Вытеснение металлов. Самый активный металл - это какой? Практическое использование ряда активности металлов

Для анализа активности металлов используют либо электрохимический ряд напряжений металлов, либо их положение в Периодической таблице. Чем активнее металл, тем легче он будет отдавать электроны и тем более хорошим восстановителем он будет в окислительно-восстановительных реакциях.

Электрохимический ряд напряжений металлов.

Особенности поведения некоторых окислителей и восстановителей.

а) кислородсодержащие соли и кислоты хлора в реакциях с восстановителями обычно переходят в хлориды:

б) если в реакции участвуют вещества, в которых один и тот же элемент имеет отрицательную и положительную степени окисления - они встречаются в нулевой степени окисления (выделяется простое вещество).

Необходимые навыки.

1. Расстановка степеней окисления.
Необходимо помнить, что степень окисления - это гипотетический заряд атома (т.е. условный, мнимый), но он должен не выходить за рамки здравого смысла. Он может быть целым, дробным или равным нулю.

Задание 1: Расставьте степени окисления в веществах:

2. Расстановка степеней окисления в органических веществах.
Помните, что нас интересуют степени окисления только тех атомов углерода, которые меняют своё окружение в процессе ОВР, при этом общий заряд атома углерода и его неуглеродного окружения принимается за 0.

Задание 2: Определите степень окисления атомов углерода, обведённых рамкой вместе с неуглеродным окружением:

2-метилбутен-2: – =

уксусная кислота: –

3. Не забывайте задавать себе главный вопрос: кто в этой реакции отдаёт электроны, а кто их принимает, и во что они переходят? Чтобы не получалось, что электроны прилетают из ниоткуда или улетают в никуда.



Пример:

В этой реакции надо увидеть, что иодид калия может являться только восстановителем , поэтому нитрит калия будет принимать электроны, понижая свою степень окисления.
Причём в этих условиях (разбавленный раствор) азот переходит из в ближайшую степень окисления .

4. Составление электронного баланса сложнее, если формульная единица вещества содержит несколько атомов окислителя или восстановителя.
В этом случае это необходимо учитывать в полуреакции, рассчитывая число электронов.
Самая частая проблема - с дихроматом калия , когда он в роли окислителя переходит в :

Эти же двойки нельзя забыть при уравнивании, ведь они указывают число атомов данного вида в уравнении .

Задание 3: Какой коэффициент нужно поставить перед и перед

Задание 4: Какой коэффициент в уравнении реакции будет стоять перед магнием?

5. Определите, в какой среде (кислой, нейтральной или щелочной) протекает реакция.
Это можно сделать либо про продуктам восстановления марганца и хрома, либо по типу соединений, которые получились в правой части реакции: например, если в продуктах мы видим кислоту , кислотный оксид - значит, это точно не щелочная среда, а если выпадает гидроксид металла - точно не кислая. Ну и разумеется, если в левой части мы видим сульфаты металлов, а в правой - ничего похожего на соединения серы - видимо, реакция проводится в присутствии серной кислоты.

Задание 5: Определите среду и вещества в каждой реакции:

6. Помните, что вода - вольный путешественник, она может как участвовать в реакции, так и образовываться.

Задание 6: В какой стороне реакции окажется вода? Bо что перейдёт цинк?

Задание 7: Мягкое и жесткое окисление алкенов.
Допишите и уравняйте реакции, предварительно расставив степени окисления в органических молекулах:

(хол. р-р.)

(водн.р-р)

7. Иногда какой-либо продукт реакции можно определить, только составив электронный баланс и поняв, каких частиц у нас больше:

Задание 8: Какие продукты ещё получатся? Допишите и уравняйте реакцию:

8. Во что переходят реагенты в реакции?
Если ответ на этот вопрос не дают выученные нами схемы, то нужно проанализировать, какие в реакции окислитель и восстановитель - сильные или не очень?
Если окислитель средней силы, вряд ли он может окислить, например, серу из в , обычно окисление идёт только до .
И наоборот, если - сильный восстановитель и может восстановить серу из до , то - только до .

