Законы раздражения человека. Действие постоянного тока на ткань (полярный закон раздражения)

062. СПОСОБНОСТЬ ЖИВОЙ ТКАНИ РЕАГИРОВАТЬ НА ЛЮБЫЕ ВИДЫ ВОЗДЕЙСТВИЙ ИЗМЕНЕНИЕМ МЕТАБОЛИЗМА НОСИТ НАЗВАНИЕ

1) проводимость

2) лабильность

3) возбудимость

4) раздражимость

063. СПОСОБНОСТЬ КЛЕТОК ОТВЕЧАТЬ НА ДЕЙСТВИЕ РАЗДРАЖИТЕЛЕЙ СПЕЦИФИЧЕСКОЙ РЕАКЦИЕЙ,ХАРАКТЕРИЗУЮЩЕЙСЯ ВРЕМЕННОЙ ДЕПОЛЯРИЗАЦИЕЙ МЕМБРАНЫ И ИЗМЕНЕНИЕМ МЕТАБОЛИЗМА, НОСИТ НАЗВАНИЕ

1) раздражимость

2) проводимость

3) лабильность

4) возбудимость

064. МИНИМАЛЬНАЯ СИЛА РАЗДРАЖИТЕЛЯ НЕОБХОДИМАЯ И ДОСТАТОЧНАЯ ДЛЯ ВОЗНИКНОВЕНИЯ ОТВЕТНОЙ РЕАКЦИИ НАЗЫВАЕТСЯ

1) подпороговой

2) сверхпороговой

3) субмаксимальной

4) пороговой

065. АМПЛИТУДА СОКРАЩЕНИЯ ОДИНОЧНОГО МЫШЕЧНОГО ВОЛОКНА ПРИ УВЕЛИЧЕНИИ СИЛЫ РАЗДРАЖЕНИЯ ВЫШЕ ПОРОГОВОЙ

1) уменьшается

2) сначала увеличивается, потом уменьшается

3) увеличивается до достижения максимума

4) остается без изменения

066. МИНИМАЛЬНАЯ СИЛА ПОСТОЯННОГО ТОКА, ВЫЗЫВАЮЩАЯ ВОЗБУЖДЕНИЕ ПРИ НЕОГРАНИЧЕННО ДОЛГОМ ДЕЙСТВИИ, НАЗЫВАЕТСЯ

1) хронаксией

2) полезным временем

3) электротоном

4) реобазой

067. ВРЕМЯ, В ТЕЧЕНИЕ КОТОРОГО ТОК, РАВНЫЙ УДВОЕННОЙ РЕОБАЗЕ, ВЫЗЫВАЕТ ВОЗБУЖДЕНИЕ, НАЗЫВАЕТСЯ

1) реобазой

2) временем реакции

3) полезным временем

4) хронаксией

068. ЗАКОНУ СИЛЫ ПОДЧИНЯЕТСЯ СТРУКТУРА

1) сердечная мышца

2) одиночное нервное волокно

3) одиночное мышечное волокно

4) целая скелетная мышца

069. ЗАКОНУ "ВСЕ ИЛИ НИЧЕГО" ПОДЧИНЯЕТСЯ СТРУКТУРА

1) целая скелетная мышца

2) гладкая мышца

3) нервный ствол

4) сердечная мышца

070. СПОСОБНОСТЬ ВСЕХ ЖИВЫХ КЛЕТОК ПОД ВЛИЯНИЕМ ОПРЕДЕЛЕННЫХ ФАКТОРОВ ВНЕШНЕЙ ИЛИ ВНУТРЕННЕЙ СРЕДЫ ПЕРЕХОДИТЬ ИЗ СОСТОЯНИЯ ФИЗИОЛОГИЧЕСКОГО ПОКОЯ В СОСТОЯНИЕ АКТИВНОСТИ НАЗЫВАЕТСЯ

1) возбудимостью

2) проводимостью

3) сократимостью

4) раздражимостью

071. ФАКТОРЫ ВНЕШНЕЙ ИЛИ ВНУТРЕННЕЙ СРЕДЫ ОРГАНИЗМА, ВЫЗЫВАЮЩИЕ ПЕРЕХОД ЖИВЫХ СТРУКТУР ИЗ СОСТОЯНИЯ ФИЗИОЛОГИЧЕСКОГО ПОКОЯ В СОСТОЯНИЕ АКТИВНОСТИ НАЗЫВАЮТСЯ

1) возбудители

2) активаторы

3) повреждающие

4) раздражители

072. ТКАНИ, СПОСОБНЫЕ В ОТВЕТ НА ДЕЙСТВИЕ РАЗДРАЖИТЕЛЯ ПЕРЕХОДИТЬ В СОСТОЯНИЕ ВОЗБУЖДЕНИЯ, НАЗЫВАЮТСЯ

1) раздражимыми

2) сократимыми

3) проводящими

4) возбудимыми

073. К ВОЗБУДИМЫМ ТКАНЯМ ОТНОСЯТСЯ

1) эпителиальная, мышечная

2) нервная, мышечная

3) костная, соединительная

4) нервная, мышечная, железистая

074. ПРОЦЕСС ВОЗДЕЙСТВИЯ РАЗДРАЖИТЕЛЯ НА ЖИВУЮ КЛЕТКУ НАЗЫВАЕТСЯ

1) возбуждением

2) торможением

3) повреждением

4) раздражением



075. РАЗДРАЖИТЕЛЬ, К ВОСПРИЯТИЮ КОТОРОГО В ПРОЦЕССЕ ЭВОЛЮЦИИ СПЕЦИАЛИЗИРОВАЛАСЬ ДАННАЯ КЛЕТКА, ВЫЗЫВАЮЩИЙ ВОЗБУЖДЕНИЕ ПРИ МИНИМАЛЬНЫХ ВЕЛИЧИНАХ РАЗДРАЖЕНИЯ, НАЗЫВАЕТСЯ

2) пороговым

3) субпороговым

4) адекватным

076. ПОРОГ РАЗДРАЖЕНИЯ ЯВЛЯЕТСЯ ПОКАЗАТЕЛЕМ СВОЙСТВА ТКАНИ

1) проводимости

2) сократимости

3) лабильности

4) возбудимости

077. ПРИСПОСОБЛЕНИЕ ВОЗБУДИМОЙ ТКАНИ К МЕДЛЕННО НАРАСТАЮЩЕМУ ПО СИЛЕ РАЗДРАЖИТЕЛЮ НАЗЫВАЕТСЯ

1) лабильностью

2) функциональной мобильностью

3) сенсибилизацией

4) стабилизацией

5) аккомодацией

078. ПРИ ЗАМЫКАНИИ ПОЛЮСОВ ЦЕПИ ПОСТОЯННОГО ТОКА ВОЗБУДИМОСТЬ НЕРВА ПОД КАТОДОМ

1) понижается

2) не изменяется

3) сначала понижается, затем повышается

4) повышается

079. ПРИ ЗАМЫКАНИИ ПОЛЮСОВ ЦЕПИ ПОСТОЯННОГО ТОКА ВОЗБУДИМОСТЬ НЕРВА ПОД АНОДОМ

1) повышается

2) не изменяется

3) сначала повышается, затем понижается

4) понижается

080. ИЗМЕНЕНИЕ ВОЗБУДИМОСТИ КЛЕТОК ИЛИ ТКАНЕЙ ПОД ДЕЙСТВИЕМ ПОСТОЯННОГО ЭЛЕКТРИЧЕСКОГО ТОКА НАЗЫВАЕТСЯ

1) катэлектротон

2) физический электротон

3) анэлектротон

4) физиологический электротон

081. ИЗМЕНЕНИЕ ВОЗБУДИМОСТИ КЛЕТОК ИЛИ ТКАНЕЙ В ОБЛАСТИ КАТОДА ПРИ ДЕЙСТВИИ ПОСТОЯННОГО ТОКА НАЗЫВАЕТСЯ

1) анэлектротон

2) физический электротон

3) физиологический электротон

4) катэлектротон

082. ИЗМЕНЕНИЯ ВОЗБУДИМОСТИ КЛЕТОК ИЛИ ТКАНЕЙ В ОБЛАСТИ АНОДА ПРИ ДЕЙСТВИИ ПОСТОЯННОГО ТОКА НАЗЫВАЕТСЯ

1) катэлектротон

2) физический электротон

3) физиологический электротон

4) анэлектротон

083. ПРИ ДЕЙСТВИИ ПОСТОЯННОГО ТОКА В ТЕЧЕНИЕ 1 МСЕК ВОЗБУДИМОСТЬ В ОБЛАСТИ КАТОДА

1) уменьшается

2) стабилизируется

3) увеличивается

084. ЗАКОН, СОГЛАСНО КОТОРОМУ ПРИ УВЕЛИЧЕНИИ СИЛЫ РАЗДРАЖИТЕЛЯ ОТВЕТНАЯ РЕАКЦИЯ ВОЗБУДИМОЙ СТРУКТУРЫ УВЕЛИЧИВАЕТСЯ ДО ДОСТИЖЕНИЯ МАКСИМУМА, НАЗЫВАЕТСЯ

1) "все или ничего"

2) силы-длительности

3) аккомодации

4) силы

085. ЗАКОН, СОГЛАСНО КОТОРОМУ ВОЗБУДИМАЯ СТРУКТУРА НА ПОРОГОВЫЕ И СВЕРХПОРОГОВЫЕ РАЗДРАЖЕНИЯ ОТВЕЧАЕТ МАКСИМАЛЬНО ВОЗМОЖНЫМ ОТВЕТОМ, НАЗЫВАЕТСЯ ЗАКОНОМ...

2) аккомодации

3) силы-длительности

4) "все или ничего"

086. ЗАКОН, СОГЛАСНО КОТОРОМУ ПОРОГОВАЯ ВЕЛИЧИНА РАЗДРАЖАЮЩЕГО ТОКА ОПРЕДЕЛЯЕТСЯ ВРЕМЕНЕМ ЕГО ДЕЙСТВИЯ НА ТКАНЬ, НАЗЫВАЕТСЯ ЗАКОНОМ....

2) "все или ничего"

3) аккомодации

4) силы - длительности

087. НАИМЕНЬШЕЕ ВРЕМЯ, В ТЕЧЕНИЕ КОТОРОГО ДОЛЖЕН ДЕЙСТВОВАТЬ СТИМУЛ ВЕЛИЧИНОЙ В ОДНУ РЕОБАЗУ, ЧТОБЫ ВЫЗВАТЬ ВОЗБУЖДЕНИЕ, НАЗЫВАЕТСЯ

1) хронаксией

2) аккомодацией

3) адаптацией

4) полезным временем

Установите соответствие.

СВОЙСТВА ВОЗБУДИМЫХ ТКАНЕЙ.... ХАРАКТЕРИЗУЮТСЯ

А.123 Возбудимость 1. Порогом раздражения.

Б.5 Проводимость 2. Хронаксией.

3. Реобазой.

4. Длительностью ПД.

5. Скоростью распространения ПД.

СВОЙСТВА ВОЗБУДИМЫХ ТКАНЕЙ... ХАРАКТЕРИЗУЮТСЯ

А.1 Сократимость 1. Величиной напряжения, развиваемой при возбуждении.

Б.3 Лабильность 2. Полезным временем.

3. Максимальным числом импульсов, проводимых в единицу времени без искажения

4. Реобазой.

5. Порогом раздражения.

ЗАКОНАМ РАЗДРАЖЕНИЯ ВОЗБУДИМЫХ ТКАНЕЙ....СООТВЕТСТВУЮТ ПОНЯТИЯ (ТЕРМИНЫ)

А.12 Силы - длительности 1. Реобаза.

Б.4 Аккомодации 2. Хронаксия.

В.3 Полярный закон 3. Электротон.

4. Градиент.

ЗАКОНАМ РАЗДРАЖЕНИЯ....ПОДЧИНЯЮТСЯ СТРУКТУРЫ

А.1 Силы 1. Скелетная мышца.

Б.234 "Все или ничего" 2. Сердечная мышца.

3. Нервное волокно.

4. Мышечное волокно.

К РАЗДРАЖИТЕЛЯМ....ОТНОСЯТСЯ

А.14 Физическим 1. Электрический ток.

Б.3 Химическим 2. Осмотическое давление.

В.2 Физико-химическим 3. Кислоты.

4. Звуковые колебания.

ПРИ ЗАМЫКАНИИ ЦЕПИ ПОСТОЯННОГО ТОКА ВОЗБУЖДЕНИЕ В ОБЛАСТИ ПРИЛОЖЕНИЯ....

А.2 Катода 1. Возникает.

