Как округлять числа в большую и меньшую сторону функциями Excel. Легкие правила округления чисел после запятой

Методы

В разных сферах могут применяться различные методы округления. Во всех этих методах «лишние» знаки обнуляют (отбрасывают), а предшествующий им знак корректируется по какому-либо правилу.

  • Округление к ближайшему целому (англ. rounding ) - наиболее часто используемое округление, при котором число округляется до целого, модуль разности с которым у этого числа минимален. В общем случае, когда число в десятичной системе округляют до N-ого знака, правило может быть сформулировано следующим образом:
    • если N+1 знак < 5 , то N-ый знак сохраняют, а N+1 и все последующие обнуляют;
    • если N+1 знак ≥ 5 , то N-ый знак увеличивают на единицу, а N+1 и все последующие обнуляют;
    Например: 11,9 → 12; −0,9 → −1; −1,1 → −1; 2,5 → 3.
  • Округление к меньшему по модулю (округление к нулю, целое англ. fix, truncate, integer ) - самое «простое» округление, поскольку после обнуления «лишних» знаков предшествующий знак сохраняют. Например, 11,9 → 11; −0,9 → 0; −1,1 → −1).
  • Округление к большему (округление к +∞, округление вверх, англ. ceiling ) - если обнуляемые знаки не равны нулю, предшествующий знак увеличивают на единицу, если число положительное, или сохраняют, если число отрицательное. В экономическом жаргоне - округление в пользу продавца , кредитора (лица, получающего деньги). В частности, 2,6 → 3, −2,6 → −2.
  • Округление к меньшему (округление к −∞, округление вниз, англ. floor ) - если обнуляемые знаки не равны нулю, предшествующий знак сохраняют, если число положительное, или увеличивают на единицу, если число отрицательное. В экономическом жаргоне - округление в пользу покупателя , дебитора (лица, отдающего деньги). Здесь 2,6 → 2, −2,6 → −3.
  • Округление к большему по модулю (округление к бесконечности, округление от нуля) - относительно редко используемая форма округления. Если обнуляемые знаки не равны нулю, предшествующий знак увеличивают на единицу.

Варианты округления 0,5 к ближайшему целому

Отдельного описания требуют правила округления для специального случая, когда (N+1)-й знак = 5, а последующие знаки равны нулю . Если во всех остальных случаях округление до ближайшего целого обеспечивает меньшую погрешность округления, то данный частный случай характерен тем, что для однократного округления формально безразлично, производить его «вверх» или «вниз» - в обоих случаях вносится погрешность ровно в 1/2 младшего разряда. Существуют следующие варианты правила округления до ближайшего целого для данного случая:

  • Математическое округление - округление всегда в бо́льшую по модулю сторону (предыдущий разряд всегда увеличивается на единицу).
  • Банковское округление (англ. banker"s rounding ) - округление для этого случая происходит к ближайшему чётному , то есть 2,5 → 2, 3,5 → 4.
  • Случайное округление - округление происходит в меньшую или большую сторону в случайном порядке, но с равной вероятностью (может использоваться в статистике).
  • Чередующееся округление - округление происходит в меньшую или большую сторону поочерёдно.

Во всех вариантах в случае, когда (N+1)-й знак не равен 5 или последующие знаки не равны нулю, округление происходит по обычным правилам: 2,49 → 2; 2,51 → 3.

Математическое округление просто формально соответствует общему правилу округления (см. выше). Его недостатком является то, что при округлении большого числа значений может происходить накопление ошибки округления . Типичный пример: округление до целых рублей денежных сумм. Так, если в реестре из 10000 строк окажется 100 строк с суммами, содержащими в части копеек значение 50 (а это вполне реальная оценка), то при округлении всех таких строк «вверх» сумма «итого» по округлённому реестру окажется на 50 рублей больше точной.

Три остальных варианта как раз и придуманы для того, чтобы уменьшить общую погрешность суммы при округлении большого количества значений. Округление «до ближайшего чётного» исходит из предположения, что при большом числе округляемых значений, имеющих 0,5 в округляемом остатке, в среднем половина окажется слева, а половина - справа от ближайшего чётного, таким образом, ошибки округления взаимно погасятся. Строго говоря, предположение это верно лишь тогда, когда набор округляемых чисел обладает свойствами случайного ряда, что обычно верно в бухгалтерских приложениях, где речь идёт о ценах, суммах на счетах и так далее. Если же предположение будет нарушено, то и округление «до чётного» может приводить к систематическим ошибкам. Для таких случаев лучше работают два следующих метода.

