Ecuațiile cuadratice nu sunt egale cu zero. Ecuații cuadratice

Doar. După formule și reguli clare simple. La prima etapă

este necesar să aducem ecuația dată la forma standard, adică. la vedere:

Dacă ecuația vă este deja dată în această formă, nu trebuie să faceți prima etapă. Cel mai important lucru este corect

determina toti coeficientii A, bși c.

Formula pentru găsirea rădăcinilor unei ecuații pătratice.

Expresia de sub semnul rădăcinii se numește discriminant . După cum puteți vedea, pentru a găsi x, noi

utilizare doar a, b și c. Acestea. cote de la ecuație pătratică. Doar introduceți cu grijă

valorile a, b și cîn această formulă și numărați. Înlocuiește cu al lor semne!

de exemplu, în ecuația:

A =1; b = 3; c = -4.

Înlocuiți valorile și scrieți:

Exemplu aproape rezolvat:

Acesta este răspunsul.

Cele mai frecvente greșeli sunt confuzia cu semnele de valori a, bși cu. Mai degrabă, cu înlocuire

valori negative în formula de calcul a rădăcinilor. Aici se salvează formula detaliată

cu numere specifice. Dacă există probleme cu calculele, fă-o!

Să presupunem că trebuie să rezolvăm următorul exemplu:

Aici A = -6; b = -5; c = -1

Pictăm totul în detaliu, cu atenție, fără să lipsească nimic cu toate semnele și parantezele:

Adesea, ecuațiile pătratice arată ușor diferit. De exemplu, așa:

Acum luați notă de tehnicile practice care reduc dramatic numărul de erori.

Prima recepție. Nu fi leneș înainte rezolvarea unei ecuații pătratice aduceți-o la forma standard.

Ce inseamna asta?

Să presupunem că, după orice transformări, obțineți următoarea ecuație:

Nu vă grăbiți să scrieți formula rădăcinilor! Aproape sigur vei amesteca șansele a, b și c.

Construiți exemplul corect. Mai întâi, x pătrat, apoi fără pătrat, apoi un membru liber. Ca aceasta:

Scapa de minus. Cum? Trebuie să înmulțim întreaga ecuație cu -1. Primim:

Și acum puteți scrie în siguranță formula rădăcinilor, puteți calcula discriminantul și completați exemplul.

Decide pe cont propriu. Ar trebui să ajungeți cu rădăcinile 2 și -1.

A doua recepție. Verifică-ți rădăcinile! De teorema lui Vieta.

Pentru a rezolva ecuațiile pătratice date, i.e. dacă coeficientul

x2+bx+c=0,

apoix 1 x 2 =c

x1 +x2 =−b

Pentru o ecuație pătratică completă în care a≠1:

x 2 +bx+c=0,

împărțiți întreaga ecuație la A:

Unde x 1și X 2 - rădăcinile ecuației.

Recepția a treia. Dacă ecuația ta are coeficienți fracționali, scapă de fracții! Multiplica

ecuație pentru un numitor comun.

Concluzie. Sfaturi practice:

1. Înainte de a rezolva, aducem ecuația pătratică la forma standard, construim-o dreapta.

2. Dacă există un coeficient negativ în fața lui x în pătrat, îl eliminăm înmulțind totul

ecuații pentru -1.

3. Dacă coeficienții sunt fracționali, eliminăm fracțiile înmulțind întreaga ecuație cu corespunzătoare

factor.

4. Dacă x pătrat este pur, coeficientul pentru acesta este egal cu unu, soluția poate fi verificată cu ușurință prin

Formule pentru rădăcinile unei ecuații pătratice. Sunt luate în considerare cazurile de rădăcini reale, multiple și complexe. Factorizarea unui trinom pătrat. Interpretare geometrică. Exemple de determinare a rădăcinilor și factorizării.

Formule de bază

Luați în considerare ecuația pătratică:
(1) .
Rădăcinile unei ecuații pătratice(1) sunt determinate de formulele:
; .
Aceste formule pot fi combinate astfel:
.
Când rădăcinile ecuației pătratice sunt cunoscute, atunci polinomul de gradul doi poate fi reprezentat ca produs de factori (factorizați):
.

În plus, presupunem că sunt numere reale.
Considera discriminant al unei ecuații pătratice:
.
Dacă discriminantul este pozitiv, atunci ecuația pătratică (1) are două rădăcini reale diferite:
; .
Atunci factorizarea trinomului pătrat are forma:
.
Dacă discriminantul este zero, atunci ecuația pătratică (1) are două rădăcini reale multiple (egale):
.
Factorizare:
.
Dacă discriminantul este negativ, atunci ecuația pătratică (1) are două rădăcini conjugate complexe:
;
.
Iată unitatea imaginară, ;
și sunt părțile reale și imaginare ale rădăcinilor:
; .
Apoi

.

Interpretare grafică

Dacă reprezentăm grafic funcția
,
care este o parabolă, atunci punctele de intersecție ale graficului cu axa vor fi rădăcinile ecuației
.
Când , graficul intersectează axa (axa) absciselor în două puncte.
Când , graficul atinge axa x la un moment dat.
Când , graficul nu traversează axa x.

Mai jos sunt exemple de astfel de grafice.

Formule utile legate de ecuația cuadratică

(f.1) ;
(f.2) ;
(f.3) .

Derivarea formulei pentru rădăcinile unei ecuații pătratice

Efectuăm transformări și aplicăm formulele (f.1) și (f.3):




,
Unde
; .