Б.1 Анода 2. Не возникает.

В ОБЛАСТИ ПРИЛОЖЕНИЯ....ВОЗБУЖДЕНИЕ ВОЗНИКАЕТ ПРИ

А.2 Катода 1. Размыкании полюсов постоянного тока.

Б.1 Анода 2. Замыкании полюсов постоянного тока.

ПРИ ДЕЙСТВИИ ПОСТОЯННОГО ТОКА В ОБЛАСТИ ПРИЛОЖЕНИЯ.... ВОЗНИКАЕТ

А.2 Катода 1. Гиперполяризация.

Б.1 Анода 2. Деполяризация.

ПРИ ДЕЙСТВИИ ТОКА НАИМЕНЬШЕЕ ВРЕМЯ, В ТЕЧЕНИЕ ВЕЛИЧИНОЙ.....КОТОРОГО ДОЛЖЕН ДЕЙСТВОВАТЬ РАЗДРАЖАЮЩИЙ СТИМУЛ, НАЗЫВАЕТСЯ

А.1 В одну реобазу 1. Полезным временем.

Б.2 В две реобазы 2. Хронаксией.

097. Скелетная мышца сокращается по закону "Все или ничего", потому что она состоит из волокон разной возбудимости.

5) НВН

098. Сердечная мышца сокращается по закону "Все или ничего", потому что волокна сердечной мышцы связаны друг с другом нексусами.

5) ВВВ

099. Сердечная мышца сокращается по закону "Все или ничего", потому что сердечная мышца сокращается по типу одиночного сокращения.

5) ВВН

100. Сердечная мышца сокращается по закону "Все или ничего", потому сердечная мышца более возбудима, чем скелетная.

5) ВНН

101. Сердечная мышца сокращается по закону "Силы", потому что волокна сердечной мышцы связаны друг с другом нексусами.

5) НВН

102. Сердечная мышца сокращается по закону "Силы", потому что сердечная мышца состоит из изолированных друг от друга волокон разной возбудимости.

5) ННН

103. Сердечная мышца более возбудима по сравнению со скелетной, потому что волокна сердечной мышцы связаны друг с другом нексусами.

5) НВН

104. Амплитуда локального ответа не зависит от силы раздражения, потому что развитие локального ответа подчиняется закону "Все или ничего"

5) ННН

105. Медленное нарастание деполяризующего тока приводит к снижению возбудимости вплоть до ее исчезновения, потому что при этом происходит частичная инактивация натриевых и активация калиевых каналов.

5) ВВВ

НЕРВ. СИНАПС. МЫШЦА .

Выберите один правильный ответ.

106. ОТКРЫТЫЙ УЧАСТОК МЕМБРАНЫ ОСЕВОГО ЦИЛИНДРА ШИРИНОЙ ОКОЛО 1МКМ, В КОТОРОМ МИЕЛИНОВАЯ ОБОЛОЧКА ПРЕРЫВАЕТСЯ, НОСИТ НАЗВАНИЕ

1) терминаль аксона

2) аксонный холмик

3) пресинаптическая терминаль

4) перехват Ранвье

107. ИЗОЛИРУЮЩУЮ И ТРОФИЧЕСКУЮ ФУНКЦИЮ В МИЕЛИНИЗИРОВАННОМ НЕРВНОМ ВОЛОКНЕ ВЫПОЛНЯЕТ

1) нейрофибриллы

2) микротубулы

3) мембрана аксона

4) миелиновая оболочка

108. ВОЗБУЖДЕНИЕ В БЕЗМИЕЛИНОВЫХ НЕРВНЫХ ВОЛОКНАХ РАСПРОСТРАНЯЕТСЯ

1) скачкообразно, "перепрыгивая" через участки волокна, покрытые миелиновой оболочкой

3) непрерывно вдоль всей мембраны от возбужденного участкак расположенному рядом невозбужденному участку

109. ВОЗБУЖДЕНИЕ В МИЕЛИНИЗИРОВАННЫХ НЕРВНЫХ ВОЛОКНАХ РАСПРОСТРАНЯЕТСЯ

1) непрерывно вдоль всей мембраны от возбужденного участкак невозбужденному участку

2) электротонически и в обе стороны от места возникновения

4) скачкообразно, "перепрыгивая" через участки волокна,покрытые миелиновой оболочкой

110. УТОМЛЕНИЕ НАСТУПАЕТ В ПЕРВУЮ ОЧЕРЕДЬ

1) в нервных клетках

2) в скелетной мыщце

3) в нервном стволе

4) в синапсе

111. МЕДИАТОРОМ В НЕРВНО-МЫШЕЧНОМ СИНАПСЕ СКЕЛЕТНЫХ МЫШЦ ЧЕЛОВЕКА ЯВЛЯЕТСЯ

1) адреналин

2) норадреналин

4) ацетилхолин

112. СТРУКТУРНОЕ ОБРАЗОВАНИЕ, ОБЕСПЕЧИВАЮЩЕЕ ПЕРЕДАЧУ ВОЗБУЖДЕНИЯ С ОДНОЙ КЛЕТКИ НА ДРУГУЮ, НОСИТ НАЗВАНИЕ

2) аксонный холмик

3) перехват Ранвье

4) синапс

113. МЕМБРАНА НЕРВНОГО ВОЛОКНА, ОГРАНИЧИВАЮЩАЯ НЕРВНОЕ ОКОНЧАНИЕ, НАЗЫВАЕТСЯ

1) постсинаптической

2) субсинаптической

3) синаптической щелью

4) пресинаптической

114. НА ПОСТСИНАПТИЧЕСКОЙ МЕМБРАНЕ НЕРВНО-МЫШЕЧНОГО СИНАПСА ВОЗНИКАЕТ ПОТЕНЦИАЛ

1) тормозящий постсинаптический

2) электротонический

3) концевой пластинки

115. СОКРАЩЕНИЕ МЫШЦЫ, ПРИ КОТОРОМ ОБА ЕЕ КОНЦА НЕПОДВИЖНО ЗАКРЕПЛЕНЫ, НАЗЫВАЕТСЯ

1) изотоническим

2) ауксотоническим

3) пессимальным

4) изометрическим

116. СОКРАЩЕНИЕ МЫШЦЫ, ВОЗНИКАЮЩЕЕ ПРИ РАЗДРАЖЕНИИ СЕРИЕЙ ИМПУЛЬСОВ, В КОТОРОЙ ИНТЕРВАЛ МЕЖДУ ИМПУЛЬСАМИ БОЛЬШЕ ДЛИТЕЛЬНОСТИ ОДИНОЧНОГО СОКРАЩЕНИЯ, НАЗЫВАЕТСЯ

1) гладкий тетанус

2) зубчатый тетанус

3) пессимум

4) оптимум

5) одиночное сокращение

117. СОКРАЩЕНИЕ МЫШЦЫ В РЕЗУЛЬТАТЕ РАЗДРАЖЕНИЯ СЕРИЕЙ СВЕРХПОРОГОВЫХ ИМПУЛЬСОВ, КАЖДЫЙ ИЗ КОТОРЫХ ДЕЙСТВУЕТ В ФАЗУ РАССЛАБЛЕНИЯ ОТ ПРЕДЫДУЩЕГО НАЗЫВАЕТСЯ

1) гладкий тетанус

2) одиночное сокращение

3) пессимум

4) зубчатый тетанус

118. ИЗ САРКОПЛАЗМАТИЧЕСКОГО РЕТИКУЛУМА ПРИ ВОЗБУЖДЕНИИ ВЫСВОБОЖДАЮТСЯ ИОНЫ

4) кальция

119. МОТОНЕЙРОН И ИНЕРВИРУЕМЫЕ ИМ МЫШЕЧНЫЕ ВОЛОКНА НАЗЫВАЮТСЯ

1) моторное поле мышцы

2) нервный центр мышцы

3) сенсорное поле мышцы

4) двигательная единица

120. КРАТКОВРЕМЕННАЯ СЛАБАЯ ДЕПОЛЯРИЗАЦИЯ ПОСТСИНАПТИЧЕСКОЙ МЕМБРАНЫ, ВЫЗВАННАЯ ВЫДЕЛЕНИЕМ ОТДЕЛЬНЫХ КВАНТОВ МЕДИАТОРА, НАЗЫВАЕТСЯ ПОСТСИНАПТИЧЕСКИМ ПОТЕНЦИАЛОМ

1) возбуждающим

2) тормозящим

3) концевой пластинки

4) миниатюрным

121. В ОСНОВЕ АККОМОДАЦИИ ЛЕЖАТ ПРОЦЕССЫ

1) повышения натриевой проницаемости

2) понижения калиевой проницаемости

3) инактивации калиевой и повышения натриевой проницаемости

4) инактивации натриевой и повышения калиевой проницаемости

122. СОПРЯЖЕНИЕ ВОЗБУЖДЕНИЯ МЕМБРАНЫ МЫШЕЧНОЙ КЛЕТКИ С РАБОТОЙ СОКРАТИТЕЛЬНОГО АППАРАТА ОБЕСПЕЧИВАЕТСЯ

1) ионами натрия

3) саркомерами

4) Т-системой и саркоплазматическим ретикулумом

123. ОТСОЕДИНЕНИЕ ГОЛОВКИ МИОЗИНА ОТ АКТИНОВОЙ НИТИ ВЫЗЫВАЕТСЯ

1) ионами кальция

2) ионами натрия

3) тропонином

4) свободной АТФ

124. ИНИЦИАЦИЯ МЫШЕЧНОГО СОКРАЩЕНИЯ ОСУЩЕСТВЛЯЕТСЯ

1) ионами натрия

3) вторичными посредниками

4) ионами кальция

125. КАНАЛЫ СУБСИНАПТИЧЕСКОЙ МЕМБРАНЫ, ПРОНИЦАЕМЫЕ ДЛЯ НАТРИЯ И КАЛИЯ, ОТНОСЯТ

1) к неспецифическим

2) к потенциалзависимым

3) к хемозависимым

126. СВОЙСТВО ГЛАДКИХ МЫШЦ, ОТСУТСТВУЮЩЕЕ У СКЕЛЕТНЫХ, НАЗЫВАЕТСЯ

1) возбудимость

2) проводимость

3) сократимость

4) пластичность

127. МЫШЕЧНЫЕ ВОЛОКНА СКЕЛЕТНЫХ МЫШЦ ИННЕРВИРУЮТСЯ

1) нейронами симпатической системы

2) нейронами высших отделов головного мозга

3) мотонейронами

128. К МЕДИАТОРАМ ПЕПТИДНОЙ ПРИРОДЫ ОТНОСЯТСЯ

1) ГАМК, глицин

2) норадреналин, дофамин

3) ацетилхолин, серотонин

4) опиоиды, субстанция П

129. СИНАПТИЧЕСКАЯ ПЕРЕДАЧА ВОЗБУЖДЕНИЯ НЕВОЗМОЖНА

1) при низкой частоте ПД нейрона

2) при увеличении концентрации калия в наружной среде

3) при блокаде кальциевых каналов пресинаптической мембраны

130. ХЕМОЗАВИСИМЫЕ КАНАЛЫ ПОСТСИНАПТИЧЕСКОЙ МЕМБРАНЫ ПРОНИЦАЕМЫ

1) для натрия

2) для калия

3) для натрия, кальция

4) для натрия, калия

131. БЕЛЫЕ МЫШЕЧНЫЕ ВОЛОКНА ПО ТИПУ СОКРАЩЕНИЯ ОТНОСЯТСЯ

1) к тоническим

2) к фазным

132. КРАСНЫЕ МЫШЕЧНЫЕ ВОЛОКНА ПО ТИПУ СОКРАЩЕНИЯ ОТНОСЯТСЯ

1) к фазным

2) к тоническим

Установите соответствие.

ВИДЫ ПОТЕНЦИАЛОВ... ПРЕДСТАВЛЯЮТ СОБОЙ....

А.3 Возбуждающий 1. Местную гиперполяризацию

постсинаптический постсинаптической мембраны.

потенциал 2. Распространяющуюся деполяризацию

Б.1 Тормозный постсинаптической мембраны.

постсинаптический 3. Местную деполяризацию

потенциал постсинаптической мембраны.

В.4 Потенциал 4. Местную деполяризацию постсинаптической

концевой пластинки мембраны в нервно-мышечном синапсе.

МЫШЕЧНЫЕ ВОЛОКНА... ВЫПОЛНЯЮТ ФУНКЦИИ

А.125 Скелетные 1. Перемещения тела в пространстве.

Б. 34 Гладкие 2. Поддержания позы.

3. Обеспечения перистальтики отделов ЖКТ.

