Изображение чисел на прямой. Модуль действительного числа, его геометрический смысл

ДЕЙСТВИТЕЛЬНЫЕ ЧИСЛА II

§ 44 Геометрическое изображение действительных чисел

Геометрически действительные числа, так же как и рациональные числа, изображаются точками прямой.

Пусть l - произвольная прямая, а О - некоторая ее точка (рис. 58). Каждому положительному действительному числу α поставим в соответствие точку А, лежащую справа от О на расстоянии в α единиц длины.

Если, например, α = 2,1356..., то

2 < α < 3
2,1 < α < 2,2
2,13 < α < 2,14

и т. д. Очевидно, что точка А в этом случае должна находиться на прямой l правее точек, соответствующих числам

2; 2,1; 2,13; ... ,

но левее точек, соответствующих числам

3; 2,2; 2,14; ... .

Можно показать, что эти условия определяют на прямой l единственную точку А, которую мы и рассматриваем как геометрический образ действительного числа α = 2,1356... .

Аналогично, каждому отрицательному действительному числу β поставим в соответствие точку В, лежащую слева от О на расстоянии в | β | единиц длины. Наконец, числу «нуль» поставим в соответствие точку О.

Так, число 1 изобразится на прямой l точкой А, находящейся справа от О на расстоянии в одну единицу длины (рис. 59), число - √2 - точкой В, лежащей слева от О на расстоянии в √2 единиц длины, и т. д.

Покажем, как на прямой l с помощью циркуля и линейки можно отыскать точки, соответствующие действительным числам √2 , √3 , √4 , √5 и т. д. Для этого прежде всего покажем, как можно построить отрезки, длины которых выражаются этими числами. Пусть АВ есть отрезок, принятый за единицу длины (рис. 60).

В точке А восставим к этому отрезку перпендикуляр и отложим на нем отрезок АС, равный отрезку АВ. Тогда, применяя теорему Пифагора к прямоугольному треугольнику ABC, получим; ВС = √АВ 2 + АС 2 = √1+1 = √2

Следовательно, отрезок ВС имеет длину √2 . Теперь восставим перпендикуляр к отрезку ВС в точке С и выберем на нем точку D так, чтобы отрезок CD был равен единице длины АВ. Тогда из прямоугольною треугольника BCD найдем:

ВD = √ВC 2 + СD 2 = √2+1 = √3

Следовательно, отрезок BD имеет длину √3 . Продолжая описанный процесс дальше, мы могли бы получить отрезки BE, BF, ..., длины которых выражаются числами √4 , √5 и т. д.

Теперь на прямой l легко найти те точки, которые служат геометрическим изображением чисел √2 , √3 , √4 , √5 и т. д.

Откладывая, например, справа от точки О отрезок ВС (рис. 61), мы получим точку С, которая служит геометрическим изображением числа √2 . Точно так же, откладывая справа от точки О отрезок BD, мы получим точку D", которая является геометрическим образом числа √3 , и т. д.

Не следует, однако, думать, что с помощью циркуля и линейки на числовой прямой l можно найти точку, соответствующую любому заданному действительному числу. Доказано, например, что, имея в своем распоряжении только циркуль и линейку, нельзя построить отрезок, длина которого выражается числом π = 3,14 ... . Поэтому на числовой прямой l с помощью таких построений нельзя указать точку, соответствующую этому числу Тем не менее такая точка существует.

Итак, каждому действительному числу α можно поставить в соответствие некоторую вполне определенную точку прямой l . Эта точка будет отстоять от начальной точки О на расстоянии в | α | единиц длины и находиться справа от О, если α > 0, и слева от О, если α < 0. Очевидно, что при этом двум неравным действительным числам будут соответствовать две различные точки прямой l . В самом деле, пусть числу α соответствует точка А, а числу β - точка В. Тогда, если α > β , то А будет находиться правее В (рис. 62, а); если же α < β , то А будет лежать левее В (рис. 62,б).