Deci, am obținut formula pentru polinomul de gradul doi sub forma:
.
Din aceasta se poate observa că ecuația

efectuat la
și .
Adică și sunt rădăcinile ecuației pătratice
.

Exemple de determinare a rădăcinilor unei ecuații pătratice

Exemplul 1


(1.1) .

Decizie


.
Comparând cu ecuația noastră (1.1), găsim valorile coeficienților:
.
Găsirea discriminantului:
.
Deoarece discriminantul este pozitiv, ecuația are două rădăcini reale:
;
;
.

De aici obținem descompunerea trinomului pătrat în factori:

.

Graficul funcției y = 2 x 2 + 7 x + 3 traversează axa x în două puncte.

Să diagramăm funcția
.
Graficul acestei funcții este o parabolă. Acesta traversează axa x (axa) în două puncte:
și .
Aceste puncte sunt rădăcinile ecuației inițiale (1.1).

Răspuns

;
;
.

Exemplul 2

Găsiți rădăcinile unei ecuații pătratice:
(2.1) .

Decizie

Scriem ecuația pătratică în formă generală:
.
Comparând cu ecuația inițială (2.1), găsim valorile coeficienților:
.
Găsirea discriminantului:
.
Deoarece discriminantul este zero, ecuația are două rădăcini multiple (egale):
;
.

Atunci factorizarea trinomului are forma:
.

Graficul funcției y = x 2 - 4 x + 4 atinge axa x la un moment dat.

Să diagramăm funcția
.
Graficul acestei funcții este o parabolă. Atinge axa x (axa) la un moment dat:
.
Acest punct este rădăcina ecuației inițiale (2.1). Deoarece această rădăcină este factorizată de două ori:
,
atunci o astfel de rădăcină se numește multiplu. Adică, ei consideră că există două rădăcini egale:
.

Răspuns

;
.

Exemplul 3

Găsiți rădăcinile unei ecuații pătratice:
(3.1) .

Decizie

Scriem ecuația pătratică în formă generală:
(1) .
Să rescriem ecuația inițială (3.1):
.
Comparând cu (1), găsim valorile coeficienților:
.
Găsirea discriminantului:
.
Discriminantul este negativ, . Prin urmare, nu există rădăcini reale.

Puteți găsi rădăcini complexe:
;
;
.

Apoi


.

Graficul funcției nu traversează axa x. Nu există rădăcini reale.

Să diagramăm funcția
.
Graficul acestei funcții este o parabolă. Nu traversează abscisa (axa). Prin urmare, nu există rădăcini reale.

Răspuns

Nu există rădăcini reale. Rădăcini complexe:
;
;
.

Ecuație cuadratică - ușor de rezolvat! * Mai departe în textul „KU”. Prieteni, s-ar părea că la matematică poate fi mai ușor decât rezolvarea unei astfel de ecuații. Dar ceva mi-a spus că mulți oameni au probleme cu el. Am decis să văd câte impresii oferă Yandex pe cerere pe lună. Iată ce s-a întâmplat, aruncați o privire:


Ce înseamnă? Asta înseamnă că aproximativ 70.000 de oameni pe lună caută această informație, iar aceasta este vară, și ce se va întâmpla în timpul anului școlar - vor fi de două ori mai multe solicitări. Acest lucru nu este surprinzător, pentru că acei băieți și fete care au absolvit de mult școala și se pregătesc de examen caută aceste informații, iar școlarii încearcă și ei să-și împrospăteze memoria.

În ciuda faptului că există o mulțime de site-uri care spun cum să rezolv această ecuație, am decis să contribu și eu și să public materialul. În primul rând, doresc ca vizitatorii să vină pe site-ul meu la această solicitare; în al doilea rând, în alte articole, când apare discursul „KU”, voi da un link către acest articol; în al treilea rând, vă voi spune puțin mai multe despre soluția lui decât se spune de obicei pe alte site-uri. Să începem! Continutul articolului:

O ecuație pătratică este o ecuație de forma:

unde coeficienții a,bși cu numere arbitrare, cu a≠0.

În cursul școlar, materialul este dat în următoarea formă - împărțirea ecuațiilor în trei clase se face condiționat:

1. Au două rădăcini.

2. * Au o singură rădăcină.

3. Nu au rădăcini. Este demn de remarcat aici că nu au rădăcini reale

Cum se calculează rădăcinile? Doar!

Calculăm discriminantul. Sub acest cuvânt „îngrozitor” se află o formulă foarte simplă:

Formulele rădăcinilor sunt următoarele:

*Aceste formule trebuie cunoscute pe de rost.

Puteți nota imediat și puteți decide:

Exemplu:


1. Dacă D > 0, atunci ecuația are două rădăcini.

2. Dacă D = 0, atunci ecuația are o rădăcină.

3. Dacă D< 0, то уравнение не имеет действительных корней.

Să ne uităm la ecuație:


Cu această ocazie, când discriminantul este zero, cursul școlar spune că se obține o rădăcină, aici este egală cu nouă. Așa este, este, dar...

Această reprezentare este oarecum incorectă. De fapt, există două rădăcini. Da, da, nu fi surprins, rezultă două rădăcini egale și, pentru a fi precis din punct de vedere matematic, atunci două rădăcini ar trebui să fie scrise în răspuns:

x 1 = 3 x 2 = 3

Dar așa este - o mică digresiune. La școală, poți scrie și spune că există o singură rădăcină.

Acum următorul exemplu:


După cum știm, rădăcina unui număr negativ nu este extrasă, deci nu există o soluție în acest caz.