Задание 9: Во что перейдёт сера? Допишите и уравняйте реакции:

9. Проверьте, чтобы в реакции был и окислитель, и восстановитель.

Задание 10: Сколько ещё продуктов в этой реакции, и каких?

10. Если оба вещества могут проявлять свойства и восстановителя, и окислителя - надо продумать, какое из них более активный окислитель. Тогда второй будет восстановителем.

Задание 11: Кто из этих галогенов окислитель, а кто восстановитель?

11. Если же один из реагентов - типичный окислитель или восстановитель - тогда второй будет «выполнять его волю», либо отдавая электроны окислителю, либо принимая у восстановителя.

Пероксид водорода - вещество с двойственной природой , в роли окислителя (которая ему более характерна) переходит в воду, а в роли восстановителя - переходит в свободный газообразный кислород.

Задание 12: Какую роль выполняет пероксид водорода в каждой реакции?

Последовательность расстановки коэффициентов в уравнении.

Сначала проставьте коэффициенты, полученные из электронного баланса.
Помните, что удваивать или сокращать их можно только вместе. Если какое-либо вещество выступает и в роли среды, и в роли окислителя (восстановителя) - его надо будет уравнивать позднее, когда почти все коэффициенты расставлены.
Предпоследним уравнивается водород, а по кислороду мы только проверяем !

1. Задание 13: Допишите и уравняйте:

Не спешите, пересчитывая атомы кислорода! Не забывайте умножать, а не складывать индексы и коэффициенты.
Число атомов кислорода в левой и правой части должно сойтись!
Если этого не произошло (при условии, что вы их считаете правильно), значит, где-то ошибка.

Возможные ошибки.

1. Расстановка степеней окисления: проверяйте каждое вещество внимательно.
Часто ошибаются в следующих случаях:

а) степени окисления в водородных соединениях неметаллов: фосфин - степень окисления у фосфора - отрицательная ;
б) в органических веществах - проверьте ещё раз, всё ли окружение атома учтено;
в) аммиак и соли аммония - в них азот всегда имеет степень окисления ;
г) кислородные соли и кислоты хлора - в них хлор может иметь степень окисления ;
д) пероксиды и надпероксиды - в них кислород не имеет степени окисления , бывает , а в - даже ;
е) двойные оксиды: - в них металлы имеют две разные степени окисления, обычно только одна из них участвует в переносе электронов.

Задание 14: Допишите и уравняйте:

Задание 15: Допишите и уравняйте:

2. Выбор продуктов без учёта переноса электронов - то есть, например, в реакции есть только окислитель без восстановителя или наоборот.

Пример: в реакции свободный хлор часто теряется. Получается, что электроны к марганцу прилетели из космоса…

3. Неверные с химической точки зрения продукты: не может получиться такое вещество, которое вступает во взаимодействие со средой!

а) в кислой среде не может получиться оксид металла, основание, аммиак;
б) в щелочной среде не получится кислота или кислотный оксид;
в) оксид или тем более металл, бурно реагирующие с водой, не образуются в водном растворе.

Задание 16: Найдите в реакциях ошибочные продукты, объясните, почему они не могут получаться в этих условиях:

Ответы и решения к заданиям с пояснениями.

Задание 1:

Задание 2:

2-метилбутен-2: – =

уксусная кислота: –

Задание 3:

Так как в молекуле дихромата 2 атома хрома, то и электронов они отдают в 2 раза больше - т.е. 6.

Задание 5:

Если среда щелочная, то фосфор будет существовать в виде соли - фосфата калия.

Задание 6:

Так как цинк - амфотерный металл, в щелочном растворе он образует гидроксокомплекс . В результате расстановки коэффициентов обнаруживается, что вода должна присутствовать в левой части реакции :серная кислота (2 молекулы).

Задание 9:

(перманганат не очень сильный окислитель в растворе; обратите внимание, что вода переходит в процессе уравнивания вправо!)

(конц.)
(концентрированная азотная кислота очень сильный окислитель)

Задание 10:

Не забудьте, что марганец принимает электроны , при этом хлор их должен отдать .
Хлор выделяется в виде простого вещества .