Два последних варианта округления гарантируют, что примерно половина специальных значений будет округлена в одну сторону, половина - в другую. Но реализация таких методов на практике требует дополнительных усилий по организации вычислительного процесса.

Применения

Округление используется для того, чтобы работать с числами в пределах того количества знаков, которое соответствует реальной точности параметров вычислений (если эти значения представляют собой измеренные тем или иным образом реальные величины), реально достижимой точности вычислений либо желаемой точности результата. В прошлом округление промежуточных значений и результата имело прикладное значение (так как при расчётах на бумаге или с помощью примитивных устройств типа абака учёт лишних десятичных знаков может серьёзно увеличить объём работы). Сейчас оно остаётся элементом научной и инженерной культуры. В бухгалтерских приложениях, кроме того, использование округлений, в том числе промежуточных, может требоваться для защиты от вычислительных ошибок, связанных с конечной разрядностью вычислительных устройств.

Использование округлений при работе с числами ограниченной точности

Реальные физические величины всегда измеряются с некоторой конечной точностью, которая зависит от приборов и методов измерения и оценивается максимальным относительным или абсолютным отклонением неизвестного действительного значения от измеренного, что в десятичном представлении значения соответствует либо определённому числу значащих цифр, либо определённой позиции в записи числа, все цифры после (правее) которой являются незначащими (лежат в пределах ошибки измерения). Сами измеренные параметры записываются с таким числом знаков, чтобы все цифры были надёжными, возможно, последняя - сомнительной. Погрешность при математических операциях с числами ограниченной точности сохраняется и изменяется по известным математическим законам, поэтому когда в дальнейших вычислениях возникают промежуточные значения и результаты с больши́м числом цифр, из этих цифр только часть являются значимыми. Остальные цифры, присутствуя в значениях, фактически не отражают никакой физической реальности и лишь отнимают время на вычисления. Вследствие этого промежуточные значения и результаты при вычислениях с ограниченной точностью округляют до того количества знаков, которое отражает реальную точность полученных значений. На практике обычно рекомендуется при длинных «цепочных» ручных вычислениях сохранять в промежуточных значениях на одну цифру больше. При использовании компьютера промежуточные округления в научно-технических приложениях чаще всего теряют смысл, и округляется только результат.

Так, например, если задана сила 5815 гс с точностью до грамма силы и длина плеча 1,4 м с точностью до сантиметра, то момент силы в кгс по формуле , в случае формального расчёта со всеми знаками, окажется равным: 5,815 кгс 1,4 м = 8,141 кгс м . Однако если учесть погрешность измерения, то мы получим, что предельная относительная погрешность первого значения составляет 1/5815 ≈ 1,7 10 −4 , второго - 1/140 ≈ 7,1 10 −3 , относительная погрешность результата по правилу погрешности операции умножения (при умножении приближённых величин относительные погрешности складываются) составит 7,3 10 −3 , что соответствует максимальной абсолютной погрешности результата ±0,059 кгс м! То есть в реальности, с учётом погрешности, результат может составлять от 8,082 до 8,200 кгс м, таким образом, в рассчитанном значении 8,141 кгс м полностью надёжной является только первая цифра, даже вторая - уже сомнительна! Корректным будет округление результата вычислений до первой сомнительной цифры, то есть до десятых: 8,1 кгс м, или, при необходимости более точного указания рамок погрешности, представить его в виде, округлённом до одного-двух знаков после запятой с указанием погрешности: 8,14 ± 0,06 кгс м .

Эмпирические правила арифметики с округлениями

В тех случаях, когда нет необходимости в точном учёте вычислительных погрешностей, а требуется лишь приблизительно оценить количество точных цифр в результате расчёта по формуле, можно пользоваться набором простых правил округлённых вычислений :