Acesta este tot procesul de decizie.

Funcția cuadratică.

Iată cum arată geometric soluția. Acest lucru este extrem de important de înțeles (în viitor, într-unul dintre articole, vom analiza în detaliu soluția unei inegalități pătratice).

Aceasta este o funcție a formei:

unde x și y sunt variabile

a, b, c sunt numere date, unde a ≠ 0

Graficul este o parabolă:

Adică, rezultă că rezolvând o ecuație pătratică cu „y” egal cu zero, găsim punctele de intersecție ale parabolei cu axa x. Pot exista două dintre aceste puncte (discriminantul este pozitiv), unul (discriminantul este zero) sau niciunul (discriminantul este negativ). Mai multe despre funcția pătratică Puteți vizualiza articol de Inna Feldman.

Luați în considerare exemple:

Exemplul 1: Decide 2x 2 +8 X–192=0

a=2 b=8 c= -192

D = b 2 –4ac = 8 2 –4∙2∙(–192) = 64+1536 = 1600

Răspuns: x 1 = 8 x 2 = -12

* Puteți împărți imediat părțile stânga și dreaptă ale ecuației cu 2, adică simplificați-o. Calculele vor fi mai ușoare.

Exemplul 2: Decide x2–22 x+121 = 0

a=1 b=-22 c=121

D = b 2 –4ac =(–22) 2 –4∙1∙121 = 484–484 = 0

Avem că x 1 \u003d 11 și x 2 \u003d 11

În răspuns, este permis să scrieți x = 11.

Răspuns: x = 11

Exemplul 3: Decide x 2 –8x+72 = 0

a=1 b= -8 c=72

D = b 2 –4ac =(–8) 2 –4∙1∙72 = 64–288 = –224

Discriminantul este negativ, nu există soluție în numerele reale.

Răspuns: nicio soluție

Discriminantul este negativ. Există o soluție!

Aici vom vorbi despre rezolvarea ecuației în cazul în care se obține un discriminant negativ. Știi ceva despre numerele complexe? Nu voi intra în detaliu aici despre de ce și unde au apărut și care este rolul și necesitatea lor specifică în matematică, acesta este un subiect pentru un articol separat.

Conceptul de număr complex.

Un pic de teorie.

Un număr complex z este un număr de formă

z = a + bi

unde a și b sunt numere reale, i este așa-numita unitate imaginară.

a+bi este un SINGUR NUMĂR, nu o adăugare.

Unitatea imaginară este egală cu rădăcina lui minus unu:

Acum luați în considerare ecuația:


Obțineți două rădăcini conjugate.

Ecuație pătratică incompletă.

Luați în considerare cazuri speciale, atunci când coeficientul „b” sau „c” este egal cu zero (sau ambele sunt egale cu zero). Se rezolvă cu ușurință, fără discriminare.

Cazul 1. Coeficientul b = 0.

Ecuația ia forma:

Să transformăm:

Exemplu:

4x 2 -16 = 0 => 4x 2 =16 => x 2 = 4 => x 1 = 2 x 2 = -2

Cazul 2. Coeficientul c = 0.

Ecuația ia forma:

Transformați, factorizați:

*Produsul este egal cu zero atunci când cel puțin unul dintre factori este egal cu zero.

Exemplu:

9x 2 –45x = 0 => 9x (x–5) =0 => x = 0 sau x–5 =0

x 1 = 0 x 2 = 5

Cazul 3. Coeficienții b = 0 și c = 0.

Aici este clar că soluția ecuației va fi întotdeauna x = 0.

Proprietăți utile și modele de coeficienți.

Există proprietăți care permit rezolvarea ecuațiilor cu coeficienți mari.

AX 2 + bx+ c=0 egalitate

A + b+ c = 0, apoi

— dacă pentru coeficienții ecuației AX 2 + bx+ c=0 egalitate

A+ cu =b, apoi

Aceste proprietăți ajută la rezolvarea unui anumit tip de ecuație.

Exemplul 1: 5001 X 2 –4995 X – 6=0

Suma coeficienților este 5001+( 4995)+( 6) = 0, deci

Exemplul 2: 2501 X 2 +2507 X+6=0

Egalitate A+ cu =b, mijloace

Regularități ale coeficienților.

1. Dacă în ecuația ax 2 + bx + c \u003d 0 coeficientul „b” este (a 2 +1), iar coeficientul „c” este numeric egal cu coeficientul „a”, atunci rădăcinile sale sunt

ax 2 + (a 2 +1) ∙ x + a \u003d 0 \u003d\u003e x 1 \u003d -a x 2 \u003d -1 / a.

Exemplu. Se consideră ecuația 6x 2 +37x+6 = 0.

x 1 \u003d -6 x 2 \u003d -1/6.

2. Dacă în ecuația ax 2 - bx + c \u003d 0, coeficientul „b” este (a 2 +1), iar coeficientul „c” este numeric egal cu coeficientul „a”, atunci rădăcinile sale sunt

ax 2 - (a 2 + 1) ∙ x + a \u003d 0 \u003d\u003e x 1 \u003d a x 2 \u003d 1 / a.

Exemplu. Se consideră ecuația 15x 2 –226x +15 = 0.

x 1 = 15 x 2 = 1/15.

3. Dacă în ecuaţie ax 2 + bx - c = 0 coeficient "b" este egal (a 2 – 1), și coeficientul „c” egal numeric cu coeficientul „a”, atunci rădăcinile sale sunt egale

ax 2 + (a 2 -1) ∙ x - a \u003d 0 \u003d\u003e x 1 \u003d - a x 2 \u003d 1 / a.

