Исследование кинетики взаимодействия тиосульфата натрия с серной кислотой. Характеристика окислительно-восстановительных свойств серной кислоты


Тиосерная кислота - неорганическое соединение, двухосновная сильная кислота с формулой H 2 SO 3 S, бесцветная вязкая жидкость, реагирует с водой. Термически неустойчива.Быстро, но не мгновенно, разлагается в водных растворах. В присутствии серной кислоты разлагается мгновенно.

Образует соли - тиосульфаты.Тиосульфа́ты - соли и сложные эфиры тиосерной кислоты, H 2 S 2 O 3 . Тиосульфаты неустойчивы, поэтому в природе не встречаются. Наиболее широкое применение имеют тиосульфат натрия(Na 2 S 2 O 3) и тиосульфат аммония ((NH 4) 2 SO 3 S).

Получение тиосерной кислоты: 1) Реакция сероводорода и триоксида серы в этиловом эфире при низких температурах: ; 2) Действие газообразного хлористого водорода на тиосульфат натрия:

Химические свойства тиосерной кислоты:

1)Термически очень неустойчива:

2)В присутствии серной кислоты разлагается:

3)Реагирует с щелочами:

4)Реагирует с галогенами:

Тиосульфаты получаются:

1) при взаимодействии растворов сульфитов с сероводородом:

2)При кипячении растворов сульфитов с серой:

3)При окислении полисульфидов кислородом воздуха: ,

Химические свойства тиосульфатов:

1)При нагревании до 220 °C распадается по схеме:

2)Тиосульфаты - сильные восстановители:С сильными окислителями, например, свободным хлором, окисляется до сульфатов или серной кислоты:

3)Более слабыми или медленно действующими окислителями, например, иодом, переводится в соли тетратионовой кислоты:

4)Выделить тиосерную кислоту (тиосульфат водорода) реакцией тиосульфата натрия с сильной кислотой невозможно, так как она неустойчива и тут же разлагается:

5)Расплавленный кристаллогидрат Na 2 S 2 O 3 ·5H 2 O очень склонен к переохлаждению.

Практическое применение тиосульфата натрия: в фотографии,аналитической и органической химии,горнорудной промышленности, текстильной и целлюлозно-бумажной промышленности, пищевой промышленности, медицине.

Биологическая роль серы: Как и элементы органогены, сера в виде отдельного элемента не обладает биологическим значением. Ее биологическая роль состоит в том, что она входит в структуру таких аминокислот, как цистеин и метионин, которые и выполняют в животных организмах (в том числе у человека), ряд незаменимых функций.

Круговорот серы в природе: Растения получают ее из почвы в виде серной кислоты; во всяком другом виде сера для зеленых растений недоступна. В теле растения серная кислота путем сложных, пока еще не разъясненных химических преобразований служит материалом для построения белковых веществ, в которых сера находится уже в совершенно иной форме, чем в серной кислоте. В то время, как сера в виде серной кислоты соединена с кислородом, газом, находящимся в воздухе и поддерживающим всякое горение и дыхание, в белках сера уже оторвана от кислорода и соединена с другим элементом с углеродом, который сам по себе представляет обыкновенный уголь. При разложении белков после смерти животного или растения, гнилостные бактерии отрывают серу из белков и выпускают ее в соединении с новым элементом водородом. В таком соединении сера представляет собой тот отвратительный вонючий газ, обладающий запахом тухлых яиц, который всегда образуется при гниении белков и о котором уже была речь раньше. В виде сероводорода сера и попадает в почву.

15. Химия элементов 5 А группы. Распространенность в природе, минералы. Водородные и кислородные соединения. Оксиды и гидроксиды различных степеней окисления. Изменение кислотно-основных и окислительно-восстановительных свойств соединений мышьяка, сурьмы и висмута в степенях окисления +3 и +5.

Химия элементов 5 А группы: В группу входят азот N, фосфор P, мышьяк As, сурьма Sb и висмут Bi . Элементы главной подгруппы V группы, имеют пять электронов на внешнем электронном уровне. В целом характеризуются как неметаллы. Способность к присоединению электронов выражена значительно слабее, по сравнению с халькогенами и галогенами. Все элементы подгруппы азота имеют электронную конфигурацию внешнего энергетического уровня атома ns²np³ и могут проявлять в соединениях степени окисления от −3 до +5 . Вследствие относительно меньшей электроотрицательности связь с водородом менее полярна,чем связь с водородом халькогенов и галогенов. Водородные соединения этих элементов не отщепляют в водном растворе ионы водорода, иными словами, не обладают кислотными свойствами. Первые представители подгруппы - азот и фосфор - типичные неметаллы, мышьяк и сурьма проявляют металлические свойства, висмут - типичный металл. Таким образом, в данной группе резко изменяются свойства составляющих её элементов: от типичного неметалла до типичного металла. Химия этих элементов очень разнообразна и, учитывая различия в свойствах элементов, при изучении её разбивают на две подгруппы - подгруппу азота и подгруппу мышьяка.