Говоря в § 37 о геометрическом изображении рациональных чисел, мы поставили вопрос: любую ли точку прямой можно рассматривать как геометрический образ некоторого рационального числа? Тогда мы не могли дать ответ на этот вопрос; теперь же мы можем ответить на него вполне определенно. На прямой есть точки, которые служат геометрическим изображением иррациональных чисел (например, √2 ). Поэтому не всякая точка прямой изображает рациональное число. Но в таком случае напрашивается другой вопрос: любую ли точку числовой прямой можно рассматривать как геометрический образ некоторого действительного числа? Этот вопрос решается уже положительно.

В самом деле, пусть А - произвольная точка прямой l , лежащая справа от О (рис. 63).

Длина отрезка ОА выражается некоторым положительным действительным числом α (см § 41). Поэтому точка А является геометрическим образом числа α . Аналогично устанавливается, что каждая точка В, лежащая слева от О, может рассматриваться как геометрический образ отрицательного действительного числа - β , где β - длина отрезка ВО. Наконец, точка О служит геометрическим изображением числа нуль. Понятно, что две различные точки прямой l не могут быть геометрическим образом одного и того же действительного числа.

В силу изложенных выше причин прямая, на которой указана в качестве «начальной» некоторая точка О (при заданной единице длины), называется числовой прямой .

Вывод. Множество всех действительных чисел и множество всех точек числовой прямой находятся во взаимно однозначном соответствии.

Это означает, что каждому действительному числу соответствует одна, вполне определенная точка числовой прямой и, наоборот, каждой точке числовой прямой при таком соответствии отвечает одно, вполне определенное действительное число.

Упражнения

320. Выяснить, какая из двух точек находится на числовой прямой левее и какая правее, если эти точки соответствуют числам:

а) 1,454545... и 1,455454...; в) 0 и - 1,56673...;

б) - 12,0003... и - 12,0002...; г) 13,24... и 13,00....

321. Выяснить, какая из двух точек находится на числовой прямой дальше от начальной точки О, если эти точки соответствуют числам:

а) 5,2397... и 4,4996...; .. в) -0,3567... и 0,3557... .

г) - 15,0001 и - 15,1000...;

322. В этом параграфе было показано, что для построения отрезка длиной в √n с помощью циркуля и линейки можно поступить следующим образом: сначала построить отрезок длиной √2 , затем отрезок длиной √3 и т. д., пока не дойдем до отрезка длиной √n . Но при каждом фиксированном п > 3 этот процесс можно ускорить. Как бы, например, вы стали строить отрезок длиной √10 ?

323*. Как с помощью циркуля и линейки найти на числовой прямой точку, соответствующую числу 1 / α , если положение точки, соответствующей числу α , известно?

Числовая прямая, числовая ось, - это прямая на которой изображаются действительные числа. На прямой выбирают начало отсчета – точку О (точка О изображает 0) и точку L, изображающую единицу. Точка L обычно стоит справа от точки О. Отрезок ОL называют единичным отрезком.

Точки, стоящие справа от точки О изображают положительные числа. Точки стоящие слева от точки. О, изображают отрицательные числа. Если точка Х изображает положительное число х, то расстояние ОХ = х. Если точка Х изображает отрицательное число х, то расстояние ОХ = - х.

Число, показывающее положение точки на прямой, называется координатой этой точки.

Точка V изображенная на рисунке имеет координату 2, а точка H имеет координату -2,6.

Модулем действительного числа называется расстояние от начала отсчета до точки, соответствующей этому числу. Обозначают модуль числа х, так: | х |. Очевидно, что | 0 | = 0.

Если число х больше 0, то | х | = х, а если х меньше 0, то | х | = - х. На этих свойствах модуля, основано решение многих уравнений и неравенств с модулем.

Пример: Решить уравнение | х – 3 | = 1.

Решение: Рассмотрим два случая – первый случай, когда х -3 > 0, и второй случай, когда х - 3 0.

1. х - 3 > 0, х > 3.

В этом случае | х – 3 | = х – 3.

Уравнение принимает вид х – 3 = 1, х = 4. 4 > 3 – удовлетворят первому условию.

2. х -3 0, х 3.

В этом случае | х – 3 | = - х + 3

Уравнение принимает вид х + 3 = 1, х = - 2. -2 3 – удовлетворят второму условию.

Ответ: х = 4, х = -2.

Числовые выражения.

Числовое выражение – это совокупность одного или нескольких чисел и функций, соединенных знаками арифметических операций и скобками.
Примеры числовых выражений:

Значением числового выражения является число.
Операции в числовом выражении выполняются в следующей последовательности:

1. Действия в скобках.