Exemplu. Se consideră ecuația 17x 2 + 288x - 17 = 0.

x 1 \u003d - 17 x 2 \u003d 1/17.

4. Dacă în ecuația ax 2 - bx - c \u003d 0, coeficientul „b” este egal cu (a 2 - 1), iar coeficientul c este numeric egal cu coeficientul „a”, atunci rădăcinile sale sunt

ax 2 - (a 2 -1) ∙ x - a \u003d 0 \u003d\u003e x 1 \u003d a x 2 \u003d - 1 / a.

Exemplu. Se consideră ecuația 10x2 - 99x -10 = 0.

x 1 \u003d 10 x 2 \u003d - 1/10

teorema lui Vieta.

Teorema lui Vieta poartă numele celebrului matematician francez Francois Vieta. Folosind teorema lui Vieta, se poate exprima suma și produsul rădăcinilor unui KU arbitrar în termeni de coeficienți.

45 = 1∙45 45 = 3∙15 45 = 5∙9.

În concluzie, numărul 14 dă doar 5 și 9. Acestea sunt rădăcinile. Cu o anumită îndemânare, folosind teorema prezentată, poți rezolva imediat multe ecuații pătratice oral.

În plus, teorema lui Vieta. convenabil deoarece după rezolvarea ecuației pătratice în mod obișnuit (prin discriminant), se pot verifica rădăcinile rezultate. Recomand să faci asta tot timpul.

METODA DE TRANSFER

Prin această metodă, coeficientul „a” este înmulțit cu termenul liber, parcă „transferat” acestuia, motiv pentru care se numește metoda de transfer. Această metodă este folosită atunci când este ușor de găsit rădăcinile unei ecuații folosind teorema lui Vieta și, cel mai important, când discriminantul este un pătrat exact.

În cazul în care un A± b+c≠ 0, atunci se utilizează tehnica de transfer, de exemplu:

2X 2 – 11x+ 5 = 0 (1) => X 2 – 11x+ 10 = 0 (2)

Conform teoremei Vieta din ecuația (2), este ușor de determinat că x 1 \u003d 10 x 2 \u003d 1

Rădăcinile obținute ale ecuației trebuie împărțite la 2 (deoarece cele două au fost „aruncate” din x 2), obținem

x 1 \u003d 5 x 2 \u003d 0,5.

Care este rațiunea? Vezi ce se întâmplă.

Discriminanții ecuațiilor (1) și (2) sunt:

Dacă te uiți la rădăcinile ecuațiilor, atunci se obțin numai numitori diferiți, iar rezultatul depinde tocmai de coeficientul de la x 2:


A doua rădăcină (modificată) este de 2 ori mai mare.

Prin urmare, împărțim rezultatul la 2.

*Dacă aruncăm trei de un fel, atunci împărțim rezultatul la 3 și așa mai departe.

Răspuns: x 1 = 5 x 2 = 0,5

mp ur-ie și examenul.

Voi spune pe scurt despre importanța ei - TREBUIE SĂ POȚI DECIDE rapid și fără să stai pe gânduri, trebuie să cunoști pe de rost formulele rădăcinilor și discriminantului. Multe dintre sarcinile care fac parte din sarcinile USE se reduc la rezolvarea unei ecuații pătratice (inclusiv a celor geometrice).

Ce este de remarcat!

1. Forma ecuației poate fi „implicita”. De exemplu, următoarea intrare este posibilă:

15+ 9x 2 - 45x = 0 sau 15x+42+9x 2 - 45x=0 sau 15 -5x+10x 2 = 0.

Trebuie să îl aduceți într-o formă standard (pentru a nu vă încurca atunci când rezolvați).

2. Amintiți-vă că x este o valoare necunoscută și poate fi notat cu orice altă literă - t, q, p, h și altele.

Acest subiect poate părea complicat la început din cauza numeroaselor formule nu atât de simple. Nu numai că ecuațiile pătratice în sine au intrări lungi, dar rădăcinile se găsesc și prin discriminant. Există trei formule noi în total. Nu foarte ușor de reținut. Acest lucru este posibil numai după rezolvarea frecventă a unor astfel de ecuații. Atunci toate formulele vor fi reținute de la sine.

Vedere generală a ecuației pătratice

Aici este propusă notația lor explicită, atunci când este scris mai întâi gradul cel mai mare și apoi - în ordine descrescătoare. Adesea există situații în care termenii sunt separati. Atunci este mai bine să rescrieți ecuația în ordinea descrescătoare a gradului variabilei.

Să introducem notația. Ele sunt prezentate în tabelul de mai jos.

Dacă acceptăm aceste notații, toate ecuațiile pătratice sunt reduse la următoarea notație.

Mai mult, coeficientul a ≠ 0. Fie ca această formulă să fie notată cu numărul unu.

Când este dată ecuația, nu este clar câte rădăcini vor fi în răspuns. Pentru că una dintre cele trei opțiuni este întotdeauna posibilă:

  • soluția va avea două rădăcini;
  • răspunsul va fi un număr;
  • Ecuația nu are deloc rădăcini.

Și deși decizia nu este adusă la sfârșit, este dificil de înțeles care dintre opțiuni va cădea într-un anumit caz.