Задание 11:

Чем выше в подгруппе неметалл, тем более он активный окислитель , т.е. хлор в этой реакции будет окислителем. Йод переходит в наиболее устойчивую для него положительную степень окисления , образуя йодноватую кислоту.

Разделы: Химия , Конкурс «Презентация к уроку»

Класс: 11

Презентация к уроку



















Назад Вперёд

Внимание! Предварительный просмотр слайдов используется исключительно в ознакомительных целях и может не давать представления о всех возможностях презентации. Если вас заинтересовала данная работа, пожалуйста, загрузите полную версию.

Цели и задачи:

  • Обучающая: Рассмотрение химической активности металлов исходя из положения в периодической таблице Д.И. Менделеева и в электрохимическом ряду напряжения металлов.
  • Развивающая: Способствовать развитию слуховой памяти, умению сопоставлять информацию, логически мыслить и объяснять происходящие химические реакции.
  • Воспитательная: Формируем навык самостоятельной работы, умение аргументировано высказывать свое мнение и выслушивать одноклассников, воспитываем в ребятах чувство патриотизма и гордость за соотечественников.

Оборудование: ПК с медиапроектором, индивидуальные лаборатории с набором химических реактивов, модели кристаллических решеток металлов.

Тип урока : с применением технологии развития критического мышления.

Ход урока

I. Стадия вызов.

Актуализация знаний по теме, пробуждение познавательной активности.

Блеф-игра: «Верите ли Вы, что…». (Слайд 3)

  1. Металлы занимают верхний левый угол в ПСХЭ.
  2. В кристаллах атомы металла связаны металлической связью.
  3. Валентные электроны металлов крепко связаны с ядром.
  4. У металлов, стоящих в главных подгруппах (А), на внешнем уровне обычно 2 электрона.
  5. В группе сверху вниз происходит увеличение восстановительных свойств металлов.
  6. Чтобы оценить реакционную способность металла в растворах кислот и солей, достаточно посмотреть в электрохимический ряд напряжения металлов.
  7. Чтобы оценить реакционную способность металла в растворах кислот и солей, достаточно посмотреть в периодическую таблицу Д.И. Менделеева

Вопрос классу? Что обозначает запись? Ме 0 – ne —> Me +n (Слайд 4)

Ответ: Ме0 – является восстановителем, значит вступает во взаимодействие с окислителями. В качестве окислителей могут выступать:

  1. Простые вещества (+О 2 , Сl 2 , S…)
  2. Сложные вещества (Н 2 О, кислоты, растворы солей…)

II. Осмысление новой информации.

В качестве методического приема предлагается составление опорной схемы.

Вопрос классу? От каких факторов зависят восстановительные свойства металлов? (Слайд 5)

Ответ: От положения в периодической таблице Д.И.Менделеева или от положения в электрохимическом ряду напряжения металлов.

Учитель вводит понятия: химическая активность и электрохимическая активность .

Пред началом объяснения ребятам предлагается сравнить активность атомов К и Li поположению в периодической таблице Д.И. Менделеева и активность простых веществ, образованными данными элементами по положению в электрохимическом ряду напряжения металлов. (Слайд 6)

Возникает противоречие: В соответствии с положением щелочных металлов в ПСХЭ и согласно закономерностям изменения свойств элементов в подгруппе активность калия больше, чем лития. По положению в ряду напряжения наиболее активным является литий.

Новый материал. Учитель объясняет в чем отличие химической от электрохимической активности и объясняет, что электрохимический ряд напряжений отражает способность металла переходить в гидратированный ион, где мерой активности металла является энергия, которая складывается из трех слагаемых (энергии атомизации, энергии ионизации и энергии гидротации). Материал записываем в тетрадь. (Слайды 7-10)

Вместе записываем в тетрадь вывод: Чем меньше радиус иона, тем большее электрическое поле вокруг него создается, тем больше энергии выделяется при гидротации, следовательно более сильные восстановительные свойства у этого металла в реакциях.