Распространенность в природе, минералы. Азот - важнейшая составная часть атмосферы (78% ее объема). В природе встречается в белках, в залежах нитрата натрия. Природный азот состоит из двух изотопов: 14 N (99,635% массы) и 15 N (0,365% массы).Фосфор входит в состав всех живых организмов. В природе встречается в виде минералов. Фосфор широко применяется в медицине, сельском хозяйстве, авиации, при добыче драгметаллов.Мышьяк, сурьма и висмут распространены достаточно широко, в основном в виде сульфидных руд. Мышьяк - один из элементов жизни, способствующий росту волос. Соединения мышьяка ядовиты, но в малых дозах могут оказывать лечебное свойства. Мышьяк применяется в медицине и ветеринарии.

Водородные и кислородные соединения.1)Для азота известны оксиды , отвечающие всем его положительным степеням окисления (+1,+2,+3,+4,+5): N 2 O, NO, N 2 O 3 , NO 2 , N 2 O 4 , N 2 O 5 . При обычных условиях азот с кислородом не взаимодействует, только при пропускании через их смесь электрического разряда. Молекула азотной кислоты HNO 3 состоит из трех элементов, соединенных между собой ковалентными связями. Это молекулярное вещество, содержащее предельно окисленный атом азота. Однако валентность азота в кислоте равна четырем вместо обычной степени окисления азота. Аммиак - одно из важнейших водородных соединений азота. Он имеет огромное практическое значение. Жизнь на Земле во многом обязана некоторым бактериям, которые могут перерабатывать азот воздуха в аммиак.2)Соединения фосфора с водородом представляет собой газообразный фосфористый водород, или фосфин PH 3 (бесцветный ядовитый газ с чесночным запахом, воспламеняется на воздухе). У фосфора несколько оксидов: оксид фосфора (III) P 2 O 3 (белое кристаллическое вещество, образуется при медленном окислении фосфора в условиях недостатка кислорода, ядовит) и оксид фосфора (V) P 2 O 5 (образуется из P 2 O 3 при его нагревании, растворим в воде с образованием фосфористой кислоты средней силы) наиболее важные. Наиболее характерный свойством второго является гигроскопичность (поглощение паров воды из воздуха), при этом он расплывается аморфную массу HPO 3 . При кипячении P 2 O 5 образуется фосфорная кислота H 3 PO 4 (белое кристаллическое вещество, расплывается на воздухе, t пл =42,35 о С,не ядовита, растворима в воде, электролит, получают, окисляя 32%-ую азотную кислоту). Фосфаты почти всех металлов (кроме щелочных) нерастворимы в воде. Дигидрофосфаты хорошо растворимы в воде.

Оксиды и гидроксиды различных степеней окисления. N 2 O, NO, N 2 O 3 , NO 2 , N 2 O 4 , N 2 O 5 ,P 2 O 3, P 2 O 5, P 2 O 3,As2O3, As2O5, Sb2O3, Sb2O5, Вi2О3, Вi2О5, Вi(ОН)3.

Изменение кислотно-основных и окислительно-восстановительных свойств соединений мышьяка, сурьмы и висмута в степенях окисления +3 и +5.

Азот, нахождение в природе. Соединение с водородом,галогенами, кислородом. Аммиак, получение, свойства и его соли. Азотоводородная кислота, соли азиды. Амиды, имиды и нитриды металлов.Биологическая роль азота.

Азо́т - 1s 2 2s 2 2p 3. Элемент 15-й группы (по устаревшей классификации - главной подгруппы пятой группы) второго периода периодической системы химических элементов Д. И. Менделеева, с атомным номером7. Обозначается символом N . Простое вещество азот - достаточно инертный при нормальных условиях двухатомный газ без цвета, вкуса и запаха (формула N 2), из которого на три четверти состоит земная атмосфера.

Нахождение в природе: В большой части азот находится в природе в свободном состоянии. Свободный азот является главной составной частью воздуха, который содержит 78, 2 % (об.) азота. Над одним квадратным километром земной поверхности в воздухе находиться 8 млн. т азота. Общее содержание его в земной коре оценивается величиной порядка 0.03 мол. доли, % . Азот входит в состав сложных органических соединений- белков, которые входят в состав всех живых организмов. В результате отмирания последних и тления их останков образуются более простые азотные соединения, которые при благоприятных условиях, (главным образом - отсутствие влаги) могут накапливаться. Именно такого происхождения, по – видимому, залежи NaNO3в Чили, имеющие некоторое промышленное значение в производстве связанного азота, то есть в виде соединений. Также в природе встречается такой минерал, как индийская селитра K NO3 . По словам известного советского микробиолога В. Л. Омелянского, «азот более драгоценен с общебиологической точки зрения, чем самые редкие из благородных металлов».