Tipuri de înregistrări ale ecuațiilor pătratice

Sarcinile pot avea intrări diferite. Ele nu vor arăta întotdeauna ca formula generală a unei ecuații pătratice. Uneori îi vor lipsi anumiți termeni. Ceea ce a fost scris mai sus este ecuația completă. Dacă eliminați al doilea sau al treilea termen din el, obțineți altceva. Aceste înregistrări sunt numite și ecuații pătratice, doar incomplete.

Mai mult decât atât, pot dispărea doar termenii pentru care coeficienții „b” și „c”. Numărul „a” nu poate fi egal cu zero în nicio circumstanță. Pentru că în acest caz formula se transformă într-o ecuație liniară. Formulele pentru forma incompletă a ecuațiilor vor fi următoarele:

Deci, există doar două tipuri, pe lângă cele complete, există și ecuații pătratice incomplete. Fie prima formulă numărul doi, iar al doilea număr trei.

Discriminantul și dependența numărului de rădăcini de valoarea acestuia

Acest număr trebuie cunoscut pentru a calcula rădăcinile ecuației. Poate fi întotdeauna calculată, indiferent de formula ecuației pătratice. Pentru a calcula discriminantul, trebuie să folosiți egalitatea scrisă mai jos, care va avea numărul patru.

După înlocuirea valorilor coeficienților în această formulă, puteți obține numere cu semne diferite. Dacă răspunsul este da, atunci răspunsul la ecuație va fi două rădăcini diferite. Cu un număr negativ, rădăcinile ecuației pătratice vor fi absente. Dacă este egal cu zero, răspunsul va fi unul.

Cum se rezolvă o ecuație pătratică completă?

De fapt, luarea în considerare a acestei probleme a început deja. Pentru că mai întâi trebuie să găsești discriminantul. După ce se clarifică faptul că există rădăcini ale ecuației pătratice și numărul acestora este cunoscut, trebuie să utilizați formulele pentru variabile. Dacă există două rădăcini, atunci trebuie să aplicați o astfel de formulă.

Deoarece conține semnul „±”, vor exista două valori. Expresia de sub semnul rădăcinii pătrate este discriminantul. Prin urmare, formula poate fi rescrisă într-un mod diferit.

Formula cinci. Din aceeași înregistrare se poate observa că dacă discriminantul este zero, atunci ambele rădăcini vor lua aceleași valori.

Dacă soluția ecuațiilor pătratice nu a fost încă elaborată, atunci este mai bine să notați valorile tuturor coeficienților înainte de a aplica formulele discriminante și variabile. Mai târziu, acest moment nu va crea dificultăți. Dar la început există confuzie.

Cum se rezolvă o ecuație pătratică incompletă?

Totul este mult mai simplu aici. Chiar și nu este nevoie de formule suplimentare. Și nu veți avea nevoie de cele care au fost deja scrise pentru discriminant și necunoscut.

În primul rând, luați în considerare ecuația incompletă numărul doi. În această egalitate, se presupune să scoată valoarea necunoscută din paranteză și să rezolve ecuația liniară, care va rămâne între paranteze. Răspunsul va avea două rădăcini. Primul este neapărat egal cu zero, deoarece există un factor format din variabila însăși. Al doilea se obține prin rezolvarea unei ecuații liniare.

Ecuația incompletă de la numărul trei se rezolvă prin transferarea numărului din partea stângă a ecuației la dreapta. Apoi trebuie să împărțiți cu coeficientul în fața necunoscutului. Rămâne doar să extragi rădăcina pătrată și să nu uiți să o notezi de două ori cu semne opuse.

Următoarele sunt câteva acțiuni care vă ajută să învățați cum să rezolvați tot felul de egalități care se transformă în ecuații pătratice. Ele vor ajuta elevul să evite greșelile din cauza neatenției. Aceste neajunsuri sunt cauza unor note slabe la studierea temei extinse „Ecuații quadrice (clasa a 8-a)”. Ulterior, aceste acțiuni nu vor trebui să fie efectuate în mod constant. Pentru că va exista un obicei stabil.

  • Mai întâi trebuie să scrieți ecuația în formă standard. Adică, mai întâi termenul cu cel mai mare grad al variabilei și apoi - fără grad și ultimul - doar un număr.
  • Dacă un minus apare înaintea coeficientului „a”, atunci poate complica munca unui începător să studieze ecuațiile pătratice. E mai bine să scapi de el. În acest scop, toată egalitatea trebuie înmulțită cu „-1”. Aceasta înseamnă că toți termenii vor schimba semnul invers.
  • În același mod, se recomandă să scapi de fracții. Pur și simplu înmulțiți ecuația cu factorul corespunzător, astfel încât numitorii să se anuleze.

Exemple

Este necesar să se rezolve următoarele ecuații pătratice:

x 2 - 7x \u003d 0;

15 - 2x - x 2 \u003d 0;

x 2 + 8 + 3x = 0;

12x + x 2 + 36 = 0;

(x+1) 2 + x + 1 = (x+1)(x+2).

Prima ecuație: x 2 - 7x \u003d 0. Este incompletă, prin urmare, se rezolvă așa cum este descris pentru formula numărul doi.

După bracketing, rezultă: x (x - 7) \u003d 0.

Prima rădăcină ia valoarea: x 1 \u003d 0. A doua va fi găsită din ecuația liniară: x - 7 \u003d 0. Este ușor de observat că x 2 \u003d 7.

A doua ecuație: 5x2 + 30 = 0. Din nou incompletă. Doar că se rezolvă așa cum este descris pentru a treia formulă.

După transferul 30 în partea dreaptă a ecuației: 5x 2 = 30. Acum trebuie să împărțiți la 5. Rezultă: x 2 = 6. Răspunsurile vor fi numere: x 1 = √6, x 2 = - √ 6.