Историческая справка: выступление ученика о создании Бекетовым вытеснительного ряда металлов. (Слайд 11)

Действие электрохимического ряда напряжения металлов ограничивается только реакциями металлов с растворами электролитов (кислот, солей).

Памятка:

  1. Уменьшаются восстановительные свойства металлов при реакциях в водных растворах в стандартных условиях (250°С, 1 атм.);
  2. Металл, стоящий левее, вытесняет металл, стоящий правее из их солей в растворе;
  3. Металлы, стоящие до водорода, вытесняют его из кислот в растворе (искл.: HNO3);
  4. Ме (до Al) + Н 2 О —> щелочь + Н 2
    Другие Ме (до Н 2) + Н 2 О —> оксид + Н 2 (жесткие условия)
    Ме (после Н 2) + Н 2 О —> не реагируют

(Слайд 12)

Ребятам раздаются памятки.

Практическая работа: «Взаимодействие металлов с растворами солей» (Слайд 13)

Осуществите переход:

  • CuSO 4 —> FeSO 4
  • CuSO 4 —> ZnSO 4

Демонстрация опыта взаимодействия меди и раствора нитрата ртути (II).

III. Рефлексия, размышление.

Повторяем: в каком случае пользуемся таблицей Менделеева, а в каком случае необходим ряд напряжение металлов. (Слайды 14-15) .

Возвращаемся к начальным вопросам урока. На экране высвечиваем вопрос 6 и 7. Анализируем какое высказывание не верное. На экране – ключ (проверка задания 1). (Слайд 16) .

Подводим итоги урока :

  • Что нового узнали?
  • В каком случае возможно пользоваться электрохимическим рядом напряжения металлов?

Домашнее задание : (Слайд 17)

  1. Повторить из курса физики понятие «ПОТЕНЦИАЛ»;
  2. Закончить уравнение реакции, написать уравнения электронного баланса: Сu + Hg(NO 3) 2 →
  3. Даны металлы (Fe, Mg, Pb, Cu) – предложите опыты, подтверждающие расположение данных металлов в электрохимическом ряду напряжения.

Оцениваем результаты за блеф-игру, работу у доски, устные ответы, сообщение, практическую работу.

Используемая литература:

  1. О.С. Габриэлян, Г.Г. Лысова, А.Г. Введенская «Настольная книга для учителя. Химия 11 класс, часть II» Издательство Дрофа.
  2. Н.Л. Глинка «Общая химия».
металлов

В многих химических реакциях участвуют простые вещества, в частности металлы. Однако разные металлы проявляют разную активность в химических взаимодействиях, и от этого зависит, будет протекать реакция или нет.

Чем большая активность металла, тем энергичнее он реагирует с другими веществами. По активностью все металлы можно расположить в ряд, который называют рядом активности металлов, или вытеснительный ряд металлов, или рядом напряжений металлов, а также электрохимическим рядом напряжений металлов. Этот ряд впервые исследовал выдающийся украинский ученый М. М. Бекетов, поэтому этот ряд называют также рядом Бекетова.

Ряд активности металлов Бекетова имеет такой вид (приведены наиболее употребительные металлы):

К > Ca > Na > Mg > Al > Zn > Fe > Ni > Sn > Pb > >H 2 > Cu > Hg > Ag > Au.

В этом ряду металлы расположены с уменьшением их активности. Среди приведенных металлов наиболее активный калий, а наименее активный - золото. С помощью этого ряда можно определить, какой металл активнее от другого. Также в этом ряде присутствует водород. Конечно же, водород не является металлом, но в этом ряду его активность принята за точку отсчета (своеобразный ноль).

Взаимодействие металлов с водой

Металлы способны вытеснять водород не только из растворов кислот, но и из воды. Так же, как и с кислотами, активность взаимодействия металлов с водой увеличивается слева направо.