Соединение с водородом,галогенами, кислородом:1) Аммиак - соединение азота с водородом. Имеет важное значение в химической промышленности. Формула аммиака - NH5.2) Азотная кислота HNO3 - сильная одноосновная кислота. В разбавленных растворах она полностью распадается на ионы Н* и NO.3) С галогенами азот непосредственно не реагирует, косвенными путями получены NF 3 , NCl 3 , NBr 3 и NI 3 , а также несколько оксигалогенидов (соединений, в состав которых, кроме азота, входят атомы и галогена, и кислорода, например, NOF 3).Галогениды азота неустойчивы и легко разлагаются при нагревании (некоторые - при хранении) на простые вещества. Так, NI 3 выпадает в осадок при сливании водных растворов аммиака и иодной настойки. Уже при легком сотрясении сухой NI 3 взрывается:2NI 3 = N 2 + 3I 2 . 4) Для азота известны окислы, по составу формально отвечающие всем валентностям от. единицы до пяти: N2 O – закись азота, NO – окись азота, N2 O3 – азотистый ангидрид, NO2 – двуокись азота, N2 O5 – азотный ангидрид.

Аммиак, получение, свойства и его соли.Аммиак - соединение азота с водородом. Имеет важное значение в химической промышленности. Формула аммиака - NH5.

Получение аммиака

1) В промышленности получение аммиака связано с прямым его синтезом из простых веществ. Как уже отмечалось, источником азота служит воздух, а водород получают из воды.3H 2 + N 2 -> 2NH 3 + Q .2) Получение аммиака в лабораторных условиях производят из смеси твёрдого хлорида аммония (NH 4 Cl) и гашенной извести. При нагревании интенсивно выделяется аммиак.2NH 4 Cl + Ca(OH) 2 -> CaCl 2 + 2NH 3 + 2H 2 O.

Свойства аммиака: 1)присоединяет протон, образуя ион аммония:

2) Взаимодействуя с кислотами даёт соответствующие соли аммония:

3) Амиды щелочных металлов получают, действуя на них аммиаком:

4) Амиды являются более сильными основаниями, чем гидроксиды, а следовательно, подвергаются в водных растворах необратимому гидролизу:

5) При нагревании аммиак проявляет восстановительные свойства. Так, он горит в атмосфере кислорода, образуя воду и азот. Окисление аммиака воздухом на платиновом катализаторе даёт оксиды азота, что используется в промышленности для получения азотной кислоты:

6) Окисляя аммиак гипохлоритом натрия в присутствии желатина, получают гидразин:

7) С галогеноалканами аммиак вступает в реакцию нуклеофильного присоединения, образуя замещённый ион аммония (способ получения аминов):

Соли аммиака: Соли аммония - твёрдые кристаллические вещества, не имеющие окраски. Почти все они растворяются в воде, и им характерны все те же свойства, которые имеют известные нам соли металлов. Они взаимодействуют со щелочами, при этом выделяется аммиак.
NH 4 Cl + KOH -> KCl + NH 3 + H 2 O
При этом, если дополнительно воспользоваться индикаторной бумагой, то эту реакцию можно использовать - как качественную реакцию на соли аммония . Соли аммония взаимодействуют с другими солями и кислотами. Например,
(NH 4) 2 SO 4 + BaCl 2 -> BaSO 4 + 2NH 4 Cl
(NH 4) 2 CO 3 + 2HCl 2 -> 2NH 4 Cl + CO 2 + H 2 O
Соли аммония неустойчивы к нагреванию. Некоторые из них, например хлорид аммония (или нашатырь), - возгоняются (испаряются при нагревании), другие, например нитрит аммония, - разлагаются
NH 4 Cl -> NH 3 + HCl
NH 4 NO 2 -> N 2 + 2H 2 O
Последняя химическая реакция - разложение нитрита аммония - используется в химических лабораториях для получения чистого азота.

Азотоводородная кислота, соли азиды. Азо́тистоводоро́дная кислота́ , азоими́д , HN 3 - кислота, соединение азота с водородом. Бесцветная, летучая, чрезвычайно взрывоопасная (взрывается при нагреве, ударе или трении) жидкость с резким запахом. Очень токсична. Её хорошо растворимые соли тоже очень ядовиты. Механизм токсичности аналогичен цианидам (блокирование цитохромов). Азиды- химические соединения, содержащие одну или несколько групп - N 3 , производные азотистоводородной кислоты (См.Азотистоводородная кислота) HN 3 . К неорганическим А. относятся соли HN 3 [например, А. натрия NaN 3 , А. свинца Pb(N 3) 2 ], галогеназиды (например, хлоразид CIN 3) и др. Большинство неорганических А. взрывается при лёгком ударе или трении даже во влажном состоянии; таков, например, Азид свинца, применяющийся как инициирующее взрывчатое вещество. Исключение составляют NaN 3 и др. соли щелочных и щёлочноземельных металлов. Исходным материалом для получения др. солей HN 3 , а также самой кислоты обычно служит А. натрия, получаемый пропусканием закиси азота через расплавленный амид натрия: NaNH 2 + ON 2 = NaN 3 +H 2 O. Все органические А., алкильные и арильные (общей формулы RN 3) или ацильные ( 2)N 3 .