A treia ecuație: 15 - 2x - x 2 \u003d 0. Aici și mai jos, soluția ecuațiilor pătratice va începe prin a le rescrie într-o formă standard: - x 2 - 2x + 15 \u003d 0. Acum este timpul să folosiți a doua ecuație. sfat util și înmulțiți totul cu minus unu . Se dovedește x 2 + 2x - 15 \u003d 0. Conform celei de-a patra formule, trebuie să calculați discriminantul: D \u003d 2 2 - 4 * (- 15) \u003d 4 + 60 \u003d 64. Este un număr pozitiv. Din cele spuse mai sus, reiese că ecuația are două rădăcini. Ele trebuie calculate conform celei de-a cincea formule. Potrivit acesteia, se dovedește că x \u003d (-2 ± √64) / 2 \u003d (-2 ± 8) / 2. Apoi x 1 \u003d 3, x 2 \u003d - 5.

A patra ecuație x 2 + 8 + 3x \u003d 0 este convertită în aceasta: x 2 + 3x + 8 \u003d 0. Discriminantul său este egal cu această valoare: -23. Deoarece acest număr este negativ, răspunsul la această sarcină va fi următoarea intrare: „Nu există rădăcini”.

A cincea ecuație 12x + x 2 + 36 = 0 ar trebui rescrisă după cum urmează: x 2 + 12x + 36 = 0. După aplicarea formulei discriminantului, se obține numărul zero. Aceasta înseamnă că va avea o singură rădăcină, și anume: x \u003d -12 / (2 * 1) \u003d -6.

A șasea ecuație (x + 1) 2 + x + 1 = (x + 1) (x + 2) necesită transformări, care constau în faptul că trebuie să aduci termeni similari, înainte de a deschide parantezele. În locul primei va exista o astfel de expresie: x 2 + 2x + 1. După egalitate, va apărea această intrare: x 2 + 3x + 2. După ce se numără termeni similari, ecuația va lua forma: x 2 - x \u003d 0. A devenit incomplet . Asemănător cu acesta a fost deja considerat puțin mai ridicat. Rădăcinile acestuia vor fi numerele 0 și 1.

În societatea modernă, capacitatea de a opera cu ecuații care conțin o variabilă pătrată poate fi utilă în multe domenii de activitate și este utilizată pe scară largă în practică în dezvoltările științifice și tehnice. Acest lucru poate fi evidențiat prin proiectarea navelor maritime și fluviale, a aeronavelor și a rachetelor. Cu ajutorul unor astfel de calcule, se determină traiectorii de mișcare a diferitelor corpuri, inclusiv a obiectelor spațiale. Exemplele cu rezolvarea ecuațiilor pătratice sunt folosite nu numai în prognoza economică, în proiectarea și construcția clădirilor, ci și în cele mai obișnuite circumstanțe cotidiene. Acestea pot fi necesare în excursii în camping, la evenimente sportive, în magazine la cumpărături și în alte situații foarte frecvente.

Să împărțim expresia în factori componente

Gradul unei ecuații este determinat de valoarea maximă a gradului variabilei pe care o conține expresia dată. Dacă este egală cu 2, atunci o astfel de ecuație se numește ecuație pătratică.

Dacă vorbim în limbajul formulelor, atunci aceste expresii, indiferent de cum arată, pot fi întotdeauna aduse la forma când partea stângă a expresiei este formată din trei termeni. Printre acestea: ax 2 (adică o variabilă pătrat cu coeficientul său), bx (o necunoscută fără pătrat cu coeficientul său) și c (componentă liberă, adică un număr obișnuit). Toate acestea în partea dreaptă sunt egale cu 0. În cazul în care un astfel de polinom nu are niciunul dintre termenii săi constitutivi, cu excepția axei 2, se numește ecuație pătratică incompletă. Exemplele cu rezolvarea unor astfel de probleme, în care valoarea variabilelor nu este greu de găsit, ar trebui luate în considerare mai întâi.

Dacă expresia pare că are doi termeni în partea dreaptă a expresiei, mai precis ax 2 și bx, este cel mai ușor să găsiți x prin așezarea variabilei. Acum ecuația noastră va arăta astfel: x(ax+b). Mai mult, devine evident că fie x=0, fie problema se reduce la găsirea unei variabile din următoarea expresie: ax+b=0. Acest lucru este dictat de una dintre proprietățile înmulțirii. Regula spune că produsul a doi factori are ca rezultat 0 numai dacă unul dintre ei este zero.

Exemplu

x=0 sau 8x - 3 = 0

Ca rezultat, obținem două rădăcini ale ecuației: 0 și 0,375.

Ecuațiile de acest fel pot descrie mișcarea corpurilor sub acțiunea gravitației, care au început să se miște dintr-un anumit punct, luat drept origine. Aici notația matematică ia următoarea formă: y = v 0 t + gt 2 /2. Înlocuind valorile necesare, echivalând partea dreaptă cu 0 și găsind posibile necunoscute, puteți afla timpul scurs din momentul în care corpul se ridică până în momentul în care acesta cade, precum și multe alte cantități. Dar despre asta vom vorbi mai târziu.

Factorizarea unei expresii

Regula descrisă mai sus face posibilă rezolvarea acestor probleme în cazuri mai complexe. Luați în considerare exemple cu soluția ecuațiilor pătratice de acest tip.