Металлы, стоящие в ряду активности до магния, способны реагировать с водой при обычных условий. При взаимодействии этих металлов образуются щелочи и водород, например:

Другие металлы, стоящие до водорода в ряду активностей, также могут взаимодействовать с водой, но это происходит в более жестких условиях. Для взаимодействия через раскаленные металлические опилки пропускают перегретый водяной пар. В таких условиях гидроксиды уже существовать не могут, поэтому продуктами реакции являются оксид соответствующего металлического элемента и водород:

Зависимость химических свойств металлов от места в ряду активности

активность металлов увеличивается

Вытесняют водород из кислот

Не вытесняют водород из кислот

Вытесняют водород из воды, образуют щелочи

Вытесняют водород из воды при высокой температуре, образуют оксиды

3 водой не взаимодействуют

С водного раствора соли вытеснить невозможно

Можно получить вытеснением более активным металлом из раствора соли или из расплава оксида

Взаимодействие металлов с солями

Если соль растворима в воде, то атом металлического элемента в ней может быть замещен атомом более активного элемента. Если погрузить в раствор купрум(ІІ) сульфата железную пластинку, то через некоторое время на ней выделится медь в виде красного налета:

Но если в раствор купрум(ІІ) сульфата погрузить серебряную пластину, то никакой реакции происходить не будет:

Купрум можно вытеснить любым металлом, который стоит левее в ряду активности металлов. Однако металлы, которые стоят в самом начале ряда,- натрий, калий и т.д. - для этого не пригодны, потому что они настолько активны, что будут взаимодействовать не с солью, а с водой, в которой эта соль растворена.

Вытеснение металлов из солей более активными металлами очень широко используют в промышленности для извлечения металлов.

Взаимодействие металлов с оксидами

Окислы металлических элементов способны взаимодействовать с металлами. Более активные металлы вытесняют менее активные из оксидов:

Но, в отличие от взаимодействия металлов с солями, в этом случае оксиды необходимо расплавить, чтобы реакция произошла. Для добыча металла из оксида можно использовать любой металл, что расположен в ряду активности левее, даже наиболее активный натрий и калий, ведь в расплавленном оксиде вода не содержится.

Взаимодействие металлов с оксидами используют в промышленности для извлечения других металлов. Наиболее практичный для этого метода металл - алюминий. Он достаточно широко распространен в природе и дешевый в производстве. Можно также использовать и более активные металлы (кальций, натрий, калий), но они, во-первых, дороже алюминия, а во-вторых, через сверхвысокую химическую активность их очень сложно сохранять на заводах. Такой способ извлечения металлов с использованием алюминия называют алюмінотермією.


Когда люди слышат слово «металл», то обычно оно ассоциируется с холодным и твердым веществом, проводящим электрический ток. Однако металлы и их сплавы могут очень сильно отличаться между собой. Есть те, которые относятся к группе тяжелых, эти вещества имеют самую высокую плотность. А некоторые, к примеру, литий, настолько легки, что могли бы плавать в воде, если бы только не вступали с ней в активную реакцию.

Какие металлы активны наиболее всего?

Но какой металл проявляет наиболее интенсивные свойства? Самый активный металл - это цезий. По активности среди всех металлов он занимает первое место. Также его «собратьями» считаются франций, находящийся на втором месте, и унуненний. Но о свойствах последнего ученым пока известно мало.

Свойства цезия

Цезий - это элемент, который, подобно легко расплавить в руках. Сделать это, правда, можно лишь при одном условии: если цезий находится в стеклянной ампуле. В противном случае металл может быстро вступить в реакцию с окружающим воздухом - воспламенится. А взаимодействие цезия с водой сопровождается взрывом - таков в своем проявлении самый активный металл. Это ответ на вопрос о том, почему так сложно помещать в контейнеры цезий.

Для того чтобы его поместить внутрь пробирки, необходимо, чтобы она была изготовлена из специального стекла и наполнена аргоном или водородом. Температура плавления цезия составляет 28,7 о С. При комнатной температуре металл находится в полужидком состоянии. Цезий представляет собой вещество золотисто-белого цвета. В жидком состоянии металл хорошо отражает свет. Пары цезия имеют зеленовато-синий оттенок.