  1. Все исходные значения округляются до реальной точности измерений и записываются с соответствующим числом значащих цифр, так, чтобы в десятичной записи все цифры были надёжными (допускается, чтобы последняя цифра была сомнительной). При необходимости значения записываются со значащими правыми нулями, чтобы в записи указывалось реальное число надёжных знаков (например, если длина в 1 м реально измерена с точностью до сантиметров, записывается «1,00 м», чтобы было видно, что в записи надёжны два знака после запятой), или точность явно указывается (например, 2500±5 м - здесь надёжными являются только десятки, до них и следует округлять).
  2. Промежуточные значения округляются с одной «запасной» цифрой.
  3. При сложении и вычитании результат округляется до последнего десятичного знака наименее точного из параметров (например, при вычислении значения 1,00 м + 1,5 м + 0,075 м результат округляется до десятых метра, то есть до 2,6 м). При этом рекомендуется выполнять вычисления в таком порядке, чтобы избегать вычитания близких по величине чисел и производить действия над числами по возможности в порядке возрастания их модулей.
  4. При умножении и делении результат округляется до наименьшего числа значащих цифр, которое имеют параметры (например, при вычислении скорости равномерного движения тела на дистанции 2,5 10 2 м, за 600 с результат должен быть округлён до 4,2 м/с, поскольку именно две цифры имеет расстояние, а время - три, предполагая, что все цифры в записи - значащие).
  5. При вычислении значения функции f(x) требуется оценить значение модуля производной этой функции в окрестности точки вычисления. Если (|f"(x)| ≤ 1) , то результат функции точен до того же десятичного разряда, что и аргумент. В противном случае результат содержит меньше точных десятичных разрядов на величину log 10 (|f"(x)|) , округлённую до целого в большую сторону.

Несмотря на нестрогость, приведённые правила достаточно хорошо работают на практике, в частности, из-за достаточно высокой вероятности взаимопогашения ошибок, которая при точном учёте погрешностей обычно не учитывается.

Ошибки

Довольно часто встречаются злоупотребления некруглыми числами. Например:

  • Записывают числа, имеющие невысокую точность, в неокруглённом виде. В статистике: если 4 человека из 17 ответили «да», то пишут «23,5 %» (в то время как верно «24 %»).
  • Пользователи стрелочных приборов иногда размышляют так: «стрелка остановилась между 5,5 и 6 ближе к 6, пусть будет 5,8» - это также запрещено (градуировка прибора как правило соответствует его реальной точности). В таком случае надо говорить «5,5» или «6».

См. также

  • Обработка наблюдений
  • Ошибки округления

Примечания

Литература

  • Генри С. Уоррен, мл. Глава 3. Округление к степени 2 // Алгоритмические трюки для программистов = Hacker"s Delight. - М .: «Вильямс», 2007. - С. 288. - ISBN 0-201-91465-4

Чтобы рассмотреть особенность округления того или иного числа, необходимо проанализировать конкретные примеры и некоторую основную информацию.

Как округлять числа до сотых

  • Для округления числа до сотых необходимо оставлять после запятой две цифры, остальные, конечно же, отбрасываются. Если первая цифра, которая отбрасывается, это 0, 1, 2, 3 или 4, то предыдущая цифра остается неизменной.
  • Если же отбрасываемая цифра – это 5, 6, 7, 8 или 9, то нужно увеличить предыдущую цифру на единицу.
  • К примеру, если нужно округлить число 75,748 , то после округления мы получаем 75,75 . Если мы имеем 19,912 , то в результате округления, а точнее, в отсутствии необходимости его использования, мы получаем 19,91 . В случае с 19,912 цифра, которая идет после сотых, не округляется, поэтому она просто отбрасывается.
  • Если речь идет о числе 18,4893 , то округление до сотых происходит следующим образом: первая цифра, которую нужно отбросить, это 3, поэтому никаких изменений не происходит. Получается 18,48 .
  • В случае с числом 0,2254 мы имеем первую цифру, которая отбрасывается при округлении до сотых. Это пятерка, которая указывает на то, что предыдущее число нужно увеличить на единицу. То есть, мы получаем 0,23 .
  • Бывают и случаи, когда округления изменяет все цифры в числе. К примеру, чтобы округлить до сотых число 64,9972 , мы видим, что число 7 округляет предыдущие. Получаем 65,00 .

Как округлять числа до целых

При округлении чисел до целых ситуация такая же. Если мы имеем, к примеру, 25,5 , то после округления мы получаем 26 . В случае с достаточным количеством цифр после запятой округление происходит таким образом: после округления 4,371251 мы получаем 4 .

Округление до десятых происходит таким же образом, как и в случае с сотыми. К примеру, если нужно округлить число 45,21618 , то мы получаем 45,2 . Если вторая цифра после десятой – это 5 или больше, то предыдущая цифра увеличивается на единицу. В качестве примера можно округлить 13,6734 , и в итоге получится 13,7 .