2. Вычисление функций.

3. Возведение в степень

4. Умножение и деление.

5. Сложение и вычитание.

6. Однотипные операции выполняются слева на право.

Так значением первого выражения будет само число 12,3
Для того чтобы вычислить значение второго выражения, действия будем выполнять в следующей последовательности:



1. Выполним действия в скобках в следующей последовательности - сначала 2 возведем в третью степень, затем от полученного числа отнимем 11:

3 4 + (23 - 11) = 3 4 + (8 - 11) = 3 4 + (-3)

2. Умножим 3 на 4:

3 4 + (-3) = 12 + (-3)

3. Выполним последовательно операции слева направо:

12 + (-3) = 9.
Выражение с переменными – это совокупность одного или нескольких чисел, переменных и функций, соединенных знаками арифметических операций и скобками. Значения выражений с переменными зависят от значений, входящих в него переменных. Последовательность выполнения операций здесь та же, что и для числовых выражений. Выражения с переменными иногда бывает полезно упрощать, выполняя различные действия – вынесение за скобки, раскрытие скобок, группировки, сокращение дробей, приведение подобных и т.д. Так же для упрощения выражений часто используют различные формулы, например, формулы сокращенного умножения, свойства различных функций и т. д.

Алгебраические выражения .

Алгебраическим выражением называется одна или несколько алгебраических величин (чисел и букв), соединенных между собой знаками алгебраических действий: сложения, вычитания, умножения и деления, а также извлечения корня и возведения в целую степень (причём показатели корня и степени должны обязательно быть целыми числами) и знаками последовательности этих действий (обычно скобками различного вида). Количество величин, входящих в алгебраическое выражение должно быть конечным.

Пример алгебраического выражения:

«Алгебраическое выражение» - понятие синтаксическое, то есть нечто является алгебраическим выражением тогда и только тогда, когда подчиняется некоторым грамматическим правилам (см. Формальная грамматика). Если же буквы в алгебраическом выражении считать переменными, то алгебраическое выражение обретает смысл алгебраической функции.


Из огромного многообразия всевозможных множеств особый интерес представляют так называемые числовые множества , то есть, множества, элементами которых являются числа. Понятно, что для комфортной работы с ними нужно уметь их записывать. С обозначений и принципов записи числовых множеств мы и начнем эту статью. А дальше рассмотрим, как числовые множества изображаются на координатной прямой.

Навигация по странице.

Запись числовых множеств

Начнем с принятых обозначений. Как известно, для обозначения множеств используются заглавные буквы латинского алфавита. Числовые множества, как частный случай множеств, обозначаются также. Например, можно говорить о числовых множествах A , H , W и т.п. Особую важность имеют множества натуральных, целых, рациональных, действительных, комплексных чисел и т.п., для них были приняты свои обозначения:

  • N – множество всех натуральных чисел;
  • Z – множество целых чисел;
  • Q – множество рациональных чисел;
  • J – множество иррациональных чисел;
  • R – множество действительных чисел;
  • C – множество комплексных чисел.

Отсюда понятно, что не стоит обозначать множество, состоящее, к примеру, из двух чисел 5 и −7 как Q , это обозначение будет вводить в заблуждение, так как буквой Q обычно обозначают множество всех рациональных чисел. Для обозначения указанного числового множества лучше использовать какую-нибудь другую «нейтральную» букву, например, A .

Раз уж мы заговорили про обозначения, то здесь напомним и про обозначение пустого множества, то есть множества, не содержащего элементов. Его обозначают знаком ∅.

Также напомним про обозначение принадлежности и непринадлежности элемента множеству. Для этого используют знаки ∈ - принадлежит и ∉ - не принадлежит. Например, запись 5∈N означает, что число 5 принадлежит множеству натуральных чисел, а 5,7∉Z – десятичная дробь 5,7 не принадлежит множеству целых чисел.

И еще напомним про обозначения, принятые для включения одного множества в другое. Понятно, что все элементы множества N входят в множество Z , таким образом, числовое множество N включено в Z , это обозначается как N⊂Z . Также можно использовать запись Z⊃N , которая означает, что множество всех целых чисел Z включает множество N . Отношения не включено и не включает обозначаются соответственно знаками ⊄ и ⊅. Также используются знаки нестрогого включения вида ⊆ и ⊇, означающие соответственно включено или совпадает и включает или совпадает.