4. Обеспечения тонуса кровеносных сосудов.

5. Обеспечения тонуса разгибателей конечностей

РЕЖИМ СОКРАЩЕНИЯ СКЕЛЕТНОЙ МЫШЦЫ.... НАБЛЮДАЕТСЯ, КОГДА

А.3 Одиночное 1. Каждый последующий импульс

Б.2 Зубчатый тетанус приходит в фазу укорочения

В.1 Гладкий тетанус мышцы от предыдущего раздражения.

2. Каждый последующий импульс приходит в фазу расслабления мышцы от предыдущего раздражения.

3. Каждый последующий импульс приходит после окончания сокращения.

ТИП СОКРАЩЕНИЯ СКЕЛЕТНОЙ МЫШЦЫ.... ПРЕДСТАВЛЯЕТ СОБОЙ

А.1 Изометрическое 1. Сокращение без изменений длины волокна.

Б.2 Изотоническое 2. Сокращение без изменения тонуса

В.3 Ауксотоническое (напряжения) волокна.

3. Сокращение в условиях изменения тонуса и длины волокна.

НЕРВНЫЕ ВОЛОКНА ТИПА...ПРОВОДЯТ ВОЗБУЖДЕНИЕ СО СКОРОСТЬЮ

А.2 А альфа 1. 3-18 м/с

Б.1 В 2. 70-120 м/с

В.3 С 3. 0.5-3 м/с

МЫШЦЫ...ПОДЧИНЯЮТСЯ ЗАКОНАМ РАЗДРАЖЕНИЯ

А.1 Гладкая 1. Силы.

Б.1 Скелетная 2. "Все или ничего".

В.2 Сердечная 3. Силы и "Все или ничего".

СТРУКТУРЫ....ПОДЧИНЯЮТСЯ ЗАКОНАМ РАЗДРАЖЕНИЯ

А.1 Нервный ствол 1. Силы.

Б.2 Одиночное нервное 2. "Все или ничего".

В.1 Скелетная мышца

Г.2 Одиночное мышечное волокно

СИНАПСЫ....ОБЛАДАЮТ СВОЙСТВАМИ

А.23 Нервно-мышечный 1. Двустороннего проведения возбуждения.

Б.1 Электрический 2. Одностороннего проведения возбуждения.

3. Синаптической задержки.

В СТРУКТУРАХ.... ПРОДОЛЖИТЕЛЬНОСТЬ ФАЗЫ АБСОЛЮТНОЙ РЕФРАКТЕРНОСТИ СОСТАВЛЯЕТ

А.2 Нервном волокне 1. 0.05 миллисек

Б.3 Мышечной клетке 2. 0.5 миллисек

В.4 Миокардиоците 3. 5 миллисек

4. 270 миллисек

Определите верны или неверны утверждения и связь между ними.

142. Гладкий тетанус возникает при ритмической стимуляции мышцы с большой частотой, потому что при этом происходит суперпозиция одиночных сокращений.

5) ВВВ

143. Гладкий тетанус возникает при большей частоте стимулов, чем зубчатый,потому что амплитуда сокращений при гладком тетанусе выше, чем при зубчатом.

5) ВВН

144. Гладкий тетанус возникает при большей частоте стимулов, чем зубчатый, потому что такой режим работы мышцы возникает при нагрузке неподъемным грузом.

5) ВНН

145. Гладкий тетанус возникает при меньшей частоте стимулов, чем зубчатый,потому что при зубчатом тетанусе каждый последующий импульсприходит в фазу расслабления от предыдущего.

5) НВН

146. Гладкий тетанус возникает при меньшей частоте стимулов, чем зубчатый,потому что при зубчатом тетанусе каждый последующий импульсприходит в фазу укорочения от предыдущего.

5) ННН

147. Оптимум сокращения мышцы возникает при ритмической стимуляции большой частотой, потому что при этом каждое последующее раздражение попадает в фазу экзальтации от предыдущего.

5) ВВВ

148. Оптимум сокращения мышцы возникает при ритмической стимуляции большой частотой, потому что при зубчатом тетанусе каждый последующий импульс приходит в фазу расслабления от предыдущего.

5) ВВН

149. Оптимум сокращения мышцы возникает при ритмической стимуляциис большой частотой, потому что при гладком тетанусе каждый последующий импульс приходит в фазу расслабления от предыдущего.

5) ВНН

150. Пессимум сокращения мышцы возникает при очень большой частоте раздражения, потому что при такой частоте каждый последующий импульс приходит в рефрактерные фазы от предыдущего.

Занятие 2. Свойства возбудимых тканей. Законы раздражения.

Вопросы для самоподготовки:

1. Одиночный цикл возбуждения и его фазы.

2. Изменение возбудимости клетки при развитии возбуждения. Рефрактерность.

3. Лабильность, ее физиологический смысл и значение.

4. Законы раздражения; сила и длительность раздражителя.

5. Законы раздражения; градиент раздражения.

6. Полярные законы раздражения

Базовая информация.

К возбудимым тканям относятся только те, клетки которых генерируют потенциал действия (ПД). Это мышечные и нервные клетки. Нередко к возбудимым тканям необоснованно относят и «железистую ткань», хотя железистой ткани нет, а имеются различные железы и железистый эпителий как вид тканей. В процессе активной деятельности железы в ней действительно регистрируются биоэлектрические явления, поскольку железа как орган состоит из различных клеток: соединительной ткани, эпителиальной, мышечной. ПД проводится по мембранам нервных и мышечных клеток, с его помощью передается информация и обеспечивается управление деятельностью клеток организма.

Невозбудимыми тканями являются эпителиальная и соединительная (собственно соединительная, ретикулярная, жировая, хрящевая, костная и гемотопоэтические ткани в совокупности с кровью), клетки этих тканей хотя и способны изменять свой мембранный потенциал, но не генерируют ПД при действии на них раздражителя.

Основными физиологическими свойствами возбудимых тканей являются: возбудимость, проводимость, рефрактерность, лабильность. Специфическим свойством мышечной ткани является сократимость.

Возбудимость - это свойство некоторых тканей генерировать потенциал действия (ПД) в ответ на раздражение. Развитие ПД возможно только при действии раздражителей, которые вызывают деполяризацию клеточной мембраны. Раздражители вызывающие гиперполяризацию мембран будут приводить к процессу обратному возбуждению – торможению.

Возбудимость может быть охарактеризована кривой потенциала действия, в которой выделяют несколько фаз (рис.1 А). Отметим, что единой терминологии в классификации этих фаз нет, поэтому будем использовать наиболее часто употребляемые названия.

Рис. 1. Изменение мембранного потенциала (А) и возбудимости клетки (Б) в разные фазы потенциала действия.

МВ – фаза местного возбуждения;

Д – фаза деполяризации;

Р Б – фаза быстрой реполяризации;

Р М – фаза медленной реполяризации;

Г – фаза следовой гиперполяризации;

Н – период нормальной возбудимости;

Р А – период абсолютной рефрактерности;

Р О – период относительной рефрактерности;

Н + – период первичной экзальтации;

Н ++ – период экзальтации;

Н – – период субнормальной возбудимости.

Вначале, под действием раздражителя, развивается местное возбуждение (фаза начальной деполяризации) – процесс медленной деполяризации мембраны от мембранного потенциала до критического уровня деполяризации (КУД). Если этот уровень не будет достигнут – ПД не формируется, а развивается только локальный ответ.

Разность между мембранным потенциалом покоя и критическим уровнем деполяризации называют пороговым потенциалом , его величина определяет возбудимость клетки – чем больше пороговый потенциал, тем меньше возбудимость клетки.

Время фазы начальной деполяризации очень короткое, на кривой ПД она регистрируется только при большой развертке, и чаще всего является составной частью общей фазы деполяризации . Эта фаза развивается при достижении КУД, за счет открытия всех потенциалчувствительных Na+ – каналов и лавинообразного входа ионов Na+ в клетку по градиенту концентрации (входящий натриевый ток). В результате, мембранный потенциал очень быстро уменьшается до 0, и даже приобретает положительное значение. Графически – это восходящая часть кривой потенциала действия. В результате инактивации Na+ – каналов и прекращения поступления Na+ в клетку, рост кривой ПД прекращается и начинается ее снижение. Явление изменения знака мембранного потенциала называют реверсией заряда мембраны.

По мнению некоторых исследователей, фаза деполяризации заканчивается уже тогда, когда мембранный потенциал становится равным нулю, и весь период, когда величина мембранного потенциала превышает величину 0 мВ, следует считать отдельной фазой реверсии, т.к. ионные токи, определяющие развитие этой части ПД, имеют характерные особенности.

Период времени, в течение которого мембранный потенциал имеет положительное значение, называется овершут .

Нисходящая част кривой ПД – фаза реполяризации . Она определяется выходящим калиевым током. Калий выходит через постоянно открытые каналы утечки, ток через которые резко возрастает из-за изменения электрического градиента вызванного нехваткой снаружи ионов Na+ и через потенциалочувствительные, управляемые К+- каналы, которые активируются на пике ПД.

Различают быструю и медленную реполяризацию. В начале фазы, когда активны оба типа каналов, реполяризация происходит быстро, к концу фазы, ворота потенциалочувствительных К+- каналов закрываются, интенсивность калиевого тока снижается и реполяризация замедляется. Она прекращается тогда, когда положительный заряд снаружи мембраны вырастет настолько, что окончательно затруднит выход калия из клетки.

Фазу медленной реполяризации называют иногда отрицательным следовым потенциалом, что не совсем верно, так как эта фаза не является потенциалом по определению и не является следовым процессом по механизму.

Фаза следовой гиперполяризации (следовой положительный потенциал) – увеличение мембранного потенциала выше величины потенциала покоя, которое наблюдается у нейронов. Развивается за счет остаточного калиевого тока и за счет прямого электрогенного эффекта активировавшейся Na + /K + АТФ-азы.

Механизм наблюдаемой иногда следовой деполяризации (следовой отрицательный потенциал) до конца не ясен.

Изменение возбудимости клетки при развитии возбуждения. Рефрактерность.

Возбудимость в различные фазы развития одного цикла возбуждения, вообще является переменной величиной. В ходе развития одного цикла возбуждения возбудимость изменяется в сторону, как повышения, так и понижения. Повышение возбудимости называется экзальтацией , понижение – рефрактерностью.

В изменении возбудимости от момента нанесения раздражения до завершения одиночного цикла возбуждения отмечается несколько периодов (фаз). (Рис.1. Б)

В период развития местного возбуждения наблюдается некоторое повышение возбудимости, которое получило название первичной экзальтации . Каждое нанесенное в это время дополнительное раздражение, по силе даже ниже порогового, ускоряет развитие местного потенциала. Это связано с тем, что пороговый потенциал уменьшается, и открытие воротного механизма Na + -каналов облегчается.

Как только местное возбуждение достигает критической величины и переходит в потенциал действия (фаза деполяризации), возбудимость начинает быстро снижаться и в точке пика потенциала практически становится равной нулю. Это связано с полной инактивацией Na + -каналов на пике ПД.

Время, в течение которого происходит это снижение возбудимости называется абсолютной рефрактерной фазой (периодом), а само снижение возбудимости – абсолютной рефрактерностью. Раздражение любой сверхпороговой силы, нанесенное в этот период, практически не может повлиять на развитие текущего возбуждения (потенциала действия).

В фазе реполяризации возбудимость мембраны последовательно восстанавливается, до исходного уровня, за счет постепенного восстановления активности инактивированных Na + -каналов. Пока активны не все каналы – то этот период называется относительной рефрактерной фазой , а состояние, в котором находится живой объект – относительной рефрактерностью. Эта фаза продолжается до восстановления заряда мембраны до величины, соответствующей критическому уровню деполяризации. Раздражение, нанесенное в этот период, может вызвать усиление возбуждения только в том случае, если по силе оно будет больше величины порогового потенциала Длительность относительной рефрактерной фазы может быть значительно больше, чем абсолютной.

Вслед за периодом относительной рефрактерности наступает фаза экзальтации (повышенной возбудимости). Это связано с тем что мембранный потенциал снижается до величины КУД, при которой восстанавливается активность большей части Na + каналов, а разница между величиной мембранного потенциала и КУД – пороговый потенциал – минимальна. В этой фазе может возникнуть повторная волна возбуждения даже на раздражения, которые значительно ниже порогового потенциала. Фаза экзальтации длится до тех пор, пока не восстановится исходная величина мембранного потенциала – потенциал покоя, при этом восстанавливается исходная величина возбудимости.

В фазы следовой гипер- и деполяризации возбудимость меняется незначительно и связана с колебаниями порогового потенциала.