Амиды, имиды и нитриды металлов.

Амиды металлов MeNH 2 - соединения, содержащие ионы NH 2 − . Амиды являются аналогами гидроксидов, но являются более сильными основаниями. Некоторые амиды растворяются в аммиаке, причем амид растворим в аммиаке так же, как и гидроксид этого металла в воде. Аммиачные растворы амидов проводят электрический ток.В амиде один или два атома водорода могут быть замещены на органические радикалы, как, например, в диизопропиламиде лития LiN(C 3 H 7) 2

ИМИДЫ МЕТАЛЛОВ -соед. общей ф-лы М2/nNН, где п - степень окисления металла М. Легко гидролизуются водой, образуя гидроксид металла и NH3. При нагр. переходят в нитриды металлов или разлагаются на своб. металл, N2 и Н2. Получают имиды металлов нагреванием амидов металлов в вакууме при 400-600 °С. Известно небольшое число имидов металлов. Наиб. изучен имид лития Li2NH, к-рый существует в двух кристаллич. модификациях; до 83 °С устойчива форма с тетрагон. решеткой (а = 0,987 нм, b = 0,970 нм, с = 0,983 нм, z = 16; плотн. 1,20 г/см3), выше 83°С - с кристаллич. решеткой типа антифлюорита (плотн. 1,48 г/см3). Получено множество орг. производных имидов металлов, в к-рых атом водорода замещен на орг. pадикал. П. И.Чукуров.
Нитриды - соединения азота с менее электроотрицательными элементами, например, с металлами (AlN;TiN x ;Na 3 N;Ca 3 N 2 ;Zn 3 N 2 ; и т. д.) и с рядом неметаллов (NH 3 , BN, Si 3 N 4).

Соединения азота с металлами чаще всего являются тугоплавкими и устойчивыми при высоких температурах веществами, например, эльбор. Нитридные покрытия придают изделиям твёрдость, коррозионную стойкость; находят применение в энергетике, космической технике.

Биологическая роль азота. Ч истый (элементарный) азот сам по себе не обладает какой-либо биологической ролью. Биологическая роль азота обусловлена его соединениями. Так в составе аминокислот он образует пептиды и белки (наиболее важный компонент всех живых организмов); в составе нуклеотидов образует ДНК и РНК (посредством которых передается вся информация внутри клетки и по наследству); в составе гемоглобина участвует в транспорте кислорода от легких по органам и тканей.

Описание продукта

Гипосульфит натрия внешне выгледит в виде бесцветных кристаллов, которые хорошо растворяются в воде. Он широко применяется в промышленности и медицине. Считается сильным восстановителем.
Гипосульфиты (тиосульфаты) неустойчивы, поэтому в природе не встречаются.

Химическая формула : Na2S2O3 или Na2SO3S
Синонимы : тиосульфа́т на́трия, антихлор, сульфидотриоксосульфат натрия, натрий серноватистокислый.

Применение гипосульфата (тиосульфата) натрия.

Его применяют, чтобы удалить следы хлора после отбеливания тканей, для быстрого извлечения серебра из руд, фиксажа в фотографии, в качестве реактива в иодометрии, противоядия при отравлениях токсичной ртутью, а также другими тяжёлыми металлами, цианидами.

В годы первой мировой войны гипосульфитом пропитывали марлевые повязки и фильтры противогазов для защиты органов дыхания от ядовитого хлора. Его же используют в качестве реактива в аналитической и органической химии, им нейтрализуют сильные кислоты, обезвреживают тяжелые металлы и их токсические соединения. Реакции взаимодействия тиосульфата с различными веществами являются основой йодометрии и бромометрии.

В медицине гипосульфит натрия используется для дезинфекции кишечника, лечения чесотки, в качестве противовоспалительного и противоожогового средства. Также используется как оптимальная среда для определения молекулярных весов по понижению точки замерзания.

В пищевой промышленности гипосульфит натрия зарегистрирован в качестве пищевой добавки E539. Особенно часто его применяют в пекарском производстве. Гипосульфит натрия делает тесто более пластичным, а хлеб становится более рыхлым и объемным. На поверхности изделия не формируются трещины, а выпечка приобретает более привлекательный внешний вид. Количество ввода в состав зависит от вида хлеба и составляет от 0,001 до 0,002 процента от общего веса муки.

В фотографии использование гипосульфита (тиосульфата) натрия в качестве фиксажа основана на способности тиосульфат-иона переводить нерастворимые в воде светочувствительные ионы серебра в растворимые несветочувствительные комплексы.
Фиксажи условно делятся на нейтральные, кислые, дубящие и быстрые.
Нейтральный фиксаж представляет собой раствор тиосульфата натрия в воде. Для упрочнения эмульсионного слоя фотографии используют дубящие фиксажи. В качестве дубящих
веществ в разных рецептурах могут использоваться тетраборат натрия, борная кислота, хромокалиевые или алюмокалиевые квасцы и формалин.