Про обозначения поговорили, переходим к описанию числовых множеств. При этом затронем лишь основные случаи, которые наиболее часто используются на практике.

Начнем с числовых множеств, содержащих конечное и небольшое количество элементов. Числовые множества, состоящие из конечного числа элементов, удобно описывать, перечисляя все их элементы. Все элементы-числа записываются через запятую и заключаются в , что согласуется с общими правилами описания множеств . Например, множество, состоящее из трех чисел 0 , −0,25 и 4/7 можно описать как {0, −0,25, 4/7} .

Иногда, когда число элементов числового множества достаточно велико, но элементы подчиняются некоторой закономерности, для описания используют многоточие. Например, множество всех нечетных чисел от 3 до 99 включительно можно записать как {3, 5, 7, …, 99} .

Так мы плавно подошли к описанию числовых множеств, число элементов которых бесконечно. Иногда их можно описать, используя все тоже многоточие. Для примера опишем множество всех натуральных чисел: N={1, 2. 3, …} .

Также пользуются описанием числовых множеств посредством указания свойств его элементов. При этом применяют обозначение {x| свойства} . Например, запись {n| 8·n+3, n∈N} задает множество таких натуральных чисел, которые при делении на 8 дают остаток 3 . Это же множество можно описать как {11,19, 27, …} .

В частных случаях числовые множества с бесконечным числом элементов представляют собой известные множества N , Z , R , и т.п. или числовые промежутки. А в основном числовые множества представляются как объединение составляющих их отдельных числовых промежутков и числовых множеств с конечным числом элементов (о которых мы говорили чуть выше).

Покажем пример. Пусть числовое множество составляют числа −10 , −9 , −8,56 , 0 , все числа отрезка [−5, −1,3] и числа открытого числового луча (7, +∞) . В силу определения объединения множеств указанное числовое множество можно записать как {−10, −9, −8,56}∪[−5, −1,3]∪{0}∪(7, +∞) . Такая запись фактически означает множество, содержащее в себе все элементы множеств {−10, −9, −8,56, 0} , [−5, −1,3] и (7, +∞) .

Аналогично, объединяя различные числовые промежутки и множества отдельных чисел, можно описать любое числовое множество (состоящее из действительных чисел). Здесь становится понятно, почему были введены такие виды числовых промежутков как интервал, полуинтервал, отрезок, открытый числовой луч и числовой луч: все они в купе с обозначениями множеств отдельных чисел позволяют описывать любые числовых множества через их объединение.

Обратите внимание, что при записи числового множества составляющие его числа и числовые промежутки упорядочиваются по возрастанию. Это не обязательное, но желательное условие, так как упорядоченное числовое множество проще представить и изобразить на координатной прямой. Также отметим, что в подобных записях не используются числовые промежутки с общими элементами, так как такие записи можно заменить объединением числовых промежутков без общих элементов. Например, объединение числовых множеств с общими элементами [−10, 0] и (−5, 3) есть полуинтервал [−10, 3) . Это же относится и к объединению числовых промежутков с одинаковыми граничными числами, например, объединение (3, 5]∪(5, 7] представляет собой множество (3, 7] , на этом мы отдельно остановимся, когда будем учиться находить пересечение и объединение числовых множеств .

Изображение числовых множеств на координатной прямой

На практике удобно пользоваться геометрическими образами числовых множеств – их изображениями на . Например, при решении неравенств , в которых необходимо учитывать ОДЗ, приходится изображать числовые множества, чтобы найти их пересечение и/или объединение. Так что полезно будет хорошо разобраться со всеми нюансами изображения числовых множеств на координатной прямой.