Биологический смысл фазового изменения возбудимости в ходе развития одиночной волны возбуждения заключается в следующем.

Начальная фаза повышения возбудимости обеспечивает условие, при котором каждый дополнительный раздражитель ускоряет процесс подготовки (местное возбуждение) к специфической (для данной ткани) приспособительной реакции.

Состояние абсолютной рефрактерности позволяет данной ткани «без помех» осуществлять текущую приспособительную реакцию. Если бы в этих условиях возбудимость была нормальной, то дополнительное раздражение, вызвав дополнительное возбуждение, могло бы исказить эту реакцию, превратив ее в избыточную или недостаточную для данных условий.

Абсолютная рефрактерность защищает ткань от чрезмерных энергетических трат в процессе осуществления текущей приспособительной реакции. Сходную роль играет и относительная рефрактерность, с той разницей, что в данном случае живое образование в состоянии реагировать на раздражения, требующие срочного ответа. Именно поэтому для большинства тканей и органов, работающих непрерывно и не имеющих длительных периодов физиологического покоя (например, сердце), характерна более длительная по сравнению со скелетной мускулатурой рефрактерность.

Кроме того, рефрактерность – один из факторов, определяющих максимальный (предельный) ритм импульсации клетки, что лежит в основе например кодирования и декодирования сигнала структурами нервной системы, регуляции восприятия, сокращения, обеспечении одностороннего проведения возбуждения по нервам и др.

Состояние зкзальтации создает условия готовности ткани к ответу на повторное раздражение не только прежней силы, но и более слабой.

Лабильность , или функциональная подвижность , одно из физиологических свойств живых тканей. Это свойство описано в 1892 г. Н. Е. Введенским, который установил, что скорость протекания процесса возбуждения в тканях различна. Каждая возбудимая ткань способна на раздражение отвечать только определенным количеством волн возбуждения. Так, нервное волокно способно воспроизводить до 1000 импульсов в секунду, поперечно-полосатая мышца только 200 250 имп/с.

Мерой лабильности , по Н. Е. Введенскому, является то наибольшее количество волн возбуждения, которое возбудимая ткань может воспроизводить в 1 с в точном соответствии с ритмом наносимых раздражений без явлений трансформации (переделки) ритма, т.е. не уменьшая и не увеличивая его.

Лабильность величина подвижная и может изменяться в достаточно широких пределах. В частности, лабильность широко варьирует в процессе ритмического раздражения. В одних случаях вследствие взаимодействия волн возбуждения лабильность может повыситься, в других понизиться. Повышение лабильности может привести к тому, что недоступные ранее ритмы деятельности станут доступными. На основании этого А. А. Ухтомский сформировал представление об «усвоении ритма» , как способности ткани отвечать на раздражение более высоким или более низким ритмом возбуждения по сравнению с его исходным уровнем. Усвоение ритма зависит от текущих изменений обмена веществ в ткани во время ее деятельности

Явление усвоения ритма играет важную роль в процессах врабатывания и тренировки. Снижение лабильности, происходящее в процессе деятельности, приводит к иному результату, способность ткани к ритмической работе уменьшается. Лабильность может быть измерена косвенным путем по величине хронаксии (см. ниже) возбудимых тканей. Чем короче хронаксия, тем выше лабильность. Определение лабильности весьма важно в физиологии труда и спорта.

Проводимость - способность живой ткани проводить возбуждение, которое, возникая в рецепторе, распространяется по нервной системе и является для организма информацией, закодированной в нейроне в виде электрических или химических сигналов. Способностью к проведению возбуждения обладают практически все возбудимые ткани, но наиболее ярко она выражена в нервной ткани, для которой проводимость является одной из функций.

Подробно механизм и закономерности распространения возбуждения по мембранам возбудимых клеток рассмотрен в отдельном занятии.

Законы раздражения .

Процесс возбуждения начинается с действия на возбудимую клетку какого либо раздражителя.

Раздражитель – любое изменение внешней или внутренней среды организма, воспринимаемое клетками и вызывающее ответную реакцию. По своей природе раздражители делят физические (электрические, механические, температурные, световые) и химические.

В зависимости от степени чувствительности клеток к тому или иному раздражителю их подразделяют на адекватные и неадекватные. Адекватный раздражитель - это такой раздражитель, к которому клетка обладает наибольшей чувствительностью вследствие наличия специальных структур, воспринимающих этот раздражитель. Так, адекватным раздражителем для фоторецепторов сетчатки глаза, например, являются световые волны, адекватным раздражителем нейронов являются медиаторы и электрические импульсы.

Неадекватные раздражители в естественных условиях существования организма не воздействуют на возбудимые структуры. Однако, при достаточной силе и продолжительности действия, могут вызвать ответную реакцию со стороны возбудимых тканей, например, удар в глаз при достаточной силе может вызвать ощущение вспышки света.

В условиях физиологического эксперимента в качестве раздражителя чаше всего используют электрический ток. Электрический ток легко дозировать, и он является адекватным раздражителем для возбудимых тканей, так как их функциональная активность всегда сопровождается электрическими явлениями.

Определенную зависимость между действием раздражителя и ответной реакцией возбудимой ткани отражают законы раздражения. К законам раздражения относятся:

Закон силы.

Для возникновения возбуждения решающее значение имеет сила раздражителя. Возбуждение возникают только в том случае, если сила действующего раздражителя достигает минимальной, критической величины, которая характеризуется порогом возбуждения . По отношению к этой величине, по своей силе раздражители могут быть подпороговыми, пороговыми и надпороговыми.

Подпороговый раздражитель – это раздражитель такой силы, который не вызывает видимых изменений, но обусловливает возникновение физико-химических сдвигов в возбудимых тканях, например локального ответа. Однако степень этих сдвигов недостаточна для возникновения распространяющегося возбуждения.

Пороговый раздражитель – это раздражитель минимальной силы, который впервые вызывает минимальную измеримую ответную реакцию со стороны возбудимой ткани. Именно эту пороговую силу раздражителя называют порогом раздражения или возбуждения . Порог раздражения и является мерой возбудимости ткани. Между порогом раздражения и возбудимостью существует обратная зависимость: чем выше порог раздражения, тем ниже возбудимость, чем ниже порог раздражения, тем возбудимость выше. При достижении раздражителем величины порога, возникновение потенциала действия становится неизбежным.

Следует отметить, что порог раздражения показатель достаточно изменчивый и значительно зависит от исходного функционального состояния возбудимой ткани и практически никак не зависит от характеристик самого раздражителя

Надпороговый раздражитель – это раздражитель, сила которого выше, чем сила порогового раздражителя.

Закон силы – характеризует взаимосвязь между силой раздражителя и электрическим ответом, он может быть применен для простых и сложных систем.

Простая возбудимая система – это одна возбудимая клетка, которая реагирует на раздражитель как единое целое. Исключением является сердечная мышца, которая вся реагирует как одна клетка. Закон силы для простых возбудимых систем – подпороговые раздражители не вызывают возбуждения, а пороговые и сверхпороговые раздражители вызывают сразу максимальное возбуждение (Рис. 2).

При подпороговых значениях раздражающего тока возбуждение (электротонический потенциал, локальный ответ) носит местный (не распространяется), градуальный (сила реакции пропорциональная силе действующего стимула) характер. При достижении порога возбуждения возникает ответ максимальной силы (ПД). Амплитуда ответа (амплитуда ПД) не изменяется при дальнейшем увеличении силы раздражителя.

Закон силы для простых возбудимых систем известен как закон «все ли ничего».

Сложная возбудимая система – система, состоящая из множества возбудимых элементов (мышца включает множество двигательных единиц, нерв – множество аксонов). Отдельные элементы (клетки) системы имеют неодинаковые пороги возбуждения.

Закон силы для сложных возбудимых систем – амплитуда ответа пропорциональна силе действующего раздражителя (при значениях силы раздражителя от порога возбуждения самого легковозбудимого элемента до порога возбуждения самого трудновозбудимого элемента) (рис. 3). Амплитуда ответа системы пропорциональна количеству вовлеченных в ответ возбудимых элементов. При возрастании силы раздражителя в реакцию вовлекается все большее число возбудимых элементов.

Рис. 2. Зависимость силы реакции простой Рис. 3. Зависимость силы реакции сложной

возбудимой системы от силы раздражителя. возбудимой системы от силы раздражителя.
ПВ – порог возбуждения. ПВ MIN – порог возбуждения самого

легковозбудимого элемента,

ПВ MАХ – порог возбуждения самого

трудновозбудимого элемента.

В случае сложных систем, от силы раздражителя будет зависеть не только электрический, но и физиологический (функциональный) ответ ткани, например сила сокращения. В этом случае закон силы будет звучать следующим образом: чем больше сила раздражителя, тем выше, до определенного предела , ответная реакция со стороны возбудимой ткани. Этот предел будет определяться функциональными возможностями ткани.

Ответ минимальной силы – едва заметное сокращение – возникнет при достижении раздражителем пороговой величины. При этом сократятся мышечные волокна имеющие наименьший порог возбуждения.

Ответная реакция на надпороговый раздражитель будет выше и по мере его увеличения некоторое время также возрастает за счет вовлечения в сокращение все новых мышечных волокон, которые имеют более высокие пороги возбуждения. По достижении определенной величины раздражителя, рост силы сокращения прекратится, значит, в сокращение вовлечены все мышечные волокна. Такую ответную реакцию называют максимальной, а степени силы раздражителя, находящиеся между пороговой и максимальной – субмаксимольными.

супермаксимальной пессимальной.

Закон силы-времени (силы-длительности)

Эффективность раздражителя зависит не только от силы, но и от времени его действия. Длительность действия раздражителя, способна компенсировать недостаток силы раздражителя и при его недостатке привести, тем не менее, к возникновению распространяющегося потенциала действия, поэтому важно определять не только пороговую силу, но пороговую длительность раздражителя. Учение о хронаксии как пороговом времени необходимом для возникновения возбуждения было создано французским ученым Лапиком.

Связь между силой и временем действия раздражителя характеризует закон силы длительности - сила раздражителя, вызывающего процесс распространяющегося возбуждения, находится в обратной зависимости от длительности его действия, т.е., чем больше сила раздражителя, тем меньше времени он должен действовать для возникновения возбуждения.тЗависимость между силой раздражителя и продолжительностью его воздействия, необходимого для возникновения минимальной ответной реакции живой структуры, очень хорошо можно проследить на так называемой кривой силы – времени (кривая Гоорвега – Вейса – Лапика) (Рис 4).

Из кривой следует, что ток ниже некоторой минимальной величины не вызывает возбуждение, как бы длительно он не действовал, и как бы ни велика была сила раздражителя, при недостаточной длительности его воздействия ответной реакции не будет.

Минимальная сила раздражителя, способная, при неограниченном времени действия вызвать возбуждение, была названа Лапиком реобазой. Наименьшая длительность действия раздражителя силой в одну реобазу, достаточная для возникновения ответной реакции называется – полезным временем.

Рис. 5. Изменение мембранного потенциала и критического уровня деполяризации при медленном (А) и быстром (Б) нарастании силы раздражающего тока.

При действии медленно нарастающего раздражителя возбуждение возникает при его гораздо большей силе, так как происходит приспосабливание возбудимой ткани к действию этого раздражителя, что получило название аккомодации. Аккомодация обусловлена тем, что при действии медленно нарастающего раздражителя в мембране возбудимой ткани происходит повышение критического уровня деполяризации. При снижении скорости нарастания силы раздражителя до некоторого минимального значения потенциал действия вообще не возникает.

Причина заключается в том, что деполяризация мембраны является пусковым стимулом к началу двух процессов: быстрого, ведущего к повышению натриевой проницаемости, и тем самым обусловливающего возникновение потенциала действия, и медленного, приводящего к инактивации натриевой проницаемости и как следствие этого – окончанию потенциала действия. При быстром нарастании стимула повышение натриевой проницаемости успевает достичь значительной величины прежде, чем наступит инактивация натриевой проницаемости. При медленном нарастании тока на первый план выступают процессы инактивации, приводящие к повышению порога или ликвидации возможности генерировать ПД вообще.

Способность к аккомодации различных структур неодинакова. Наиболее.высокая она у двигательных нервных волокон, а наиболее низкая у сердечной мышцы, гладких мышц кишечника, желудка.

Полярные законы раздражения.

Кроме всеобщих законов раздражения, которые применимы к любым раздражителям, специфические законы характеризуют закономерности действия постоянного электрического тока, прохождение которого через нервное или мышечное волокно вызывает изменение мембранного потенциала покоя и возбудимости у места приложения электродов имеющих разный заряд. Отметим, что речь идет именно о постоянном, а не о переменном токе, действие которого носит совершенно специфический характер

Закон полярного действия постоянного тока.