Каким способом был открыт цезий?

Самый активный металл был первым химическим элементом, наличие которого в поверхности земной коры было обнаружено при помощи метода спектрального анализа. Когда ученые получили спектр металла, то в нем они увидели две линии небесно-голубого цвета. Таким образом и получил свое название этот элемент. Слово caesius в переводе с латинского языка значит «небесно-голубой».

История открытия

Его открытие принадлежит немецким исследователям Р. Бунзену и Г. Кирхгофу. Уже тогда ученые интересовались, какие металлы активные, а какие - нет. В 1860 году исследователи изучали состав воды из Дюркгеймского водохранилища. Делали они это при помощи спектрального анализа. В образце воды ученые обнаружили такие элементы, как стронций, магний, литий, кальций.

Затем они решили проанализировать каплю воды при помощи спектроскопа. Тогда они и увидели две ярко-голубые линии, находящиеся недалеко друг от друга. Одна из них по своему положению практически совпадала с линией металла стронция. Ученые решили, что выявленное ими вещество является неизвестным и отнесли его к группе щелочных металлов.

В том же году Бунзен написал письмо своему коллеге-фотохимику Г. Роско, в котором рассказывал об этом открытии. А официально о цезии было сообщено 10 мая 1860 года на заседании ученых Берлинской академии. Через шесть месяцев Бунзен смог выделить около 50 граммов хлороплатинита цезия. Ученые переработали 300 тонн минеральной воды и выделили порядка 1 кг хлорида лития в качестве побочного продукта, чтобы в конечном счете получить самый активный металл. Это говорит о том, что цезия в минеральных водах содержится очень мало.

Сложность получения цезия постоянно толкает ученых на поиск содержащих его минералов, одним из которых является поллуцит. Но извлечение цезия из руд всегда оказывается неполным, в процессе эксплуатации цезий очень быстро рассеивается. Это делает его одним из самых труднодоступных веществ в металлургии. В земной коре, к примеру, содержится 3,7 граммов цезия на одну тонну. А в одном литре морской воды лишь 0,5 мкг вещества представляют собой самый активный металл. Это приводит к тому, что извлечение цезия является одним из самых трудоемких процессов.

Получение в России

Как было указано, главным минералом, из которого получают цезий, является поллуцит. А также этот наиболее активный металл можно получить из редкого авогадрита. В промышленности используется именно поллуцит. Добыча его после распада Советского Союза в России не велась, несмотря на то что еще в те времена были обнаружены гигантские запасы цезия в Вороньей тундре под Мурманском.

К тому моменту, когда отечественная промышленность смогла позволить себе добычу цезия, лицензия на разработку этого месторождения была приобретена компанией из Канады. Сейчас извлечение цезия производит новосибирская компания ЗАО «Завод редких металлов».

Использование цезия

Этот металл используется для изготовления различных фотоэлементов. А также соединения цезия применяются в специальных отраслях оптики - в изготовлении инфракрасных приборов, Цезий используют в изготовлении прицелов, которые позволяют заметить технику и живую силу врага. Также его применяют для изготовления особых металлогалогенных ламп.

Но этим не исчерпывается круг его применения. На основе цезия был создан также ряд медицинских препаратов. Это лекарства для лечения дифтерии, язвенных болезней, шоков и шизофрении. Как и соли лития, соли цезия обладают нормотимическими свойствами - или, попросту, способны стабилизировать эмоциональный фон.

Металл франций

Еще одним из металлов с самыми интенсивными свойствами является франций. Он получил свое название в честь родины первооткрывательницы металла. М. Пере, родившаяся во Франции, открыла новый химический элемент в 1939 году. Он принадлежит к числу таких элементов, о которых даже сами исследователи-химики затрудняются делать какие-либо выводы.

Франций является самым тяжелым металлом. При этом и самый активный металл - это франций, наряду с цезием. Этим редким сочетанием - высокой химической активностью и низкой ядерной устойчивостью и обладает франций. У его самого долгоживущего изотопа период полураспада составляет всего лишь 22 минуты. Франций используется для обнаружения другого элемента - актиния. А также соли франция раньше предлагалось применять для обнаружения раковых опухолей. Однако из-за высокой стоимости эту соль невыгодно производить.