Известно, что между точками координатной прямой и действительными числами существует взаимно однозначное соответствие, что означает, что сама координатная прямая представляет собой геометрическую модель множества всех действительных чисел R . Таким образом, чтобы изобразить множество всех действительных чисел, надо начертить координатную прямую со штриховкой на всем ее протяжении:

А часто даже не указывают начало отсчета и единичный отрезок:

Теперь поговорим про изображение числовых множеств, представляющих собой некоторое конечное число отдельных чисел. Для примера, изобразим числовое множество {−2, −0,5, 1,2} . Геометрическим образом данного множества, состоящего из трех чисел −2 , −0,5 и 1,2 будут три точки координатной прямой с соответствующими координатами:

Отметим, что обычно для нужд практики нет необходимости выполнять чертеж точно. Часто достаточно схематического чертежа, что подразумевает необязательное выдерживание масштаба, при этом важно лишь сохранять взаимное расположение точек относительно друг друга: любая точка с меньшей координатой должна быть левее точки с большей координатой. Предыдущий чертеж схематически будет выглядеть так:

Отдельно из всевозможных числовых множеств выделяют числовые промежутки (интервалы, полуинтервалы, лучи и т.д.), что представляют их геометрические образы, мы подробно разобрались в разделе . Здесь не будем повторяться.

И остается остановиться лишь на изображении числовых множеств, представляющих собой объединение нескольких числовых промежутков и множеств, состоящих из отдельных чисел. Здесь нет ничего хитрого: по смыслу объединения в этих случаях на координатной прямой нужно изобразить все составляющие множества данного числового множества. В качестве примера покажем изображение числового множества (−∞, −15)∪{−10}∪[−3,1)∪ {log 2 5, 5}∪(17, +∞) :

И остановимся еще на достаточно распространенных случаях, когда изображаемое числовое множество представляет собой все множество действительных чисел, за исключением одной или нескольких точек. Такие множества частенько задаются условиями типа x≠5 или x≠−1 , x≠2 , x≠3,7 и т.п. В этих случаях геометрически они представляют собой всю координатную прямую, за исключением соответствующих точек. Иными словами, из координатной прямой нужно «выколоть» эти точки. Их изображают кружочками с пустым центром. Для наглядности изобразим числовое множество, соответствующее условиям (это множество по сути есть ):

Подведем итог. В идеале информация предыдущих пунктов должна сформировать такой же взгляд на запись и изображение числовых множеств, как и взгляд на отдельные числовые промежутки: запись числового множества сразу должна давать его образ на координатной прямой, а по изображению на координатной прямой мы должны быть готовы с легкостью описать соответствующее числовое множество через объединение отдельных промежутков и множеств, состоящих из отдельных чисел.

Список литературы.

  • Алгебра: учеб. для 8 кл. общеобразоват. учреждений / [Ю. Н. Макарычев, Н. Г. Миндюк, К. И. Нешков, С. Б. Суворова]; под ред. С. А. Теляковского. - 16-е изд. - М. : Просвещение, 2008. - 271 с. : ил. - ISBN 978-5-09-019243-9.
  • Мордкович А. Г. Алгебра. 9 класс. В 2 ч. Ч. 1. Учебник для учащихся общеобразовательных учреждений / А. Г. Мордкович, П. В. Семенов. - 13-е изд., стер. - М.: Мнемозина, 2011. - 222 с.: ил. ISBN 978-5-346-01752-3.

Форми зображення чисел

У цифрових пристроях використовуються дві форми зображення чисел: з фіксованою і плаваючою комою .

У попередньому параграфі розглядались лише цілі позитивні числа. Формула (1.14) дає можливість зображати двійкові числа з цілою та дробовою частиною та з фіксованою комою. Знак двійкового числа з фіксованою комою задається допоміжним розрядом, який встановлюється перед числовими. Для додатних чисел значення допоміжного розряду рівне “0 ”, для від’ємних – “1 ”.

У табл. 1.3 приводяться три варіанти кодування додатних і від’ємних чисел чотирьохрозрядним двійковим кодом.

Taблиця 1.3.

У першому варіанті, як витікає з таблиці, у кодовій двійковій послідовності мають місце додатній і від’ємний нулі, що призводить до появи проблем при виконанні арифметичних операцій.

Представлення від’ємних чисел у зворотному коді також не вирішує відміченої проблеми. Вона вирішується лише тоді, коли від’ємні числа представляються у додатковому коді , який обчислюється за формулою:

На рис. 1.12 приведена графічна інтерпретація зображення позитивних і негативних чисел відносно нуля з використанням прямого та доповнюючого кодів. Як буде показано пізніше, така форма представлення десяткових чисел суттєво спрощує виконання арифметичних операцій.