Закон не имеет однозначной формулировки и характеризует изменение мембранного потенциала и вероятность возникновения возбуждения мембраны у места приложения электродов. Поскольку при этом всегда возникает электрический ток, направленный от области положительного заряда к области отрицательного заряда, то в наиболее общем виде закон звучит так: возникновение возбуждения происходят при действии на клетку выходящего тока. При действии входящего тока происходит противоположные изменения – гиперполяризация и снижение возбудимости, возбуждение не возникает.

При внеклеточном раздражении возбуждение возникает в области катода (–). При внутриклеточном раздражении для возникновения возбуждения необходимо, чтобы внутриклеточный электрод имел положительный знак (рис. 6).

Рис. 6. Изменения, наступающие в нервном волокне при внутриклеточном раздражении (А, Г) и при внеклеточном раздражении в области анода (Б) и катода (В). Стрелкой показано направление электрического тока.

Следует отметить, что механизм инициации возбуждения определяется не столько направлением тока, сколько зарядом электрода. Кроме того, имеет значение, замыкается или размыкается электрическая цепь. Поэтому в более полном варианте закон полярного действия постоянного тока звучит так: при замыкании тока возбуждение возникает под катодом (-), а при размыкании – под анодом (+) .

Действительно, при замыкании цепи, в области приложения катода (-), положительный потенциал на наружной стороне мембраны уменьшается, заряд мембраны снижается, это активирует механизм переноса Na+ внутрь клетки, при этом мембрана деполяризация. Как только де­поляризация достигнет критического уровня (КУД)), ткань возбу­ждается - генерируется ПД.

В области же приложения анода (+), положительный потенциал на наружной стороне мембраны возрастает, происходит гиперполяризация мембраны и возбуждение не возникает.

При этом возбудимость ткани сначала снижается из-за увеличения порогового потенциала, а затем начинает повы­шаться в результате его уменьшения, так как анод уменьшает ко­личество инактивированных потенциалзависимых Na-каналов. КУД смещается в сторону увеличения и при определенной силе гиперполяризующего тока постепенно выходит на уровень исход­ной величины мембранного потенциала.

При размыкании постоянного тока мембранный потенциал под анодом возвращается к норме, одновременно выходя на КУД; при этом ткань возбуждается - запускается механизм генерации ПД.

Закон физиологического электротона .

Этот закон иногда объединяют с предыдущим, но в отличие от нег он характеризует изменения не мембранного потенциала, а возбудимости ткани, при прохождении через неё постоянного тока. Кроме того, он применим только в случае внеклеточного раздражения.

Изменения возбудимости достаточно сложные и зависят как от заряда приложенного к поверхности электрода, так и от времени действия тока, поэтому в общем виде закон можно сформулировать так: действие постоянного тока на ткань сопровождается изменением ее возбудимости (рис 7).

Рис. 7. Изменения возбудимости при действии на ткань постоянного тока под катодом (-) и анодом(+).

При прохождении постоянного тока через нерв или мышцу порог раздражения под катодом (-) и соседних с ним участках понижается вследствие деполяризации мембраны – возбудимость повышается. В области приложения анода происходит повышение порога раздражения, т. е. снижение возбудимости вследствие гиперполяризации мембраны. Эти изменения возбудимости под катодом и анодом получили название электротона (электротоническое изменение возбудимости). Повышение возбудимости под катодом называется катэлектротоном, а снижение возбудимости под анодом – анэлектротоном.

При дальнейшем действии постоянного тока первоначальное повышение возбудимости под катодом сменяется ее понижением, развивается так называемая катодическая депрессия. Первоначальное же снижение возбудимости под анодом сменяется ее повышением – анодная экзальтация. При этом в области приложения катода происходит инактивация натриевых каналов, а в области действия анода происходит снижение калиевой проницаемости и ослабление исходной инактивации натриевой проницаемости.

ПРАКТИЧЕСКИЕ ЗАДАНИЯ

1. Анализ компонентов биологического потенциала.

Одиночный цикл возбуждения характеризуется электрографическими, функциональными и электрохимическими показателями.

Первый – регистрируется в виде кривой потенциала действия (ПД), отражающей изменение мембранного потенциала в процессе одиночного цикла возбуждения

Второй – связан с изменением возбудимости мембраны и графически отражается кривой изменения возбудимости

Третий – характеризует электрическое состояния плазматической мембраны возбудимой клетки обеспечиваемое её транспортными системами в каждую фазу развития потенциала действия.

Анализ процессов, которые обеспечивают эти состояния, в реальном времени позволяет понять физиологическую сущность и механизм процесса возбуждения, а значит, объяснить и предсказать реакцию клетки на её раздражение. Это может иметь важное значение в изучении механизмов, лежащих в основе деятельности нервной системы, в регуляции как физиологических, так и психических процессов.

О с н а щ е н и е: схемы записи потенциала действия (ПД).

С о д е р ж а н и е р а б о т ы. Проанализируйте по имеющимся схемам фазы развития потенциала действия ПД на мембране возбудимой клетки (рис. 8).

Оформление протокола.

1. Зарисуйте ПД; обозначьте его фазы.

2. Отметьте направление ионных токов характеризующие каждую из фаз потенциала действия.

3. Сопоставьте фазы ПД и колебания возбудимости клетки, объясните причины не возбудимости клетки в некоторые фазы развития ПД.

4. Охарактеризуйте состояние мембраны в каждую фазу развития ПД, объясните, почему даже при самой высокой частоте раздражения возникновение ПД клетки имеет дискретный характер.

2. Определение порога возбуждения нервной и мышечной ткани.

Нервная и мышечная ткани обладают различной возбудимостью. Мерой возбудимости служит порог возбуждения, та минимальная сила раздражителя, которая способная вызвать процесс возбуждения. Показателем возникшего в мышце возбуждения является ее сокращение.

Для определения порога возбуждения нерва электроды прикладываются к нерву. Такой способ раздражения называется непрямое раздражение. По достижении пороговой силы тока, в нерве возникает распространяющееся возбуждение, которое, доходя до мышцы, вызывает ее сокращение. Величина электрического тока, вызывающая минимальное сокращение, отражает возбудимость нерва.

Непосредственное воздействие на мышечные волокна, когда раздражающие электроды располагаются на самой мышце, получило название прямого раздражения . При такой постановке опыта сокращение мышцы возникает по достижении порога возбуждения для мышечных волокон, его сила характе­ризует возбудимость мышцы.

Сравнивая пороговые величины при непрямом и прямом раздражении, можно судить о разнице возбудимости нерва и мышцы. Измерения показывают, что порог непрямого раздражения меньше, чем прямого, следовательно, возбудимость нерва выше, чем возбудимость мышцы.

С о д е р ж а н и е р а б о т ы. Соберите установку для работы с нервно-мышечным препаратом (см. предыдущее занятие). Приготовьте нервно-мышечный препарат лягушки, который зафиксируйте в штативе в вертикальном положении за пяточное сухожилие снизу и коленный сустав сверху.

Седалищный нерв расположите на электродах, наложите на него тонкий слой ваты, обильно смоченный раствором Рингера. Ахиллово сухожилие мышцы посредством нити присоедините к пишущему рычагу, писчик которого приставьте к поверхности барабана кимографа. Включите в сеть стимулятор и поставьте его переключатели на нужные параметры раздражения: частота – 1 имп/с, длительность – 1 мс, амплитуда – «0» и, медленно вращая ручку регулировки силы тока, найдите его минимальную силу (порог раздражения), вызывающую минимальное сокращение мышцы. Эта величина и будет порогом возбуждения нерва.

Запишите мышечное сокращение при непрямом раздражении мышцы на кимографе.

Затем определите порог возбуждения мышцы. Для этого используйте в качестве раздражающих электродов очищенные концы проводов, которые оберните вокруг мышцы в ее безнервном участке. Определите минимальную силу тока, вызывающую пороговое сокращение, т.е. порог прямого раздражения мышцы. Запишите кимограмму.

Запись производите на ленте остановленного кимографа, поворачивая барабан рукой после каждой стимуляции.

Оформление протокола.

1. Зарисуйте в тетради схему опыта.

2. Вклейте полученную кимограмму в тетрадь и сделайте на ней обозначения в соответствии с эталоном (рис. 9).

2. Сравните величины порогов прямого и непрямого раздражения мышцы.

3. Дайте оценку возбудимости нерва и мышцы, сравнив пороги их возбуждения. В чем, причина разницы этих величин.

4. Какое биологическое значение имеет разница порогов возбуждения нерва и мышцы.

Рис. 9. Кимограмма определения порога возбуждения

нерва и мышцы.

а – непрямое раздражение; б – прямое раздражение;

3. Регистрация эффекта, получаемого при различной силе раздражения.

Ответная реакция, наблюдаемая при увеличении силы раздражителя, характеризуется законом силы. Поскольку в скелетной мышце закон силы проявляется только электрическим, но и функциональным ответом – силой сокращения, то его проявление можно наблюдать, а закономерность – оценить.

При достижении раздражителем пороговой величины сократятся мышечные волокна, имеющие наименьший порог возбуждения – возникнет едва заметное сокращение. Ответная реакция на надпороговый раздражитель будет выше и по мере его увеличения некоторое время также возрастает за счет вовлечения в сокращение все новых мышечных волокон, которые имеют более высокие пороги возбуждения. По достижении определенной величины раздражителя, рост силы сокращения прекратится. Такую ответную реакцию называют максимальной, а силу раздражителя, её вызывающую – оптимальной. Раздражения, интенсивность которых выше порогового, но меньше максимального носят название субмаксимальных. Увеличение силы раздражителя выше максимального какое-то время не сказывается на величине ответной реакции. Такую силу раздражителя называют супермаксимальной или сверхмаксимальной . Но при достаточно большом увеличении силы раздражителя, сила ответной реакции начинает снижаться. Такую величину силы раздражителя называют пессимальной.

Пессимальный ответ и есть тот определенный предел, до которого может расти ответная реакция. Превышение этого предела при спортивных, интеллектуальных, эмоциональных и любых других нагрузках не имеет никакого физиологического смысла для получения результата.

Действие пессимальных сил связано с развитием торможения, возникающего вследствие стойкой и длительной деполяризации.

О с н а щ е н и е: кимограф, универсальный штатив с вертикальным миографом, раздражающие электроды, электростимулятор, набор инструментов для препарирования, бумага, вода, раствор Рингера. Работу проводят на лягушке.

С о д е р ж а н и е р а б о т ы. Соберите установку для работы с нервно-мышечным препаратом. Приготовьте нервно-мышечный препарат лягушки, который зафиксируйте в штативе в вертикальном положении за пяточное сухожилие снизу и коленный сустав сверху. Седалищный нерв расположите на электродах, наложите на него тонкий слой ваты, обильно смоченный раствором Рингера. Ахиллово сухожилие мышцы посредством нити присоедините к пишущему рычагу, писчик которого приставьте к поверхности барабана кимографа. Включите в сеть стимулятор и поставьте его переключатели на нужные параметры раздражения: длительность – 1 мс, амплитуда – «0». Нажимая кнопку разового запуска и, медленно вращая ручку регулировки силы тока, найдите его силу вызывающую минимальное сокращение мышцы. Зарегистрируйте на миографе минимальное сокращение мышцы.

Продолжайте увеличивать интенсивность раздражения, и каждый раз записывайте на кимографе ответную реакцию мышцы на это раздражение. Отметьте, когда по достижении определенной интенсивности раздражения ответная реакция мышцы с увеличением силы раздражения перестает возрастать. Наименьшая сила раздражения, при которой вы зарегистрируете самое сильное сокращение мышцы, будет максимальной силой раздражения.

Продолжая увеличивать интенсивность раздражения, убедитесь, что ответная реакция сначала остается прежней, а затем уменьшается. Так вы зарегистрируете оптимальную и пессимальную реакции мышцы на раздражение.

Оформление протокола.

1.Зарисуйте в тетради схему опыта

1. Вклейте полученную кимограмму и сделайте на ней обозначения характеризующие силу раздражителя и качество ответной реакции.

2. Охарактеризуйте зависимость между силой раздражения и ответной реакцией, в соответствии с законом силы для сложных систем.

Рис 10. Зависимость амплитуды сокращений икроножной мышцы

лягушки от силы раздражения. Нарастание силы раздражителя

помечено под кимограммой стрелками соответствующей длины

4. Построение кривой силы – длительности по результатам эксперимента на нервно-мышечном препарате лягушки.