В кожевенном производстве свойство дубящих фиксажей с успехом применяют при выделке кожевенно-мехового полуфабриката на этапе дубления. Такое дубление называют серным. Гипосульфит под воздействием добавляемой в состав раствора кислоты выделяет серу, которая обволакивает коллагеновую структуру волокон в толще шкуры. В результате мездра получается мягкой и пластичной. Шкуры выдубленные с помощью гиросульфта (тиосульфата) натрия, не уступают по качеству изделиям, выделанным алюминием или хромом.

В текстильной промышленности гипосульфит применяют для удаления следов хлора после отбеливания тканей.

Технические характеристики

Массовая доля, %

Гипосульфит натрия (фото)

Гипосульфит натрия (технический)

Тиосульфата натрия (Na 2 S 2 O 3 · 5H 2 O), мин. 99,0 98,5
нерастворимых в воде веществ, макс. 0,01 0,03
железа (Fe), макс. 0,001 0,002
сернистого натрия (Na 2 S), макс. 0,001 0,001
кальция, магния и веществ, нерастворимых в аммониевых растворах, макс. 0,02 не норм.
тяжелых металлов (Pb), макс. 0,001 не норм.
pH водного раствора при 20 о С, макс. 6,5-9,5 не норм.
внешний вид водного раствора бесцветный, прозрачный. не норм.

Где купить гипосульфит (тиосульфат) натрия?

Гипосульфит натрия (тиосульфат натрия) в фасовках 100г., 250г., 500г., 1кг. продается в Новосибирске в интернет магазине "Для дела". В рабочие часы забрать его можно самовывозом или воспользоваться услугами курьера. Для покупателей из других регионов эта продукция отправляется Почтой РФ или транспортными компаниями.

атрия тиосульфат Natrii thiosulfas

Na 2 S 2 0 3 -5H 2 0 M. м. 248,17

Натрия тиосульфат не является природным продуктом, его получают синтетически.

В промышленности натрия тиосульфат получают из отходов газового производства. Этот метод несмотря на многостадий-ность экономически выгоден, так как сырьем являются отходы газового производства и, в частности, светильный газ, образу-ющийся при коксовании угля.

Светильный газ всегда содержит примесь сероводорода, ко-торый улавливается поглотителями, например гидроксидом кальция. При этом получается сульфид кальция.


Но сульфид кальция в процессе получения подвергается гидролизу, поэтому реакция идет несколько иначе -с обра-зованием гидросульфида кальция.


Гидросульфид кальция при окислении кислородом воздуха образует тиосульфат кальция.


При сплавлении полученного тиосульфата кальция с сульфа-том натрия или карбонатом натрия получается тиосульфат нат-рия Na 2 S 2 0 3 .


После упаривания раствора выкристаллизовывается тио-сульфат натрия, который и является фармакопейным препара-том.

По внешнему виду тиосульфат натрия (II) представляет со-бой бесцветные прозрачные кристаллы солоновато-горького вкуса. Очень легко растворим в воде. При температуре 50 °С плавится в своей кристаллизационной воде. По структуре яв-ляется солью тиосерной кислоты (I).


Как видно из формулы этих соединений, степень окисления атомов серы в их молекулах различна. Один атом серы имеет степень окисления +6, другой -2. Присутствие атомов серы в различных степенях окисления обусловливает их свойства.

Так, имея в молекуле S 2- , натрия тиосульфат проявляет вос-становительную способность.

Как и сама тиосерная кислота, соли ее не являются проч-ными соединениями и легко разлагаются под влиянием кислот и даже таких слабых, как угольная.


Это свойство натрия тиосульфата разлагаться кислотами с выделением серы используется для идентификации препарата. При добавлении к раствору натрия тиосульфата хлороводород-ной кислоты наблюдается помутнение раствора вследствие вы-деления серы.


Весьма характерной для натрия тиосульфата является реак-ция его с раствором нитрата серебра. При этом выделяется осадок белого цвета (тиосульфат серебра), который быстро желтеет. При стоянии под влиянием влаги воздуха осадок чер-неет вследствие выделения сульфида серебра.


Если при действии на натрия тиосульфат нитратом серебра сразу образуется черный осадок, это указывает на загрязнение препарата сульфидами, которые при взаимодействии с нитра-том серебра сразу выделяют осадок сульфида серебра.


Чистый препарат при действии раствора нитрата серебра темнеет не сразу.

В качестве реакции подлинности может быть использована также реакция взаимодействия натрия тиосульфата с раство-ром хлорида железа (III). При этом образуется тиосульфат окисного железа, окрашенный в фиолетовый цвет. Окраска бы-стро исчезает вследствие восстановления этой соли до бесцвет-ных солей закисного железа (FeS 2 0 3 и FeS 4 0 6).