Приклад 1.10. Знайти доповнюючі коди десятковим числам: 0 10 , 17 10 , -127 10 .

Розв’язання. Знаходимо двійкові еквіваленти заданих чисел:

0 10 = 00000000 2 ; 17 10 = 00010001 2 ; -127 10 = 10000001 2 .

Знаходимо коди, зворотні двійковим – відповідно: 11111111; 11101110; 01111110.

Знаходимо доповнюючі коди заданих чисел: 11111111 + 1 = 100000000 2 = 0 10 ;

11101110 + 1 = 11101111 2 = -17 10 ; 01111110 + 1 = 01111111 2 = 127 10 .

Тепер пояснимо суть запису чисел з фіксованою комою. Будь-яке число в цифрових системах зберігається спеціальними пристроями пам’яті, кожен рядок якого складаються з фіксованої кількості елементів. Кома, що відділяє в числі цілу частину від дробової, займає в рядку пам’яті фіксоване положення – перед старшим розрядом або після молодшого.

У першому випадку абсолютне значення числа менше одиниці – наприклад, 0,110101 2 .Якщо рядок пам’яті призначений для десяти розрядів, то число в ньому запишеться так, як показано на рис. 1.13, де крайній лівий розряд відображає знак числа, а решта – розряди модуля. Вільні молодші розряди заповнюються нулями. Оскільки в розгляданому випадку в рядку пам’яті передбачається запис лише дробової частини числа, то і результати всіх операцій повинні бути з абсолютним значенням, меншим одиниці. Виконання цієї умови забезпечується вибором відповідних масштабних коефіцієнтів, на які помножуються вихідні дані. Якщо масштабний коефіцієнт вибраний невірно, то може з’явитись переповнення розрядів і поява цілої частини, яка буде втрачена, оскільки в розрядній сітці не передбачена її поява. Все це приведе до похибки в результаті, що є недоліком такого способу.

У другому випадку, коли кома фіксується після молодшого розряду, маємо справу з цілими числами. Тоді, наприклад, число 10011 2 в рядку пам’яті розміщується в відповідності з рис. 1.14, де лівий розряд знаковий, а слідуючі за ним справа вільні розряди заповнюються нулями. В цьому випадку величина модуля є обмеженою довжиною рядку пам’яті.

Числа з плаваючою комою передбачають зображення числа з використанням мантиси, що помножається на основу системи числення у ступені, який задається порядком. Наприклад, число 200 записується у вигляді 0,2 × 10 3 , а число 0,000312 – як 0,312 × 10 -3 . Відповідно записуються і двійкові числа. Мантиса і порядок зображаються у двійковому коді, а основою є двійка. Наприклад, число 0,111 × 2 10 = 11.10 2 в десятковій системі зображається як 0,875 × 2 2 = 3,5 10 . В рядку пам’яті такі числа зберігаються у вигляді двох груп цифр: перша група – мантиса – визначає саме число, друга - порядок – місце коми в числі (рис. 1.15).

У нульовому елементі рядка пам’яті зображається знак числа (для приведеного вище двійкового числа, що записане у рядок пам’яті - “0 ”). Далі задаються вісім розрядів самого числа (стовпці 1…8). Якщо воно задається меншою кількістю розрядів, то вільні елементи пам’яті справа від числа заповнюються нулями. У дев’ятому розряді зображається знак порядку, а в решті, за аналогією з мантисою, – число, що визначає порядок. При використанні такої форми запису величина числа порядку задається так, щоб перша значуща цифра мантиси не дорівнювала “0 ”. Така форма запису називається нормальною .

Мінімальне додатне число, що може бути записане при нормальній формі в рядку пам’яті, визначається мінімальною мантисою 0,1000..0 2 та максимальним від’ємним порядком 111..1 2 . При кількості k розрядів порядку мінімальне десяткове число, що може бути записаним, визначається формулою:

. (1.15)

Максимальне число матимемо при максимальному значенні мантиси (0,111…1) 2 та максимальному додатному порядку (111…1 2) = 2 k – 1, тобто

Діапазон D чисел, представлених в нормальній формі, як витікає з формул (1.15) та (1.16), визначається лише числом k . Наприклад, для k = 6 знаходимо:

; .