Установить зависимость между силой и длительностью действующего раздражителя, характеризующую закон силы – времени можно с помощью стимулятора, используя регулировку длительности посылаемого импульса (Рис. 5, предыдущего занятия). В качестве объекта исследования можно использовать нервно-мышечный препарат лягушки.

О с н а щ е н и е: кимограф, универсальный штатив с вертикальным миографом, раздражающие электроды, электростимулятор, набор инструментов для препарирования, бумага, вода, раствор Рингера. Работу проводят на лягушке.

С о д е р ж а н и е р а б о т ы. Соберите установку для работы с нервно-мышечным препаратом. Приготовьте нервно-мышечный препарат лягушки, который зафиксируйте в штативе, соедините с миографом и приготовьте для регистрации мышечных сокращений.

Поставьте переключатель длительности импульса в минимальное положение – 0,05 мс и подберите амплитуду раздражения, вызывающую пороговое сокращение мышцы. Запишите её величину. Для более точного наблюдения можно записывать величину ответа на кимографе.

Затем увеличьте длительность, переместив ручку делителя длительности в положение 0,1, и включите прежнюю интенсивность раздражения. Вы увидите сверхпороговый ответ мышцы. Снижайте амплитуду стимула, чтобы получить прежнюю пороговую реакцию.

Так, используя длительности – 0,15, 0,2, 0,25, 0,3, 0,5 мс и др., подберите к ним амплитуду, вызывающую пороговый эффект. Величину порогового тока для каждой длительности стимула фиксируйте.

Оформление протокола.

1. Заполните таблицу, внеся в неё амплитуды раздражения соответствующие каждой длительности стимула.

2. Постройте кривую силы – длительности, укажите на ней характеристики выведенные Лапиком.

3. Объясните, почему с определенного момента зависимость между силой и длительностью действия раздражителя утрачивается.

5. Установление значения скорости нарастания интенсивности раздражения.

Ответная реакция на раздражение возникает только при достаточно быстром изменении его интенсивности. При медленном нарастании тока эффект отсутствует. Именно поэтому при действии электрического тока сокращение возникает в момент его включения и выключения. Это объясняется явлением аккомодации, в основе которой лежит изменение величины мембранного потенциала и критического уровня деполяризации мембраны при медленном изменении силы раздражителя. Пронаблюдать этот эффект можно на нервно-мышечном препарате лягушки.

О с н а щ е н и е: кимограф, универсальный штатив с вертикальным миографом, раздражающие электроды, электростимулятор, набор инструментов для препарирования, бумага, вода, раствор Рингера. Работу проводят на лягушке.

С о д е р ж а н и е р а б о т ы. Соберите установку для работы с нервно-мышечным препаратом как описано в предыдущей работе.

Определите порог раздражения, после чего ручку делителя напряжения поставьте на подпороговое значение, при котором препарат не отвечает на раздражение. Замкните цепь и пошлите ток к объекту. Включите кимограф, и очень плавно и медленно увеличивайте интенсивность раздражения до величины, значительно превышающей пороговую. Мышца не сокращается.

Ручку делителя напряжения переведите на сверхпороговое значение напряжения, и пошлите разовый стимул к препарату. Отметьте мышечную реакцию.

Оформление протокола.

1. Зарисуйте кривую изменения силы тока

6. Изучение полярного действия постоянного тока

При использовании постоянного тока в качестве раздражаю­щего агента было отмечено, что он действует на возбудимую ткань только в моменты замыкания и размыкания цепи. При замыкании цепи эффективное раздражение ткани и возбуждение возникают под катодом, а при размыкании - под анодом. Данная осо­бенность постоянного тока известна в физиологии как полярный закон.

О с н а щ е н и е: кимограф, миограф, электронный стимулятор, набор препаро­вальных инструментов, раствор Рингера для холоднокровных животных, неполяризующиеся электроды, раствор аммиака, пипетка. Объект исследования – нервно-мышечный препарат лягушки (седалищный нерв - мышца лапки).

С о д е р ж а н и е р а б о т ы. Приготовьте нервно-мышечный препарат с лапкой. Положите нерв на неполяризующиеся элек­троды, так чтобы они были максимально далеко друг от друга. Соедините электроды со стимулятором. Установите сти­мулятор в режим постоянного тока и подберите ток "среднего" напряжения. Замкните цепь и через 5 - 7 секунд разомкните ее. Мышца нервно-мышечного препарата будет сокращаться при замыкании и размыкании цепи в результате воз­буждения нервных волокон и его распространения на мышечные волокна.

Перевяжите нерв лигатурой между неполяризующимися элек­тродами и осторожно нанесите на образовавшийся узел каплю раствора новокаина. Спустя 3-5 мин повторите опыт замыкания и размыкания тока. При этом, если ближе к мышце находится катод ("нисходящий ток"), сокращение возникнет только на замыкание. Если ближе к мышце будет анод ("восходящий ток"), сокращение возникнет только на размыкание.

◄Рис. 12. Схема установки для изучения полярного действия постоянного тока.

Оформление протокола.

1. Зарисуйте схему опыта, опишите полученные результаты.

2. Сделайте вывод о месте и возможности возникновения возбуждения в нерве при замыкании и размыкании цепи постоянного тока в трех возможных ситуациях: А,Б – исходное состояние нервно-мышечного препарата, Б,В – после обработки нерва новокаином

раздражения

Возможность возникновения возбуждения при замыкании

Возможность возникновения возбуждения при размыкании

3. Объясните механизм возникновения возбуждения в каждом конкретном случае.

КОНТРОЛЬ УСВОЕНИЯ ТЕМЫ.

Тестовое задание к занятию «Возбудимые ткани. Законы раздражения»

1. Раздражитель, к восприятию которого в процессе эволюции специализировался данный рецептор, и который вызывает возбуждение при минимальных величинах раздражения, называется:

1. Пороговый;

2. Подпороговый;

3. Сверхпороговый;

5. Достаточный;

2. Порог раздражения зависит:

1. От силы раздражителя;

2. От длительности действия раздражителя;

3. От сочетания силы и длительности действия раздражителя;

4. От состояния волокна;

5. Ни от чего не зависит;

3. Порог раздражения любой возбудимой ткани:

1. Прямо пропорционален возбудимости этой ткани;

2. Обратно пропорционален возбудимости этой ткани;

3. Прямо пропорционален проводимости этой ткани;

4. Обратно пропорционален проводимости этой ткани;

5. Тем выше, чем выше лабильность этой ткани;

4. Возбудимость волокна:

1. Достигает минимальной величины на уровне потенциала покоя;

2. Достигает минимальной величины на пике потенциала действия;

3. Достигает минимальной величины в процессе реполяризации;

4. Достигает минимальной величины при достижении критического уровня деполяризации;

5. Не зависит от изменения величины мембранного потенциала;

5. Механизм фазы реполяризации заключается в:

1. Поступлении ионов калия в клетку и активации натрий-калиевого насоса;

2. Поступлении ионов калия и натрия в клетку;

3. Усилении выхода ионов калия из клетки и активации натрий-калиевого насоса;

4. Усилении поступления ионов натрия в клетку и активации натрий калиевого насоса;

5. Активации натрий калиевого насоса;

6. Закону силы подчиняются структуры:

1. Сердечная мышца;

2. Целая скелетная мышца;

3. Одиночное мышечное волокно

4. Одиночное нервное волокно;

7. Процесс деполяризации плазматической мембраны обеспечивается:

1. Увеличением мембранной проницаемости для ионов Na + ;

2. Увеличением мембранной проницаемости для ионов K + ;

3. Уменьшением мембранной проницаемости для ионов Na + ;

4. Уменьшением мембранной проницаемости для ионов K + ;

5. Активацией работы натрий – калиевой АТФазы;

8. Амплитуда сокращения одиночного мышечного волокна, при неограниченном увеличении силы раздражителя:

1. Уменьшается;

2. Увеличивается;

3. Сначала уменьшается, потом увеличивается;

4. Сначала увеличивается, потом уменьшается;

5. Остается без изменения;

9. Пессимум силы, это ситуация при которой:

1. Увеличение силы раздражителя приводит к снижению ответной реакции;

2. Увеличение силы раздражителя приводит к повышению ответной реакции;

3. Увеличение силы раздражителя не приводит больше к увеличении ответной реакции;

4. Снижение силы раздражителя приводит к снижению ответной реакции;

5. Снижение силы раздражителя приводит к повышению ответной реакции;

10. Минимальное время, в течение которого должен действовать ток удвоенной реобазы, чтобы вызвать возбуждение, называется:

1. Время реакции;

2. Реобаза;

3. Хронаксия;

4. Адаптация;

5. Полезное время;

11. При замыкании полюсов цепи постоянного тока, возбудимость нерва под анодом:

1. Повышается;

2. Понижается;

3. Сначала повышается, потом понижается;

4. Сначала понижается, потом повышается;

5. Не изменяется;

12. Закон, согласно которому, возбудимая структура на пороговые и сверхпороговые стимулы отвечает максимально возможным ответом, называется:

1. Закон силы;

2. Закон длительности;

3. Закон «все или ничего»;

4. Закон градиента;

5. Полярный закон раздражения;

13. Порог раздражения (возбуждения) – это:

1. Минимальная сила раздражителя, способная вызвать в ткани локальный ответ;

2. Минимальная сила раздражителя, способная вызвать в ткани процесс возбуждения;

3. Раздражитель, способный вызвать в ткани процесс возбуждения;

4. Раздражитель, способный вызвать в ткани критический уровень деполяризации;

5. Ответная реакция, возникающая при действии на ткань адекватного раздражителя;

14. Лабильностью ткани называется:

1. Способность ткани возбуждаться при действии подпорогового раздражителя;

2. Способность ткани возбуждаться при действии порогового и сверхпорогового раздражителя;

3. Способность ткани не отвечать на действие подпорогового раздражителя;

4. Способность ткани воспроизводить без искажений в виде возбуждения максимально заданную

частоту следующих друг за другом раздражителей;

5. Способность ткани генерировать потенциала действия длительное время без потери их амплитуды;

15. В фазу отрицательного следового потенциала возбудимость ткани:

1. Повысится, т.к. увеличится мембранный потенциал;

2. Понизится, т.к. уменьшится пороговый потенциал;

3. Понизится, т.к. увеличится пороговый потенциал;

4. Повысится, т.к. уменьшится мембранный потенциал;

5. Понизится, т. к увеличится мембранный потенциал;

1. Закон силы - зависимость силы ответной реакции ткани от силы раздражителя. Увеличение силы стимулов в определенном диапазоне сопровождается ростом величины ответной реакции. Чтобы возникло возбуждение, раздражитель должен быть достаточно сильным - пороговым или выше порогового. В изолированной мышце после появления видимых сокращений при достижении пороговой силы стимулов дальнейшее увеличение силы стимулов повышает амплитуду и силу мышечного сокращения. Действие гормона зависит от его концентрации в крови. Эффективность лечения антибиотиками зависит от введенной дозы препарата.

Сердечная мышца подчиняется закону "все или ничего" - на подпороговый стимул не отвечает, после достижения пороговой силы стимула амплитуда всех сокращений одинакова.

2. Закон длительности действия раздражителя. Раздражитель должен действовать достаточно длительно, чтобы вызвать возбуждение. Пороговая сила раздражителя находится в обратной зависимости от его длительности, т.е. слабый раздражитель для того, чтобы вызвать ответную реакцию, должен действовать более продолжительное время. Зависимость между силой и длительностью раздражителя изучена Гоорвегом (1892), Вейсом (1901) и Лапиком (1909). Минимальная сила постоянного тока, вызывающая возбуждение, названа Лапикомреобазой . Наименьшее время, в течение которого должен действовать пороговый стимул, чтобы вызвать ответную реакцию называетсяполезным временем . При очень коротких стимулах возбуждения не возникает, как бы ни была велика сила раздражителя. Так как величина порога возбудимости колеблется в широком диапазоне, было введено понятиехронаксия - время, в течение которого должен действовать ток удвоенной реобазы (порога), чтобы вызвать возбуждение. Метод (хронаксиметрия) используется клинически при определения возбудимости нервно-мышечного аппарата в неврологической клинике и травматологии. Хронаксия различных тканей отличается: у скелетных мышц она равна 0,08-0,16 мс, у гладких - 0,2-0,5 мс. При повреждениях и заболеваниях хронаксия возрастает. Из закона "сила-время" так же следует, что слишком кратковременные стимулы не вызывают возбуждения. В физиотерапии используют токи ультравысокой частоты (УВЧ), которые имеют короткий период действия каждой волны для получения теплового лечебного эффекта в тканях.