Важно обращать внимание на цифру, которая расположена перед той, которая отсекается. К примеру, если мы имеет число 1,450 , то после округления получаем 1,4 . Однако в случае с 4,851 целесообразно округлять до 4,9 , так как после пятерки еще идет единица.

Округление мы часто используем в повседневной жизни. Если расстояние от дома до школы будет 503 метра. Мы можем сказать, округлив значение, что расстояние от дома до школы 500 метров. То есть мы приблизили число 503 к более легко воспринимающемуся числу 500. Например, булка хлеба весит 498 грамм, то можно сказать округлив результат, что булка хлеба весит 500 грамм.

Округление – это приближение числа к более “легкому” числу для восприятия человека.

В итоге округления получается приближенное число. Округление обозначается символом ≈, такой символ читается “приближённо равно”.

Можно записать 503≈500 или 498≈500.

Читается такая запись, как “пятьсот три приближенно равно пятистам” или “четыреста девяносто восемь приближенно равно пятистам”.

Разберем еще пример:

44 71≈4000 45 71≈5000

43 71≈4000 46 71≈5000

42 71≈4000 47 71≈5000

41 71≈4000 48 71≈5000

40 71≈4000 49 71≈5000

В данном примере было произведено округление чисел до разряда тысяч. Если посмотреть закономерность округления, то увидим, что в одном случае числа округляются в меньшую сторону, а в другом – в большую. После округления все остальные числа после разряда тысяч заменили на нули.

Правила округления чисел:

1) Если округляемая цифра равна 0, 1, 2, 3, 4, то цифра разряда до которого идет округление не меняется, а остальные числа заменяются нулями.

2) Если округляемая цифра равна 5, 6, 7, 8, 9, то цифра разряда до которого идет округление становиться на 1 больше, а остальные числа заменяются нулями.

Например:

1) Выполните округление до разряда десятков числа 364.

Разряд десятков в данном примере это число 6. После шестерки стоит число 4. По правилу округления цифра 4 разряд десятков не меняет. Записываем вместо 4 нуль. Получаем:

36 4 ≈360

2) Выполните округление до разряда сотен числа 4 781.

Разряд сотен в данном примере это число 7. После семерки стоит цифра 8, которая влияет на то измениться ли разряд сотен или нет. По правилу округления цифра 8 увеличивает разряд сотен на 1, а остальные цифры заменяем нулями. Получаем:

47 8 1≈48 00

3) Выполните округление до разряда тысяч числа 215 936.

Разряд тысяч в данном примере это число 5. После пятерки стоит цифра 9, которая влияет на то измениться ли разряд тысяч или нет. По правилу округления цифра 9 увеличивает разряд тысяч на 1, а остальные цифры заменяются нулями. Получаем:

215 9 36≈216 000

4) Выполните округление до разряда десятков тысяч числа 1 302 894.

Разряд тысяч в данном примере это число 0. После нуля стоит цифра 2, которая влияет на то измениться ли разряд десятков тысяч или нет. По правилу округления цифра 2 разряд десятков тысяч не меняет, заменяем на нуль этот разряд и все разряды младшие разряды. Получаем:

130 2 894≈130 0000

Если точное значение числа неважно, то значение числа округляют и можно выполнять вычислительные операции с приближенными значениями . Результат вычисления называют прикидкой результата действий .

Например: 598⋅23≈600⋅20≈12000 сравним с 598⋅23=13754

Прикидкой результата действий пользуются для того, чтобы быстро посчитать ответ.

Примеры на задания по теме округление:

Пример №1:
Определите до какого разряда сделано округление:
а) 3457987≈3500000 б)4573426≈4573000 в)16784≈17000
Вспомним какие бывают разряды на числе 3457987.

7 – разряд единиц,

8 – разряд десятков,

9 – разряд сотен,

7 – разряд тысяч,

5 – разряд десятков тысяч,

4 – разряд сотен тысяч,
3 – разряд миллионов.
Ответ: а) 3 4 57 987≈3 5 00 000 разряд сотен тысяч б) 4 573 426≈4 573 000 разряд тысяч в)16 7 841≈17 0 000 разряд десятков тысяч.

Пример №2:
Округлите число до разрядов 5 999 994: а) десятков б) сотен в) миллионов.
Ответ: а) 5 999 994 ≈5 999 990 б) 5 999 99 4≈6 000 000 (т.к. разряды сотен, тысяч, десятков тысяч, сотен тысяч цифра 9, каждый разряд увеличился на 1) 5 9 99 994≈6 000 000.