При взаимодействии с йодом натрия тиосульфат действует как восстановитель. Принимая электроны от S 2- , йод восста-навливается до I - , а натрия тиосульфат окисляется йодом до тетратиоиата натрия.


Аналогично восстанавливается хлор в хлороводород.


При избытке хлора выделяющаяся сера окисляется до сер-ной кислоты.


На этой реакции было основано применение натрия тиосуль-фата для поглощения хлора в первых противогазах.

В препарате не допускается наличие примесей мышьяка, се-лена, карбонатов, сульфатов, сульфидов, сульфитов, солей каль-ция.

ГФ X допускает наличие примесей хлоридов, солей тяжелых металлов в пределах эталона.

Количественное определение натрия тиосульфата проводят йодометрическим методом, в основу которого положена реак-ция его взаимодействия с йодом. ГФ требует содержания тио-сульфата натрия в препарате не менее 99% и не более 102% (за счет допустимого предела выветривания препарата).

Применение натрия тиосульфата основано на его свойстве выделять серу. Препарат применяется в качестве противоядия при отравлениях галогенами, цианом и циановодородной кис-лотой.


Образующийся роданид калия гораздо менее ядовит, чем цианид калия. Поэтому при отравлении циановодородной кис-лотой или ее солями в качестве первой помощи следует при-менить натрия тиосульфат. Препарат может применяться также при отравлении соединениями мышьяка, ртути, свинца; при этом образуются неядовитые сульфиды.

Натрия тиосульфат применяется также при аллергических заболеваниях, артритах, невралгии - внутривенно в виде 30% водного раствора. В связи с этим ГФ X приводит 30% раствор натрия тиосульфата для инъекций (Solutio Natrii thiosulfatis 30% pro injectionibus).

Выпускается в порошках и в ампулах по 5, 10, 50 мл 30% раствора.

Натрия тиосульфат содержит кристаллизационную воду, ко-торая легко выветривается, поэтому хранить ее следует в про-хладном месте, в хорошо закупоренных склянках из темного стекла, так как свет способствует его разложению. Растворы при стоянии мутнеют от выделяющейся серы. Этот процесс ускоряется в присутствии диоксида углерода. Поэтому склянки или бутыли с растворами натрия тиосульфата снабжаются хлоркальциевой трубкой, наполненной натронной известью, ко-торая ее поглощает.

Цель занятия: экспериментальное определение факторов, влияющих на скорость химической реакции (катализаторы, площадь соприкосновения) и на химическое равновесие.

План занятия:

Материалы и оборудование: штатив с пробирками, стеклянная палочка, диет, вода, порошок: алюминия, иода, хлорида калия, растворы: хлорида железа (III), роданида калия, хлорида калия.

Лабораторный практикум

Опьгг 1. Влияние катализатора на скорость химической реакции.

В сухую пробирку внести шпателем небольшое количество порошка алюминия и мелко растертого иода. Содержимое пробирки перемешать стеклянной палочкой, добавить каплю воды. Как влияет вода на скорость реакции? На основании опытов 1-3 сделать вывод о влиянии концентрации, температуры и катализатора на скорость химических реакций.

Опыт 2. Смещение химического равновесия при изменении концентраций реагирующих веществ.

В пробирку влить приблизительно 1 мл 0, 0025 М раствора хлорида железа (III) и добавить такой же объем 0,0025 М раствора роданида калия. Как меняется окраска раствора? Полученный раствор разлить поровну в четыре пробирки. Одну пробирку оставить в качестве контрольной. Во вторую пробирку добавить несколько капель насыщенного раствора хлорида железа (III), в третью - несколько капель насыщенного раствора роданида калия, в четвертую - несколько кристалликов хлорида калия. Сравнить окраску растворов в пробирках. Составить уравнение происходящей обратимой реакции. Написать математическое выражение константы химического равновесия данного процесса Какие вещества находятся в растворе при состоянии химического равновесия? Какое вещество придает раствору красную окраску? Как изменяется интенсивность окраски раствора при добавлении хлорида железа(III), роданида калия, хлорида калия? В каком направлении смещается равновесие исследуемой системы при этом? Концентрацию каких веществ и как нужно изменить, чтобы сместить химическое равновесие вправо? Влево?

Вопросы и задания

1. В чем причина изменения скорости реакции при введении катализатора?

2. Какие реакции называются обратимыми? Чем характеризуется состояние химического равновесия? Что называется константой равновесия, от каких факторов она зависит?

3. Какими внешними воздействиями можно нарушить химическое равновесие? В каком направлении смешается равновесие при изменении температуры? Давления?

Лабораторная работа № 11

Тема: Основные закономерности протекания химических реакций.

Цель занятия: Получить и исследовать свойства наиболее распространенных простых веществ и соединений.

План занятия:

1. Повторить основные вопросы химической кинетики.

2. По заданию преподавателя провести лабораторный эксперимент.