Сравнение самых активных металлов

Унуненний - это пока еще не открытый металл. Он будет занимать первое место в восьмой строке периодической системы. Разработка и исследования этого элемента проводятся в России в Объединенном институте ядерных исследований. Этот металл должен будет обладать также очень высокой активностью. Если же сравнивать уже известные франций и цезий, то самым высоким потенциалом ионизации - 380 кДж/моль - будет обладать франций.

У цезия этот показатель составляет 375 кДж/моль. Но реагирует франций все же не так быстро, как цезий. Таким образом, цезий - самый активный металл. Это - ответ (химия чаще всего является тем предметом, в программе которого можно встретить подобный вопрос), который может быть полезным как на уроке в школе, так и в профессионально-техническом училище.

  • Физические и химические выражения порций, долей и количества вещества. Атомная единица массы, а.е.м. Моль вещества, постоянная Авогадро. Молярная масса. Относительные атомная и молекулярная масса вещества. Массовая доля химического элемента
  • Строение вещества. Ядерная модель строения атома. Состояние электрона в атоме. Заполнение электронами орбиталей, принцип наименьшей энергии, правило Клечковского, принцип Паули, правило Хунда
  • Периодический закон в современной формулировке. Периодическая система. Физический смысл периодического закона. Структура периодической системы. Изменение свойств атомов химических элементов главных подгрупп. План характеристики химического элемента.
  • Периодическая система Менделеева. Высшие оксиды. Летучие водородные соединения. Растворимость, относительные молекулярные массы солей, кислот, оснований, оксидов, органических веществ. Ряды электроотрицательности, анионов, активности и напряжений металлов
  • Вы сейчас здесь: Электрохимический ряд активности металлов и водорода таблица, электрохимический ряд напряжений металлов и водорода, ряд электроотрицательности химических элементов, ряд анионов
  • Химическая связь. Понятия. Правило октета. Металлы и неметаллы. Гибридизация электронных орбиталей. Валентные электроны, понятие валентности, понятие электроотрицательности
  • Виды химической связи. Ковалентная связь - полярная, неполярная. Характеристики, механизмы образования и виды ковалентной связи. Ионная связь. Степень окисления. Металлическая связь. Водородная связь.
  • Химические реакции. Понятия и признаки, Закон сохранения массы, Типы (соединения, разложения, замещения, обмена). Классификация: Обратимые и необратимые, Экзотермические и эндотермические, Окислительно-восстановительные, Гомогенные и гетерогенные
  • Важнейшие классы неорганических веществ. Оксиды. Гидроксиды. Соли. Кислоты, основания, амфотерные вещества. Важнейшие кислоты и их соли. Генетическая связь важнейших классов неорганических веществ.
  • Химия неметаллов. Галогены. Сера. Азот. Углерод. Инертные газы
  • Химия металлов. Щелочные металлы. Элементы IIА группы. Алюминий. Железо
  • Закономерности течения химических реакций. Скорость химической реакции. Закон действующих масс. Правило Вант-Гоффа. Обратимые и необратимые химические реакции. Химическое равновесие. Принцип Ле Шателье. Катализ
  • Растворы. Электролитическая диссоциация. Понятия, растворимость, электролитическая диссоциация, теория электролитическoй диссоциации, степень диссоциации, диссоциация кислот, оснований и солей, нейтральная, щелочная и кислая среда
  • Реакции в растворах электролитов + Окислительно-восстановительные реакции. (Реакции ионного обмена. Образование малорастворимого, газообразного, малодиссоциирующего вещества. Гидролиз водных растворов солей. Окислитель. Восстановитель.)
  • Классификация органических соединений. Углеводороды. Производные углеводородов. Изомерия и гомология органических соединений
  • Важнейшие производные углеводородов: спирты, фенолы, карбонильные соединения, карбоновые кислоты, амины, аминокислоты
  • Loading...Loading...