3. Закон градиента раздражения.

Для того, чтобы вызвать возбуждение, сила раздражителя должна нарастать во времени достаточно быстро. При медленном нарастании силы стимулирующего тока, амплитуда ответов уменьшается или ответ вообще не возникает.

Кривая «сила-длительность»

А–порог (реобаза); Б–удвоенная реобаза; а–полезное время действия тока, б – хронаксия.

4. Полярный закон раздражения

Открыт Пфлюгером в 1859 году. При внеклеточном расположении электродов возбуждение возникает только под катодом (отрицательным полюсом) в момент замыкания (включения, начала действия) постоянного электрического тока. В момент размыкания (прекращения действия) возбуждение возникает под анодом. В области приложения к поверхности нейрона анода (положительного полюса источника постоянного тока) положительный потенциал на наружной стороне мембраны возрастет - развивается гиперполяризация, снижение возбудимости, увеличение величины порога. При внеклеточном расположении катода (отрицательного электрода) исходный положительный заряд на внешней мембране уменьшается - наступает деполяризация мембраны и возбуждение нейрона.

(изменения мембранного потенциала при действии на возбудимые ткани постоянного электрического тока).

Пфлюгер (1859)

Постоянный ток проявляет свое раздражающее действие только в момент замыкания и размыкания цепи.

При замыкании цепи постоянного тока возбуждение возникает под катодом; при размыкании по анодом.

Изменение возбудимости под катодом.

При замыкании цепи постоянного тока под катодом (действуют допороговым, но продолжительным раздражителем) на мембране возникает стойкая длительная деполяризация, которая не связана с изменением ионной проницаемости мембраны, а обусловлена перераспределением ионов снаружи (привносятся на электроде) и внутри – катион перемещается к катоду.

Вместе со смещением мембранного потенциала смещается и уровень критической деполяризации – к нулю. При размыкании цепи постоянного тока под катодом мембранный потенциал быстро возвращается к исходному уровню, а УКД медленно, следовательно, порог увеличивается, возбудимость снижается – катодическая депрессия Вериго. Таким образом, ввозникает только при замыкании цепи постоянного тока под катодом.

Изменение возбудимости под анодом.

При замыкании цепи постоянного тока под анодом (допороговый, продолжительный раздражитель) на мембране развивается гиперполяризация за счет перераспределения ионов по обе стороны мембраны (без изменения ионной проницаемости мембраны) и возникающее за ней смещение уровня критической деполяризации в сторону мембранного потенциала. Следовательно, порог уменьшается, возбудимость повышается – анодическая экзальтация.

При размыкании цепи мембранный потенциал быстро восстанавливается к исходному уровню и достигает сниженного уровня критической деполяризации, генерируется потенциал действия. Таким образом, возбуждение возникает только при размыкании цепи постоянного тока под анодом.

Сдвиги мембранного потенциала вблизи полюсов постоянного тока получили название электротонических.

Сдвиги мембранного потенциала не связанные с изменением ионной проницаемости мембраны клетки называют пассивными.

Изменение возбудимости клеток или ткани под действием постоянного электрического тока называется физиологическим электротоном.Соответственно различают катэлектрон и анэлектрон (изменение возбудимости под катодом и анодом).

12) Закон раздражения Дюбуа-Реймона (аккомодации):

Раздражающее действие постоянного тока зависит не только от абсолютной величины силы тока или его плотности, но и от скорости нарастания тока во времени.

При действии медленно нарастающегораздражителя возбуждение не возникает, так как происходит приспосабливание возбудимой ткани к действию этого раздражителя, что получило название аккомодации. Аккомодация обусловлена тем, что при действии медленно нарастающего раздражителя в мембране возбудимой ткани происходит повышение критического уровня деполяризации

При снижении скорости нарастания силы раздражителядо некоторого минимального значения потенциал действия вообще не возникает. Причина заключается в том, что деполяризация мембраны является пусковым стимулом к началу двух процессов: быстрого, ведущего к повышению натриевой проницаемости, и тем самым обусловливающего возникновение потенциала действия, и медленного, приводящего к инактивации натриевой проницаемости и как следствие этого -окончанию потенциала действия.

При медленном нарастании токана первый план выступают процессы инактивации, приводящие к повышению порога или ликвидации возможности генерировать ПД вообще. Способность к аккомодации различных структур неодинакова. Наиболее.высокая она у двигательных нервных волокон, а наиболее низкая у сердечной мышцы, гладких мышц кишечника, желудка.

При быстром нарастании стимулаповышение натриевой проницаемости успевает достичь значительной величины прежде, чем наступит инактивация натриевой проницаемости.

Аккомодация возбудимых тканей

Раздражители характеризуются не только силой и длительностью действия, но и скоростью роста во времени силы воздействия на объект, т. е. градиентом.

Уменьшение крутизны нарастания силы раздражителя ведет к повышению порога возбуждения, вследствие чего, ответ биосистемы при некоторой минимальной крутизне вообще исчезает. Это явление названо аккомодацией.

Зависимость между крутизной нарастания силы раздражения и величиной возбуждения определена в законе градиента:реакция живой системы зависит от градиента раздражения: чем выше крутизна нарастания раздражителя во времени, тем больше до известных пределов величина функционального ответа.

Лекция 1

ОБЩИЕ ЗАКОНОМЕРНОСТИ РЕАГИРОВАНИЯ ЖИВОЙ МАТЕРИИ

План:

1. Биоэлектрические явления в возбудимых тканях. 1

2. Мембранный потенциал. 3

3. Потенциал действия. 6

4. Законы раздражения возбудимых тканей. 9

Биоэлектрические явления в возбудимых тканях

Способность адаптироваться к постоянно изменяющимся условиям внешней среды является одним из основных признаков живых систем. В основе приспособительных реакций организма лежит раздражимость – способность реагировать на действие различных факторов изменением структуры и функций. Раздражимостью обладают все ткани животных и растительных организмов. В процессе эволюции происходила постепенная дифференциация тканей, участвующих в приспособительной деятельности организма. Раздражимость этих тканей достигла наивысшего развития и трансформировалась в новое свойство – возбудимость . Под этим термином понимают способность ряда тканей (нервной, мышечной, железистой) отвечать на раздражение генерацией процесса возбуждения. Возбуждение – это сложный физиологический процесс временной деполяризации мембраны клеток, который проявляется специализированной реакцией ткани (проведение нервного импульса, сокращение мышцы, отделение секрета железой и т. д.). Возбудимостью обладают нервная, мышечная и секреторная ткани, которые называют возбудимыми тканями. Возбудимость различных тканей неодинакова. Ее величину оценивают по порогу раздражения – минимальной силе раздражителя, которая способна вызвать возбуждение. Менее сильные раздражители называются подпороговыми , а более сильные – сверхпороговыми .

Раздражителями, вызывающими возбуждение, могут быть любые внешние (действующие из окружающей среды) или внутренние (возникающие в самом организме) воздействия. Все раздражители по их природе можно разделить на три группы: физические (механические, электрические, температурные, звуковые, световые), химические (щелочи, кислоты и другие химические вещества, в том числе и лекарственные) и биологические (вирусы, бактерии, насекомые и другие живые существа).



По степени приспособленности биологических структур к их восприятию раздражители можно разделить на адекватные и неадекватные. Адекватными называются раздражители, к восприятию которых биологическая структура специально приспособлена в процессе эволюции. Например, адекватным раздражителем для фоторецепторов является свет, для барорецепторов – изменение давления, для мышц – нервный импульс. Неадекватными называются такие раздражители, которые действуют на структуру, специально не приспособленную для их восприятия. Например, мышца может сокращаться под влиянием механического, теплового, электрического раздражений, хотя адекватным раздражителем для нее является нервный импульс. Пороговая сила неадекватных раздражителей во много раз превышает пороговую силу адекватных.

Возбуждение представляет собой сложную совокупность физических, химических и физико-химических процессов, в результате которых происходит быстрое и кратковременное изменение электрического потенциала мембраны.

Первые исследования электрической активности живых тканей были проведены Л. Гальвани. Он обратил внимание на сокращение мышц препарата задних лапок лягушки, подвешенной на медном крючке, при соприкосновении с железными перилами балкона (первый опыт Гальвани). На основании этих наблюдений им был сделал вывод, что сокращение лапок вызвано «животным электричеством», которое возникает в спинном мозге и передается по металлическим проводникам (крючку и перилам) к мышцам.

Физик А. Вольта, повторив этот опыт, пришел к другому заключению. Источником тока, по его мнению, является не спинной мозг и «животное электричество», а разность потенциалов, образующаяся в месте контакта разнородных металлов – меди и железа, а нервно-мышечный препарат лягушки является лишь проводником электричества. В ответ на эти возражения Л. Гальвани усовершенствовал опыт, исключив из него металлы. Он препарировал седалищный нерв вдоль бедра лапки лягушки, затем набрасывал нерв на мышцы голени, что вызывало сокращение мышцы (второй опыт Гальвани), тем самым доказав существование «животного электричества».

Позднее Дюбуа-Реймоном было установлено, что поврежденный участок мышцы имеет отрицательный заряд, а неповрежденный участок – положительный. При набрасывании нерва между поврежденным и неповрежденным участками мышцы возникает ток, который раздражает нерв и вызывает сокращение мышцы. Этот ток был назван током покоя, или током повреждения. Так было показано, что наружная поверхность мышечных клеток заряжена положительно по отношению к внутреннему содержимому.

Мембранный потенциал

В состоянии покоя между наружной и внутренней поверхностями мембраны клетки существует разность потенциалов, которая называется мембранным потенциалом (МП), или, если это клетка возбудимой ткани, – потенциалом покоя . Так как внутренняя сторона мембраны заряжена отрицательно по отношению к наружной, то, принимая потенциал наружного раствора за нуль, МП записывают со знаком «минус». Его величина у разных клеток колеблется от минус 30 до минус 100 мВ.

Первая теория возникновения и поддержания мембранного потенциала была разработана Ю.Бернштейном (1902). Исходя из того, что мембрана клеток обладает высокой проницаемостью для ионов калия и малой проницаемостью для других ионов, он показал, что величину мембранного потенциала можно определить, используя формулу Нернста:

где Е м – разность потенциалов между внутренней и наружной сторонами мембраны; Е к – равновесный потенциал для ионов калия; R – газовая постоянная; Т – абсолютная температура; n – валентность иона; F – число Фарадея; [К + ] вн – внутренняя и [К + ] н – наружная концентрация ионов калия.

В 1949-1952 гг. А.Ходжкин, Э.Хаксли, Б.Катц создали современную мембранно-ионную теорию, согласно которой мембранный потенциал обусловлен не только концентрацией ионов калия, но и натрия и хлора, а также неодинаковой проницаемостью для этих ионов мембраны клетки. Цитоплазма нервных и мышечных клеток содержит в 30-50 раз больше ионов калия, в 8-10 раз меньше ионов натрия и в 50 раз меньше ионов хлора, чем внеклеточная жидкость. Проницаемость мембраны для ионов обусловлена ионными каналами, макромолекулами белка, пронизывающими липидный слой. Одни каналы открыты постоянно, другие (потенциалозависимые) открываются и закрываются в ответ на изменения МП. Потенциалозависимые каналы подразделяются на натриевые, калиевые, кальциевые и хлорные. В состоянии физиологического покоя мембрана нервных клеток в 25 раз более проницаема для ионов калия, чем для ионов натрия.

Таким образом, согласно обновленной мембранной теории асимметричное распределение ионов по обе стороны мембраны и связанное с этим создание и поддержание мембранного потенциала обусловлено как избирательной проницаемостью мембраны для различных ионов, так и их концентрацией по обе стороны от мембраны, а более точно величину мембранного потенциала можно рассчитать по формуле:

где Р К, P Na , Р С l – проницаемость для ионов калия, натрия и хлора.

Поляризация мембраны в покое объясняется наличием открытых калиевых каналов и трансмембранным градиентом концентраций калия, что приводит к выходу части внутриклеточного калия в окружающую клетку среду, т.е. к появлению положительного заряда на наружной поверхности мембраны. Органические анионы – крупномолекулярные соединения, для которых мембрана клетки непроницаема, создают на внутренней поверхности мембраны отрицательный заряд. Поэтому чем больше разница концентраций калия по обе стороны от мембраны, тем больше его выходит и тем выше значения МП. Переход ионов калия и натрия через мембрану по их концентрационному градиенту в конечном итоге должен был бы привести к выравниванию концентрации этих ионов внутри клетки и в окружающей ее среде. Но в живых клетках этого не происходит, так как в клеточной мембране имеются натрий-калиевые насосы, которые обеспечивают выведение из клетки ионов натрия и введение в нее ионов калия, работая с затратой энергии. Они принимают и прямое участие в создании МП, так как за единицу времени ионов натрия выводится из клетки больше, чем вводится калия (в соотношении 3:2), что обеспечивает постоянный ток положительных ионов из клетки. То, что выведение натрия зависит от наличия метаболической энергии, доказывается тем, что под действием динитрофенола, который блокирует метаболические процессы, выход натрия снижается примерно в 100 раз. Таким образом, возникновение и поддержание мембранного потенциала обусловлено избирательной проницаемостью мембраны клетки и работой натрий-калиевого насоса.