Поймите значения цифр в десятичных долях. В любом числе различные цифры представляют собой различные разряды. Например, в числе 1872 единица представляет тысячи, восьмерка – сотни, семерка – десятки, двойка – единицы. Если в числе имеется десятичная запятая, то цифры справа от нее отражают дроби от целого числа .

  • Определите разряд десятичной дроби, до которого хотите ее округлить. Первым шагом в округлении десятичных дробей является определение места, до которого требуется округлить число . Если вы делаете домашнюю работу, то это обычно определено условием задания. Зачастую в условии может быть указана необходимость округлить ответ до десятых, сотых или тысячных знаков после запятой.

    • Например, если стоит задача округления числа 12, 9889 до тысячных долей, начать следует с выявления расположения этих тысячных долей. Отсчитайте знаки от запятой как десятые, сотые, тысячные, после которых идут десятитысячные . Вторая восьмерка будет как раз тем, что вам необходимо (12,988 9).
    • Иногда в условии может указываться конкретное место для округления (например, "округление до третьего знака после запятой" означает то же самое, что и "округление до тысячных").
  • Посмотрите на цифру справа от необходимого места округления. Теперь следует узнать цифру, которая стоит справа от места, до которого вы производите округление. В зависимости от этой цифры вы будете производить округление в большую или в меньшую сторону (вверх или вниз).

    • Во взятом ранее примере числа (12,9889) необходимо произвести округление до тысячных (12,988 9), поэтому теперь следует посмотреть на цифру справа от тысячной доли, а именно на последнюю девятку (12,9889 ).
  • Если эта цифра больше или равна пяти, то производится округление в большую сторону. Для большей ясности, если справа от места округления стоит цифра 5, 6, 7, 8 или 9, то производится округление в большую сторону. Другими словами, необходимо увеличить цифру на округляемом месте на единицу, а остальные цифры справа от нее отбросить.

    • Во взятом примере (12,9889) последняя девятка больше пятерки, поэтому мы будем округлять тысячные в большую сторону. Округленное число предстанет в виде 12,989 . Обратите внимание, что после места округления цифры отброшены.
  • Если эта цифра меньше пяти, то производится округление в меньшую сторону. То есть, если справа от места округления стоит цифра 4, 3, 2, 1 или 0, то производится округление в меньшую сторону. Что означает необходимость оставить цифру на месте округления в том виде, в каком она есть, и отбросить цифры справа от нее.

    • Вы не можете округлить число 12,9889 в меньшую сторону, так как последняя девятка не представляет собой четверку или меньшую цифру. Однако, если бы рассматриваемым числом было 12,9884 , то его можно бы было округлить до 12,988 .
    • Процедура кажется знакомой? Это связано с тем, таким же образом округляются и целые числа, а наличие запятой ничего не меняет.
  • Пользуйтесь тем же методом для округления десятичных дробей до целых цифр. Зачастую задачей устанавливается необходимость округления ответа до целых. В этом случае необходимо воспользоваться вышеуказанным способом.

    • Другими словами, найдите место расположения целых единиц числа, посмотрите на цифру справа. Если она больше или равна пяти, то округлите целое число в большую сторону. Если она меньше или равна четырем, то округлите целое число в меньшую сторону. Наличие запятой между целой частью числа и его десятичной дробью ничего не меняет.
    • Например, если вам требуется округлить вышеприведенное число (12,9889) до целых, то вы начнете с определения места расположения целых единиц числа: 12 ,9889. Так как девятка справа от этого места больше пяти, то производим округление вверх до 13 целых. Так как ответ представлен целым числом, то писать запятую больше нет необходимости.
  • Обращайте внимание на указания к округлению. Вышеупомянутые инструкции к округлению являются общепринятыми. Однако бывают ситуации, когда даются особые требования к округлению, не забывайте их прочесть, прежде чем сразу же прибегать к общепринятым правилам округления.

    • Например, если в требованиях сказано производить округление до десятых в меньшую сторону, то в числе 4,59 вы оставите пятерку, несмотря на то, что девятка справа от нее обычно должна приводить к округлению в большую сторону. Это даст вам результатом 4,5 .
    • Аналогичным образом, если вам сказано округлить число 180,1 до целых в большую сторону , то у вас получится 181 .
  • Loading...Loading...