X2 - 33x + 200 = 0

Acest trinom pătrat este complet. În primul rând, transformăm expresia și o descompunem în factori. Există două dintre ele: (x-8) și (x-25) = 0. Ca rezultat, avem două rădăcini 8 și 25.

Exemplele cu rezolvarea ecuațiilor pătratice din clasa a 9-a permit acestei metode să găsească o variabilă în expresii nu numai de ordinul doi, ci chiar de ordinul al treilea și al patrulea.

De exemplu: 2x 3 + 2x 2 - 18x - 18 = 0. Când factorii din partea dreaptă în factori cu o variabilă, există trei dintre ei, adică (x + 1), (x-3) și (x + 3).

Ca urmare, devine evident că această ecuație are trei rădăcini: -3; -unu; 3.

Extragerea rădăcinii pătrate

Un alt caz de ecuație incompletă de ordinul doi este o expresie scrisă în limbajul literelor în așa fel încât partea dreaptă să fie construită din componentele ax 2 și c. Aici, pentru a obține valoarea variabilei, termenul liber este transferat în partea dreaptă, iar după aceea, rădăcina pătrată este extrasă de ambele părți ale egalității. Trebuie remarcat faptul că în acest caz există de obicei două rădăcini ale ecuației. Singurele excepții sunt egalitățile care nu conțin deloc termenul c, unde variabila este egală cu zero, precum și variantele de expresii când partea dreaptă se dovedește a fi negativă. În acest din urmă caz, nu există deloc soluții, deoarece acțiunile de mai sus nu pot fi efectuate cu rădăcini. Ar trebui luate în considerare exemple de soluții la ecuații pătratice de acest tip.

În acest caz, rădăcinile ecuației vor fi numerele -4 și 4.

Calculul suprafeței de teren

Necesitatea acestui gen de calcule a apărut în antichitate, deoarece dezvoltarea matematicii în acele vremuri îndepărtate s-a datorat în mare măsură necesității de a determina suprafețele și perimetrele terenurilor cu cea mai mare acuratețe.

Ar trebui să luăm în considerare și exemple cu soluția ecuațiilor pătratice compilate pe baza unor probleme de acest fel.

Deci, să presupunem că există o bucată de pământ dreptunghiulară, a cărei lungime este cu 16 metri mai mult decât lățimea. Ar trebui să găsiți lungimea, lățimea și perimetrul sitului, dacă se știe că suprafața acestuia este de 612 m 2.

Trecând la treabă, la început vom face ecuația necesară. Să notăm lățimea secțiunii ca x, apoi lungimea acesteia va fi (x + 16). Din ceea ce s-a scris, rezultă că aria este determinată de expresia x (x + 16), care, conform condiției problemei noastre, este 612. Aceasta înseamnă că x (x + 16) \u003d 612.

Rezolvarea ecuațiilor pătratice complete, iar această expresie este doar atât, nu se poate face în același mod. De ce? Deși partea stângă a acesteia conține încă doi factori, produsul lor nu este deloc 0, așa că aici sunt folosite alte metode.

discriminant

În primul rând, vom face transformările necesare, apoi aspectul acestei expresii va arăta astfel: x 2 + 16x - 612 = 0. Aceasta înseamnă că am primit o expresie în forma corespunzătoare standardului specificat anterior, unde a=1, b=16, c= -612.

Acesta poate fi un exemplu de rezolvare a ecuațiilor pătratice prin discriminant. Aici se fac calculele necesare conform schemei: D = b 2 - 4ac. Această valoare auxiliară nu numai că face posibilă găsirea valorilor dorite în ecuația de ordinul doi, ci determină numărul de opțiuni posibile. În cazul D>0, sunt două dintre ele; pentru D=0 există o singură rădăcină. În cazul D<0, никаких шансов для решения у уравнения вообще не имеется.

Despre rădăcini și formula lor

În cazul nostru, discriminantul este: 256 - 4(-612) = 2704. Aceasta indică faptul că problema noastră are un răspuns. Dacă știți, soluția ecuațiilor pătratice trebuie continuată folosind formula de mai jos. Vă permite să calculați rădăcinile.

Aceasta înseamnă că în cazul prezentat: x 1 =18, x 2 =-34. A doua opțiune în această dilemă nu poate fi o soluție, deoarece dimensiunea terenului nu poate fi măsurată în valori negative, ceea ce înseamnă că x (adică lățimea terenului) este de 18 m. De aici calculăm lungimea: 18+16=34, iar perimetrul 2(34+ 18) = 104 (m 2).

Exemple și sarcini

Continuăm studiul ecuațiilor pătratice. Mai jos vor fi date exemple și o soluție detaliată a câtorva dintre ele.

1) 15x2 + 20x + 5 = 12x2 + 27x + 1

Să transferăm totul în partea stângă a egalității, să facem o transformare, adică să obținem forma ecuației, care se numește de obicei cea standard, și să o echivalăm cu zero.

15x 2 + 20x + 5 - 12x 2 - 27x - 1 = 0

Adăugând altele similare, determinăm discriminantul: D \u003d 49 - 48 \u003d 1. Deci ecuația noastră va avea două rădăcini. Le calculăm conform formulei de mai sus, ceea ce înseamnă că primul dintre ele va fi egal cu 4/3, iar al doilea 1.

2) Acum vom dezvălui ghicitori de alt fel.