Приборы и посуда: 1) Часы с секундной стрелкой или секундомер. 2) Мерный цилиндр емк. 20 мл.3) Термометр на 100°. 4) Запаян­ная стеклянная трубка с двуокисью азота 5) Штатив с за­жимом и кольцом. 6) Горелка. 7) Химические стаканы емк. 200 мл2 шт. 8) Асбестированная сетка. 9) Штатив с пробирками.

Реактивы: Хлористый калий КС1.

Раствора: 1) Серная кислота H 2 S0 4 (1:200). - 2) Серноватисто­кислый натрий Na2S20 3 (Ш н 1:200).

Лабораторный практикум

Опыт 1.

Зависимость скорости реакции от концентрации реагирующих веществ

а) К раствору Na 2 S 2 0 3 прилить немного H 2 SO 4 . Наблюдать наступающее помутнение раствора. Помутнение вызвано взаи­модействием гипосульфита и серной кислоты, в результате чего выделяется свободная сера. Реакция идет по уравнению

Na 2 S 2 0 3 + H 2 S0 4 = Na 2 S0 4 + SO 2 + H 3 0 + S

Время, которое проходит от начала реакции до заметного помутнения раствора, зависит от скорости реакции.

б) В три большие пробирки налить разбавленный (1:200)

раствор Na 2 S 2 O 3 в первую - 5 мл, во вторую -10мл,

в третью-15 мл. К содержимому первой пробирки добавить затем 10 мл воды и второй - 5 мл воды.

В три другие пробирки налить по 5 мл разбавленной (1:200) серной кислоты.

В каждую пробирку с Na 2 S 2 0s прилить при помешивании по 5 мл раствора H 2 S04 и точно отметить по секундной стрелке часов, через сколько секунд после приливания кислоты наблю­дается образование мути в каждой пробирке.

Сформулировать вывод о зависимости скорости реакции- от концентраций реагирующих веществ для данного опыта.

Опыт 2. Зависимость скорости реакции от температуры

Для опыта взять растворы Na 2 S 2 0 3 и H 2 S0 4 тех же кон­центраций, что и в предыдущем опыте.

Налить в три большие пробирки по 10 мл раствора гипо­сульфита, в другие три пробирки - по 10мл серной кислоты и разделить их на три пары: по пробирке с Na 2 S 2 0 3 и с H 2 S0 4 в каждой паре.

Отметить температуру воздуха в лаборатории и время по секундной стрелке часов, слить вместе растворы первой пары пробирок и отметить, через сколько секунд появляется муть.

Вторую пару пробирок поместить в химический стакан с водой и нагреть до температуры на 10° выше комнатной. За тем­пературой следить по термометру, опущенному в воду. Слить со­держимое пробирок и отметить, через сколько секунд появится муть.

Повторить опыт с третьей парой пробирок, нагрев их в ста­кане с водой до температуры на 20° выше комнатной.

Записать результаты по следующей форме:

Составить график, иллюстрирующий зависимость скорости реакции от температуры для данного опыта. Для этого на оси абсцисс нанести в определенном масштабе температуру опытов, а на оси ординат величины, обратные времени появления мути (единица, деленная на число секунд).

Лабораторная работа № 8

Тема: Растворы. Приготовление растворов процентной концентрации

Цель занятия: приготовить растворы заданной процентной концентрации.

План занятия:

1. Повторить основные вопросы химической кинетики.

2. По заданию преподавателя провести лабораторный эксперимент.

Лабораторный практикум

Опыт1. Приготовление 10 % - ного раствора хлорида натрия массой 50 г.

Вычислить, какая масса хлорида натрия требуется для приготовления 10 % - ного раствора массой 50 г. Отвесить в предварительно взвешенном бюксе эту массу соли на технохимических весах с точностью до 0,01 г. Рассчитать, какой объем воды необходим для растворения взятой навески. Отмерить мензуркой этот объем воды и растворить в нем отвешенную соль. Полученный раствор вылить в мерный цилиндр и определить ареометром плотность раствора, а затем массовую долю хлорида натрия. Вычислить погрешность опыта

Контрольные вопросы и задачи.

1. Что такое раствор? Что называется растворителем?

2. Как можно ускорить процесс растворения? Какие явления сопровождают растворение?

3. Что такое кристаллогидраты и кристаллизационная вода? Как выражают зависимость растворимости твердых веществ от температуры? Как изменяется растворимость газов с повышением температуры и давления?

4. Что называется концентрацией раствора? Какие растворы называются молярными, нормальными?

Лабораторная работа № 9

Тема: Приготовление растворов молярной и нормальной концентрации.

Цель занятия: приготовить растворы заданной молярной и нормальной концентрации.

План занятия:

1. Повторить основные вопросы химической кинетики.

2. По заданию преподавателя провести лабораторный эксперимент.

Материалы и оборудование: набор ареометров, мерный цилиндр на 500 мл, крист: хлорид натрия, кристаллогидрат хлорида бария, растворы: серной кислоты, соляной кислоты.

