЫ ОРГАНИЗАЦИИ СЕНСОРНЫХ СИСТЕМ. 69

Тема 13. ФИЗИОЛОГИЯ СОМАТОСЕНСОРНОЙ СИСТЕМЫ... 72

Тема 14. ФИЗИОЛОГИЯ ЗРИТЕЛЬНОЙ СИСТЕМЫ. 81

Тема 15. ФИЗИОЛОГИЯ СЛУХОВОЙ СИСТЕМЫ. 96

Тема 16. ФИЗИОЛОГИЯ ВЕСТИБУЛЯРНОЙ СИСТЕМЫ. 101

Тема 17. ФИЗИОЛОГИЯ ВКУСОВОЙ СИСТЕМЫ. 104

Тема 18. ФИЗИОЛОГИЯ ОБОНЯТЕЛЬНОЙ СИСТЕМЫ. 107

Тема 19. Общие принципы управления движениями.. 112

Тема 20. Спинальная организация двигательной функции. 117

Тема 21. Управление движениями. Роль головного мозга. 120

Тема 22. Характеристика и свойства условных рефлексов. 127

Тема 23. Типы высшей нервной деятельности. 131

Тема 24. Первая и вторая сигнальные системы. Нейрофизиология речевой функции. 134

Тема 19. Регуляция эмоционального поведения. 139

ВОПРОСЫ К ЭКЗАМЕНУ ПО КУРСУ «НЕЙРОФИЗИОЛОГИЯ». 143

Тема 1. Предмет и задачи нейрофизиологии

Нейрофизиология - специальный раздел физиологии, изучающий деятельность нервной системы и её структурно-функциональных единиц - нейронов. Она имеет связь с другими науками, такими как нейробиология, психология, неврология и другие. Все эти науки имеют общий предмет исследования – головной мозг, только отличие нейрофизиологии в том, что она занимается теоретической разработкой всей неврологии.

Представления о рефлекторном принципе функционирования нервной системы были выдвинуты ещё в XVII веке Р. Декартом, а в XVIII веке и Й. Прохаской, однако нейрофизиология как наука начала развиваться лишь в первой половине XIX века, когда для изучения нервной системы стали применять экспериментальные методы. Предшествием возникновения нейрофизиологии стало накопления знаний об анатомии и гистологии нервной системы, а решающим толчком – открытие структурной единицы мозга – нейрона. В начале XIX века Ч. Белл (1811) и Ф. Мажанди (1822) независимо друг от друга установили, что после перерезки задних спинномозговых корешков исчезает чувствительность, а после перерезки передних - движения (т. е. задние корешки передают нервные импульсы к мозгу, а передние - от мозга). Вслед за тем стали широко пользоваться перерезками и разрушениями различных структур мозга, а затем и искусственным их раздражением для определения локализации той или иной функции в нервной системе. До второй половины XIX века нейрофизиология развивалась как экспериментальная наука, базирующаяся на изучении животных. Действительно, «низшие» (базовые) проявления деятельности нервной системы одинаковы у животных и человека. К таким функциям нервной системы относятся проведение возбуждения по нервному волокну, переход возбуждения с одной нервной клетки на другую (например, нервную, мышечную, железистую), простые рефлексы (например, сгибания или разгибания конечности), восприятие относительно простых световых, звуковых, тактильных и других раздражителей и многие другие. При проведении всех этих исследований ученые не находили существенных различий в функционировании нервной системы как в целом, так и ее частей у человека и животных, даже очень примитивных. Например, на заре современной экспериментальной физиологии излюбленным объектом была лягушка.

Следующим этапом развития нейрофизиологии стало открытие И.М. Сеченовым в 1863 году центрального торможения - явления, когда раздражение определённого центра нервной системы вызывает не возбуждение, а подавление деятельности. Как было показано впоследствии, взаимодействие возбуждения и торможения лежит в основе всех видов нервной активности.

С наступлением XX века были получены подробные сведения о функциональном значении различных отделов нервной системы и основных закономерностях их рефлекторной деятельности. Ф.В. Овсянников определил роль ствола головного мозга и его влияние на сердечно-сосудистую деятельность и дыхания, а Л. Лючиани – роль мозжечка. Изучать функции коры головного мозга начали несколько позднее, наиболее обширное исследование было произведено И.П. Павловым, который открыл условные рефлексы . Ему принадлежит заслуга в создании метода экспериментального исследования «высшего этажа» головного мозга - коры больших полушарий. Этот метод назван «методом условных рефлексов».

Позднее был изучен механизм деятельности нервных клеток, а также механизмы торможения и возбуждения. Так, российский ученый Н.Е. Введенский использовал для этого обычный телефонный аппарат, а А.Ф. Самойлов - струнный гальванометр.

Только с открытием новых методов исследования (в первую очередь электроэнцефалографии) наступил новый этап в изучении функций головного мозга, когда стало возможным исследовать эти функции, не разрушая мозг, не вмешиваясь в его функционирование. Появилась возможность изучать высшие проявления деятельности мозга - восприятие сигналов, функции памяти, сознания и многие другие.