Если раздражать нейрон через электрод, находящийся в цитоплазме, кратковременными импульсами деполяризующего электрического тока различной величины, то, регистрируя через другой электрод изменения мембранного потенциала, можно наблюдать следующие биоэлектрические реакции: электротонический потенциал, локальный ответ и потенциал действия (рис. 1).

Рис. 1. Изменение мембранного потенциала под влиянием деполяризующих и гиперполяризующих раздражений: a – электротонический потенциал; б – локальный ответ; в – потенциал действия; г – гиперполяризация; д – раздражения.

Если наносятся раздражения, величина которых не превышает 0,5 величины порогового раздражения, то деполяризация мембраны наблюдается только во время действия раздражителя. Это пассивная электротоническая деполяризация (электротонический потенциал). Развитие и исчезновение электротонического потенциала происходит по экспоненте (возрастает) и определяется параметрами раздражающего тока, а также свойствами мембраны (ее сопротивлением и емкостью). Во время развития электротонического потенциала проницаемость мембраны для ионов практически не изменяется.

Локальный ответ. При увеличении амплитуды подпороговых раздражений от 0,5 до 0,9 пороговой величины развитие деполяризации мембраны происходит не прямолинейно, а по S-образной кривой. Деполяризация продолжает нарастать и после прекращения раздражения, а затем сравнительно медленно исчезает. Этот процесс получил название локального ответа. Локальный ответ имеет следующие свойства:

1) возникает при действии подпороговых раздражителей;

2) находится в градуальной зависимости от силы стимула (не подчиняется закону «все или ничего»); локализуется в месте действия раздражителя и не способен к распространению на большие расстояния;

3) может распространяться лишь локально, при этом его амплитуда быстро уменьшается;

4) локальные ответы способны суммироваться, что приводит к увеличению деполяризации мембраны.

В период развития локального ответа возрастает поток ионов натрия в клетку, что повышает ее возбудимость. Локальный ответ является экспериментальным феноменом, однако по перечисленным выше свойствам он близок к таким явлениям, как процесс местного нераспространяющегося возбуждения и возбуждающего постсинаптического потенциала (ВПСП), который возникает под влиянием деполяризующего действия возбуждающих медиаторов.

Потенциал действия

Потенциал действия (ПД) возникает на мембранах возбудимых клеток под влиянием раздражителя пороговой или сверхпороговой величины, который увеличивает проницаемость мембраны для ионов натрия. Ионы натрия начинают входить внутрь клетки, что приводит к уменьшению величины мембранного потенциала – деполяризации мембраны. При уменьшении МП до критического уровня деполяризации открываются потенциалозависимые каналы для натрия и проницаемость мембраны для этих ионов увеличивается в 500 раз (превышая проницаемость для ионов калия в 20 раз). В результате проникновения ионов натрия в цитоплазму и их взаимодействия с анионами разность потенциалов на мембране исчезает, а затем происходит перезарядка клеточной мембраны (инверсия заряда, овершут) – внутренняя поверхность мембраны заряжается положительно по отношению к наружной (на 30-50 мВ), после чего закрываются натриевые каналы и открываются потенциалозависимые калиевые каналы. В результате выхода калия из клетки начинается процесс восстановления исходного уровня мембранного потенциала покоя – реполяризация мембраны. Если такое повышение проводимости для калия предотвратить введением тетраэтиламмония, который избирательно блокирует калиевые каналы, мембрана реполяризуется гораздо медленнее. Натриевые каналы можно блокировать тетродотоксином и разблокировать последующим введением фермента проназы, который расщепляет белки.

Таким образом, в основе возбуждения (генерации ПД) лежит повышение проводимости мембраны для натрия, вызываемое ее деполяризацией до порогового (критического) уровня.

В потенциале действия различают следующие фазы:

1. Предспайк – процесс медленной деполяризации мембраны до критического уровня деполяризации (местное возбуждение, локальный ответ).

2. Пиковый потенциал, или спайк, состоящий из восходящей части (деполяризация мембраны) и нисходящей части (реполяризация мембраны).

3. Отрицательный следовой потенциал – от критического уровня деполяризации до исходного уровня поляризации мембраны (следовая деполяризация).

4. Положительный следовой потенциал – увеличение мембранного потенциала и постепенное возвращение его к исходной величине (следовая гиперполяризация).

При развитии потенциала действия происходят фазные изменения возбудимости ткани (рис. 2). Состоянию исходной поляризации мембраны (мембранный потенциал покоя) соответствует нормальный уровень возбудимости. В период предспайка возбудимость ткани повышена. Эта фаза возбудимости получила название повышенной возбудимости (первичной экзальтации). В это время мембранный потенциал приближается к критическому уровню деполяризации, поэтому дополнительный стимул, даже если он меньше порогового, может довести мембрану до критического уровня деполяризации. В период развития спайка (пикового потенциала) идет лавинообразное поступление ионов натрия внутрь клетки, в результате чего происходит перезарядка мембраны и она утрачивает способность отвечать возбуждением на раздражители даже сверхпороговой силы. Эта фаза возбудимости получила название абсолютной рефрактерности (абсолютной невозбудимости). Она длится до конца перезарядки мембраны и возникает в связи с тем, что натриевые каналы инактивируются.

Рис.2. Соотношение одиночного цикла возбуждения (А) и фаз возбудимости (Б).

Для А: а – мембранный потенциал покоя; б – локальный ответ или ВПСП; в – восходящая фаза потенциала действия (деполяризация и инверсии); г – нисходящая фаза потенциала действия (реполяризация); д – отрицательный следовой потенциал (следовая деполяризация); е – положительный следовой потенциал (следовая гиперполяризация).

Для Б: а – исходный уровень возбудимости; б – фаза повышенной возбудимости; в – фаза абсолютной рефрактерности; г – фаза относительной рефрактерности; д – фаза супернормальной возбудимости; е – фаза субнормальной возбудимости.

После окончания фазы перезарядки мембраны возбудимость ее постепенно восстанавливается до исходного уровня – фаза относительной рефрактерности . Она продолжается до восстановления заряда мембраны, достигая величины критического уровня деполяризации. Так как в этот период мембранный потенциал покоя еще не восстановлен, то возбудимость ткани понижена и новое возбуждение может возникнуть только при действии сверхпорогового раздражителя.

Снижение возбудимости в фазу относительной рефрактерности связано с частичной инактивацией натриевых каналов и активацией калиевых. Периоду отрицательного следового потенциала соответствует повышенный уровень возбудимости (фаза вторичной экзальтации). Так как мембранный потенциал в эту фазу ближе к критическому уровню деполяризации по сравнению с состоянием покоя (исходной поляризацией), то порог раздражения снижен и новое возбуждение может возникнуть при действии раздражителей подпороговой силы.

В период развития положительного следового потенциала возбудимость ткани понижена – фаза субнормальной возбудимости (вторичной рефрактерности). В эту фазу мембранный потенциал увеличивается (состояние гиперполяризации мембраны), удаляясь от критического уровня деполяризации, порог раздражения повышается и новое возбуждение может возникнуть только при действии раздражителей сверхпороговой величины. Рефрактерность мембраны является следствием того, что натриевый канал состоит из собственно канала (транспортной части) и воротного механизма, который управляется электрическим полем мембраны. В канале предполагают наличие двух типов «ворот» – быстрых активационных (m) и медленных инактивационных (h). «Ворота» могут быть полностью открыты или закрыты, например, в натриевом канале в состоянии покоя «ворота» m закрыты, а «ворота» h – открыты. При уменьшении заряда мембраны (деполяризации) в начальный момент «ворота» m и h открыты – канал способен проводить ионы. Через открытые каналы ионы движутся по концентрационному и электрохимическому градиенту. Затем инактивационные «ворота» закрываются, т.е. канал инактивируется. По мере восстановления МП инактивационные «ворота» медленно открываются, а активационные быстро закрываются и канал возвращается в исходное состояние. Следовая гиперполяризация мембраны может возникать вследствие трех причин: во-первых, продолжающимся выходом ионов калия; во-вторых, открытием каналов для хлора и поступлением этих ионов в клетку; в-третьих, усиленной работой натрий-калиевого насоса.

Законы раздражения возбудимых тканей

Эти законы отражают определенную зависимость между действием раздражителя и ответной реакцией возбудимой ткани. К законам раздражения относятся: закон силы, закон раздражения Дюбуа-Реймона (аккомодации), закон силы-времени (силы-длительности).

Закон силы: чем больше сила раздражителя, тем больше величина ответной реакции. В соответствии с этим законом функционирует скелетная мышца. Амплитуда ее сокращений постепенно увеличивается с увеличением силы раздражителя вплоть до достижения максимальных значений. Это обусловлено тем, что скелетная мышца состоит из множества мышечных волокон, имеющих различную возбудимость. На пороговые раздражители отвечают только волокна, имеющие самую высокую возбудимость, амплитуда мышечного сокращения при этом минимальна. Увеличение силы раздражителя приводит к постепенному вовлечению волокон, имеющих меньшую возбудимость, поэтому амплитуда сокращения мышцы усиливается. Когда в реакции участвуют все мышечные волокна данной мышцы, дальнейшее повышение силы раздражителя не приводит к увеличению амплитуды сокращения.

Закон раздражения Дюбуа-Реймона (аккомодации): стимулирующее действие постоянного тока зависит не только от абсолютной величины силы тока, но и от скорости нарастания тока во времени. При действии медленно нарастающего тока возбуждение не возникает, так как происходит приспособление возбудимой ткани к действию этого раздражителя, что получило название аккомодации. Аккомодация обусловлена тем, что при действии медленно нарастающего раздражителя в мембране происходит повышение критического уровня деполяризации. При снижении скорости нарастания силы раздражителя до некоторого минимального значения ПД не возникает, так как деполяризация мембраны является пусковым стимулом к началу двух процессов: быстрого, ведущего к повышению натриевой проницаемости и тем самым обусловливающего возникновение потенциала действия, и медленного, приводящего к инактивации натриевой проницаемости и как следствие этого – к окончанию потенциала действия. При быстром нарастании стимула повышение натриевой проницаемости успевает достичь значительной величины прежде, чем наступит инактивация натриевой проницаемости. При медленном нарастании тока на первый план выступают процессы инактивации, приводящие к повышению порога генерации ПД. Способность к аккомодации различных структур неодинакова. Наиболее высокая она у двигательных нервных волокон, а наиболее низкая у сердечной мышцы, гладких мышц кишечника, желудка.

Рис.3. Зависимость между силой тока и временем его действия: А – реобаза; Б – удвоенная реобаза; В – кривая силы времени; а – полезное время действия тока; б – хронаксия

Закон силы-времени: раздражающее действие постоянного тока зависит не только от его величины, но и от времени, в течение которого он действует. Чем больше ток, тем меньше времени он должен действовать на возбудимые ткани, чтобы вызвать возбуждение (рис.3). Исследования зависимости силы-длительности показали, что она имеет гиперболический характер. Ток меньше некоторой минимальной величины не вызывает возбуждение, как бы длительно он не действовал, и чем короче импульсы тока, тем меньшую раздражающую способность они имеют. Причиной такой зависимости является мембранная емкость. Очень «короткие» токи не успевают разрядить эту емкость до критического уровня деполяризации. Минимальная величина тока, способная вызвать возбуждение при неограниченно длительном его действии, называется реобазой. Время, в течение которого ток, равный реобазе, вызывает возбуждение, называется полезным временем . Хронаксия – минимальное время, в течение которого ток, равный двум реобазам, вызывает ответную реакцию.

Литература

1. Физиология человека / Под ред. Покровского В.М., Коротько Г.Ф. – М.: Медицина, 2003. – 656 с.

2. Филимонов В.И. Руководство по общей и клинической физиологии. – М.: Медицинское информационное агентство, 2002. – 958 с.

3. Фундаментальная и клиническая физиология / Под ред. А.Г.Камкина, А.А.Каменского. – М.: Academia, 2004. – 1072 с.

Loading...Loading...