Лабораторный практикум

Тиосульфа́т на́трия (антихлор , гипосульфит , сульфидотриоксосульфат натрия ) - Na 2 S 2 O 3 или Na 2 SO 3 S, соль натрия и тиосерной кислоты. В обычных условиях существует в виде пентагидрата Na 2 S 2 O 3 ·5H 2 O.

Бесцветные моноклинные кристаллы.

Молярная масса 248,17 г/моль.

Растворим в воде (41,2% при 20 о С, 69,86% при 80 о С).

При 48,5 °C плавится в своей кристаллизационной воде, обезвоживается около 100 о С.

При нагревании до 220 °C распадается по схеме:

4Na 2 S 2 O 3 →(t) 3Na 2 SO 4 + Na 2 S 5

Na 2 S 5 →(t) Na 2 S + 4S

Тиосульфат натрия сильный восстановитель:

Сильными окислителями, например, свободным хлором, окисляется до сульфатовили серной кислоты:

Na 2 S 2 O 3 + 4Cl 2 + 5H 2 O → 2H 2 SO 4 + 2NaCl + 6HCl.

Более слабыми или медленно действующими окислителями, например, иодом, переводится в соли тетратионовой кислоты:

2Na 2 S 2 O 3 + I 2 → 2NaI + Na 2 S 4 O 6 .

Приведённая реакция очень важна, так как служит основой иодометрии. Следует отметить, что в щелочной среде окисление тиосульфата натрия иодом может идти до сульфата.

Выделить тиосерную кислоту (тиосульфат водорода) реакцией тиосульфата натрия с сильной кислотой невозможно, так как она неустойчива и тут же разлагается:

Na 2 S 2 O 3 + H 2 SO 4 → Na 2 SO 4 + H 2 S 2 O 3

H 2 S 2 O 3 → H 2 SO 3 + S

Расплавленный тиосульфат натрия очень склонен к переохлаждению.

  1. Получение.

    окислением полисульфидов Na;

    кипячение избытка серы с Na 2 SO 3:

S + Na 2 SO 3 →(t) Na 2 S 2 O 3 ;

    взаимодействием H 2 S и SO 2 с NaOHпобочный продукт в производстве NaHSO 3 , сернистых красителей, при очистке промышленных газов от S:

4SO 2 + 2H 2 S + 6NaOH → 3Na 2 S 2 O 3 + 5H 2 O;

    кипячение избытка серы с гидроксидом натрия:

3S + 6NaOH → 2Na 2 S + Na 2 SO 3 + 3H 2 O

затем по приведённой выше реакции сульфит натрия присоединяет серу, образуя тиосульфат натрия.

Одновременно в ходе этой реакции образуются полисульфиды натрия (они придают раствору жёлтый цвет). Для их разрушения в раствор пропускают SO 2 .

    чистый безводный тиосульфат натрия можно получить реакцией серыс нитритом натрияв формамиде. Эта реакция количественно протекает (при 80 °C за 30 минут) по уравнению:

2NaNO 2 + 2S → Na 2 S 2 O 3 + N 2 O

  1. Качественный анализ.

    1. Аналитические реакции на катион натрия.

1. Реакция с ацетатом диоксоуран(VI)цинка Zn(UO 2 ) 3 (CH 3 COO) 8 c образованием жёлтого кристаллического осадка (фармакопейная реакция - ГФ) или жёлтых кристаллов тетра- и октаэдрической формы, нерастворимых в уксусной кислоте (МКС). Для повышения чувствительности реакции следует нагреть исследуемую смесь на предметном стекле.

NaCl + Zn(UO 2) 3 (CH 3 COO) 8 + CH 3 COOН + 9 H 2 O

NaZn(UO 2) 3 (CH 3 COO) 9 · 9 H 2 O + HCl

Мешающие ионы: избыток ионов K + , катионы тяжёлых металлов (Hg 2 2+ , Hg 2+ , Sn 2+ , Sb 3+ , Bi 3+ , Fe 3+ и др.). Реакция используется как дробная после удаления мешающих катионов.

2. Окрашивание бесцветного пламени горелки в жёлтый цвет (ГФ).

3. Реакция с пикриновой кислотой с образованием кристаллов пикрата натрия жёлтого цвета игольчатой формы, исходящих из одной точки (МКС).

Error: Reference source not found

Реакция используется как дробная только в отсутствие мешающих ионов (K + , NH 4 + , Ag +).

4. Реакция с гексагидроксостибатом(V) калия K с образованием белого кристаллического осадка, растворимого в щелочах.

NaCl + K
Na + KCl

Условия проведения реакции: а) достаточная концентрация Na + ; б) нейтральная реакция раствора; в) проведение реакции на холоду; г) потирание стеклянной палочкой о стенку пробирки. Мешающие ионы: NH 4 + , Mg 2+ и др.

В кислой среде реагент разрушается с образованием белого аморфного осадка метасурьмяной кислоты HSbO 3 .

K + HCl
KCl + H 3 SbO 4 + 2 H 2 O

H 3 SbO 4
HSbO 3  + H 2 O

Loading...Loading...