В современной нейрофизиологии одной из основных проблем является изучение интегративной деятельности нервной системы. Среди значительных достижений нейрофизиологии может быть отмечено открытие и подробное выяснение восходящих и нисходящих активирующих и тормозящих влияний ретикулярной формации мозгового ствола, определение лимбической системы переднего мозга как одного из высших центров объединения соматических и висцеральных функций, раскрытие механизмов высшей интеграции нервных и эндокринных регуляторных механизмов в гипоталамусе и др. Одновременно развивается детальное изучение клеточных механизмов деятельности нервной системы, при котором широко применяется микроэлектродная техника, позволяющая отводить электрические реакции от отдельных нервных клеток центральной нервной системы. Микроэлектроды могут быть введены даже внутрь нейрона, продолжающего при этом некоторое время нормально функционировать. Такими методами получены сведения о том, как развиваются процессы возбуждения и торможения в различных типах нейронов, каковы внутриклеточные механизмы этих процессов, как осуществляется переход активности от одной клетки на другую. Параллельно с этим для изучения нервной системы начали применять электронную микроскопию, с помощью которой получены подробные картины ультраструктуры центральных нейронов и межнейронных связей. Указанные технические достижения позволили нейрофизиологам перейти к прямому изучению способов кодирования и передачи информации в нервной системы, а также к разработке методов активного вмешательства в деятельность нервных клеток с помощью различных физических и химических средств.

В последнее время активно ведутся работы по моделированию отдельных нейронов и нервных сетей, базирующиеся на сведениях, полученных в прямых экспериментах на нервной системы. Современная нейрофизиология тесно смыкается с такими дисциплинами, такими как нейрокибернетика, нейрохимия , нейробионика и др.

Совокупность новых подходов к исследованию головного мозга человека, сфера научных интересов физиологов в области психологии и привели к появлению в пограничной области этих наук новой науки - психофизиологии. Это обусловило взаимопроникновение двух областей знаний - психологии и физиологии. Физиологу, который исследует функции головного мозга человека, необходимы знания психологии и применение этих знаний в своей практической работе. Но и психолог часто не может обойтись без регистрации и исследования объективных процессов головного мозга.

Психология как наука намного старше физиологии, и на протяжении многих веков психологи в своих исследованиях обходились без знаний физиологии. Конечно, это связано прежде всего с тем, что знания, которыми располагала физиология 50-100 лет тому назад, касались только процессов функционирования органов нашего тела (почек, сердца, желудка и др.), но не головного мозга. Представления ученых древности о функционировании головного мозга ограничивались только внешними наблюдениями: они считали, что в головном мозге - три желудочка, и в каждый из них древние врачи «помещали» одну из психических функций

Рене Декарт полагал, что нервы представляют собой полые трубки, по которым от головного мозга, вместилища души, передаются животные духи к мышцам. Если обожжем ногу, то этот стимул запустит цепь реакций: вначале «животный дух» направляется к головному мозгу, отражается от него и по соответствующим нервам (трубкам) направляется к мышцам, раздувая их. Здесь без труда можно увидеть простую аналогию с гидравлическими машинами, которые во времена Р. Декарта были вершиной достижения инженерной мысли. Перелом в понимании функций головного мозга наступил в XVIII столетии, когда стали изготавливать очень сложные часовые механизмы. Например, музыкальные шкатулки исполняли музыку, куклы танцевали, играли на музыкальных инструментах. Все это приводило ученых к мысли, что наш головной мозг чем-то очень похож на такой механизм. Проведение аналогии между действием искусственных механизмов и деятельностью головного мозга - излюбленный прием при описании функций мозга. Например, наш великий соотечественник И. П. Павлов сравнивал функцию коры больших полушарий головного мозга с телефонным узлом, на котором барышня-телефонистка соединяет абонентов между собой. В наше время головной мозг и его деятельность чаще всего сравнивают с мощным компьютером. Однако любая аналогия весьма условна. Не вызывает сомнений, что головной мозг действительно выполняет огромный объем вычислений, но принцип его деятельности отличен от принципов действия компьютера.

Физиологические исследования в сочетании с изучением анатомии и морфологии головного мозга привели к однозначному заключению – именно головной мозг является инструментом нашего сознания, мышления, восприятия, памяти и других психических функций. Основная трудность исследования заключается в том, что психические функции чрезвычайно сложны. Психологи исследуют эти функции своими методами (например, при помощи специальных тестов изучают эмоциональную устойчивость человека, уровень умственного развития и другие свойства психики). Характеристики психики исследуются психологом без «привязки» к мозговым структурам, т. е. психолога интересуют вопросы организации самой психической функции, но не то, как работают отдельные части головного мозга при осуществлении этой функции.

Только относительно недавно, несколько десятилетий назад, с появлением технических возможности для исследования методами физиологии (регистрация биоэлектрической активности головного мозга, исследование распределения тока крови и др.) появилась возможность изучать механизмы психических функций - восприятия, внимания, памяти, сознания и др. В настоящее время психологи все чаще прибегают к регистрации и исследованию объективных процессов головного мозга с помощью электроэнцефалограмм, вызванных потенциалов, томографических исследований и пр.

Loading...Loading...