Точність запису числа задається кількістю розрядівm мантиси. Якщо кількість розрядів числа перевершує відведену під мантису кількість розрядів, то число округляється до необхідної довжини. Правило округлення двійкових чисел в цьому випадку таке: якщо старший розряд у частині слова, що відкидається, є одиницею, то до молодшого розряду мантиси додається одиниця. При такому округленні абсолютна похибка e зображення мантиси не перевершує половини вагового коефіцієнта молодшого розряду мантиси, що зберігається, тобто:

Враховуючи, що при нормальній формі запису мантиса не може бути меншою 0.5, відносна похибка η:

Наприклад, при m = 24 маємо:

.

У сучасних цифрових системах для зображення чисел з плаваючою комою використовується рядок довжиною чотири байти. При цьому 23 розряди задають мантису, а 7 – величину порядку. Діапазон чисел, що зображуються, складає від ± 2 127 до ± 2 -127 .

Використання чисел з плаваючою комою суттєво розширює і спрощує зображення чисел, але виконання операцій над такими числами більш складне, ніж над числами з фіксованою комою.

Выразительное геометрическое представление системы рациональных чисел может быть получено следующим образом.

Рис. 8. Числовая ось

На некоторой прямой линии, «числовой оси», отметим отрезок от 0 до 1 (рис. 8). Тем самым устанавливается длина единичного отрезка, которая, вообще говоря, может быть выбрана произвольно. Положительные и отрицательные целые числа тогда изображаются совокупностью равноотстоящих точек на числовой оси, именно, положительные числа отмечаются вправо, а отрицательные - влево от точки 0. Чтобы изобразить числа со знаменателем разделим каждый из полученных отрезков единичной длины на равных частей; точки деления будут изображать дроби со знаменателем Если сделаем так для значений соответствующих всем натуральным числам, то каждое рациональное число будет изображено некоторой точкой числовой оси. Эти точки мы условимся называть «рациональными»; вообще термины «рациональное число» и «рациональная точка» будем употреблять как синонимы.

В главе I, § 1 было определено соотношение неравенства для натуральных чисел. На числовой оси это соотношение отражено следующим образом: если натуральное число А меньше, чем натуральное число В, то точка А лежит левее точки В. Так как указанное геометрическое соотношение устанавливается для любой пары рациональных точек, то естественно пытаться обобщить арифметическое отношение неравенства таким образом, чтобы сохранить этот геометрический порядок для рассматриваемых точек. Это удается, если принять следующее определение: говорят, что рациональное число А меньше, чем Рациональное число или что число В больше, чем число если разность положительна. Отсюда следует (при ), что точки (числа) между это те, которые

одновременно Каждая такая пара точек вместе со всеми точками между ними, называется сегментом (или отрезком) и обозначается (а множество одних только промежуточных точек - интервалом (или промежутком), обозначаемым

Расстояние произвольной точки А от начала 0, рассматриваемое как положительное число, называется абсолютным значением А и обозначается символом

Понятие «абсолютное значение» определяется следующим образом: если , то если то Ясно, что если числа имеют один и тот же знак, то справедливо равенство если же имеют разные знаки, то . Соединяя эти два результата вместе, мы приходим к общему неравенству

которое справедливо независимо от знаков

Факт фундаментальной важности выражается следующим предложением: рациональные точки расположены на числовой прямой всюду плотно. Смысл этого утверждения тот, что внутри всякого интервала, как бы он ни был мал, содержатся рациональные точки. Чтобы убедиться в справедливости высказанного утверждения, достаточно взять число настолько большое, что интервал ( будет меньше, чем данный интервал ; тогда по меньшей мере одна из точек вида окажется внутри данного интервала. Итак, не существует такого интервала на числовой оси (даже самого маленького, какой только можно вообразить), внутри которого не было бы рациональных точек. Отсюда вытекает дальнейшее следствие: во всяком интервале содержится бесконечное множество рациональных точек. Действительно, если бы в некотором интервале содержалось лишь конечное число рациональных точек, то внутри интервала, образованного двумя соседними такими точками, рациональных точек уже не было бы, а это противоречит тому, что только что было доказано.

Loading...Loading...