Să aflăm dacă aici există rădăcini x 2 - 4x + 5 = 1? Pentru a obține un răspuns exhaustiv, aducem polinomul la forma familiară corespunzătoare și calculăm discriminantul. În acest exemplu, nu este necesar să se rezolve ecuația pătratică, deoarece esența problemei nu este deloc în aceasta. În acest caz, D \u003d 16 - 20 \u003d -4, ceea ce înseamnă că într-adevăr nu există rădăcini.

teorema lui Vieta

Este convenabil să se rezolve ecuații pătratice prin formulele de mai sus și prin discriminant, când rădăcina pătrată este extrasă din valoarea acestuia din urmă. Dar acest lucru nu se întâmplă întotdeauna. Cu toate acestea, există multe modalități de a obține valorile variabilelor în acest caz. Exemplu: rezolvarea ecuațiilor pătratice folosind teorema lui Vieta. Este numit după un bărbat care a trăit în Franța secolului al XVI-lea și a avut o carieră strălucitoare datorită talentului său matematic și a legăturilor sale la curte. Portretul lui poate fi văzut în articol.

Modelul pe care l-a observat celebrul francez a fost următorul. El a demonstrat că suma rădăcinilor ecuației este egală cu -p=b/a, iar produsul lor corespunde cu q=c/a.

Acum să ne uităm la sarcini specifice.

3x2 + 21x - 54 = 0

Pentru simplitate, să transformăm expresia:

x 2 + 7x - 18 = 0

Folosind teorema Vieta, aceasta ne va da următoarele: suma rădăcinilor este -7, iar produsul lor este -18. De aici obținem că rădăcinile ecuației sunt numerele -9 și 2. După ce am făcut o verificare, ne vom asigura că aceste valori ale variabilelor se potrivesc cu adevărat în expresie.

Graficul și ecuația unei parabole

Conceptele de funcție pătratică și ecuații pătratice sunt strâns legate. Exemple în acest sens au fost deja date anterior. Acum să ne uităm la câteva puzzle-uri matematice mai detaliat. Orice ecuație de tipul descris poate fi reprezentată vizual. O astfel de dependență, desenată sub forma unui grafic, se numește parabolă. Diferitele sale tipuri sunt prezentate în figura de mai jos.

Orice parabolă are un vârf, adică un punct din care ies ramurile sale. Dacă a>0, ele se ridică la infinit, iar când a<0, они рисуются вниз. Простейшим примером подобной зависимости является функция y = x 2 . В данном случае в уравнении x 2 =0 неизвестное может принимать только одно значение, то есть х=0, а значит существует только один корень. Это неудивительно, ведь здесь D=0, потому что a=1, b=0, c=0. Выходит формула корней (точнее одного корня) квадратного уравнения запишется так: x = -b/2a.

Reprezentările vizuale ale funcțiilor ajută la rezolvarea oricăror ecuații, inclusiv a celor pătratice. Această metodă se numește grafică. Iar valoarea variabilei x este coordonata abscisă în punctele în care linia graficului se intersectează cu 0x. Coordonatele vârfului pot fi găsite prin formula tocmai dată x 0 = -b / 2a. Și, înlocuind valoarea rezultată în ecuația inițială a funcției, puteți afla y 0, adică a doua coordonată a vârfului parabolei aparținând axei y.

Intersecția ramurilor parabolei cu axa absciselor

Există o mulțime de exemple cu rezolvarea ecuațiilor pătratice, dar există și modele generale. Să le luăm în considerare. Este clar că intersecția graficului cu axa 0x pentru a>0 este posibilă numai dacă y 0 ia valori negative. Și pentru a<0 координата у 0 должна быть положительна. Для указанных вариантов D>0. Altfel D<0. А когда D=0, вершина параболы расположена непосредственно на оси 0х.

Din graficul unei parabole, puteți determina și rădăcinile. Este adevărat și invers. Adică, dacă nu este ușor să obțineți o reprezentare vizuală a unei funcții pătratice, puteți echivala partea dreaptă a expresiei cu 0 și puteți rezolva ecuația rezultată. Și cunoscând punctele de intersecție cu axa 0x, este mai ușor de trasat.

Din istorie

Cu ajutorul ecuațiilor care conțin o variabilă pătrată, pe vremuri, nu numai că se făceau calcule matematice și se determina aria formelor geometrice. Anticii aveau nevoie de astfel de calcule pentru descoperiri grandioase în domeniul fizicii și astronomiei, precum și pentru a face prognoze astrologice.

După cum sugerează oamenii de știință moderni, locuitorii Babilonului au fost printre primii care au rezolvat ecuații patratice. S-a întâmplat cu patru secole înainte de apariția erei noastre. Desigur, calculele lor erau fundamental diferite de cele acceptate în prezent și s-au dovedit a fi mult mai primitive. De exemplu, matematicienii mesopotamieni nu aveau idee despre existența numerelor negative. De asemenea, nu erau familiarizați cu alte subtilități ale celor cunoscute oricărui student al timpului nostru.

Poate chiar mai devreme decât oamenii de știință din Babilon, înțeleptul din India, Baudhayama, a preluat soluția ecuațiilor pătratice. Acest lucru s-a întâmplat cu aproximativ opt secole înainte de apariția erei lui Hristos. Adevărat, ecuațiile de ordinul doi, metodele de rezolvare pe care le-a dat, erau cele mai simple. Pe lângă el, matematicienii chinezi erau și ei interesați de întrebări similare pe vremuri. În Europa, ecuațiile pătratice au început să fie rezolvate abia la începutul secolului al XIII-lea, dar mai târziu au fost folosite în lucrările lor de oameni de știință atât de mari precum Newton, Descartes și mulți alții.

Se încarcă...Se încarcă...