Современные линии безопалубочного формования. Продаётся Бетонный завод (завод ЖБИ)

Всё чаще руководство крупных заводов ЖБИ и домостроительных комбинатов применяют на производстве линии безопалубочного формования ЖБИ. Эта технология была известна ещё в 70-х годах в СССР, но в связи с решениями «государственных преступников» в 90-х отрасль её применения была разрушена до основания. Сейчас задачи чиновников изменились не сильно, поэтому на рынке представлено только зарубежное оборудование БОФ. Это: экструдеры (Elematic), сплитформеры (Weiler, Echo), вибропрессы (Tensyland, Technospan).

Линии БОФ позволяют изготовить: пустотные плиты, сваи, балки, дорожные плиты, конструкции заборов, стеновые и межкомнатные перегородки, лотки, перемычки и другие ЖБИ в больших количествах, высокого качества. Однако не всегда производство с применением БОФ может быть экономически оправдано и не всегда импортное оборудование - значит лучшее. По своей сути всё это оборудование работает по одному принципу: «загрузил бетон - на выходе получил ЖБИ», однако экструдеры, сплитформеры и вибропрессы имеют различную конструкцию и связанные с этим особенности.

Экструдер подаёт бетон на формующий элемент машины при помощи шнека. Учитывая постоянный контакт рабочих механизмов машины с жёсткой смесью, они быстро изнашиваются, однако готовые изделия получаются очень высокого качества.

Конструкция сплитформера предусматривает установку вибраторов на формующую оснастку машины. Замена оснастки или другое техническое обслуживание сплитформера занимает много времени.

Механизм работы вибропресса значительно проще и заключается в уплотнении смеси перед формообразующей оснасткой. Однако этот тип машин БОФ предъявляет очень высокие требования к бетону и любое нарушение технологии приготовления бетонной смеси ведёт к браку на производстве и поломке оборудования.

Отсутствие «защиты от дурака». Линии БОФ, представленные в России - это полностью импортное оборудование производства Испании, Финляндии других стран. Импортное оборудование не имеет гарантированной защиты от различных производственных случайностей, часто имеющих место в России. Оборудование всех типов линий (независимо от особенностей) требует использования бетона высокого качества и не допускает попадания в механизмы фракций наполнителя больше заданного размера. Любой «случайный» болт, гайка или крупный камень могут вывести формовочную машину из строя. В реальных российских условиях обеспечить высокое качество бетонной смеси, поступающей на завод, бывает очень проблематично. Качество смеси - не единственное требование. Очистка машины от остатков бетона по завершению формования и прочие обязательные процедуры требуют наличия дополнительного оборудования и особого соблюдения регламента производственных работ. Именно из-за отсутствия высококвалифицированных специалистов в цехах заводов ЖБИ в 70-х годах прошлого века технология БОФ не нашла своего применения.

Стоимость линий безопалубочного формования ЖБИ

Стоимость, как и производительность линий БОФ, в несколько раз выше по сравнению с реализацией технологии с использованием классических металлоформ на производстве ЖБИ. Инвестиции в такое производство могут быть целесообразны лишь при обеспечении постоянного высокого спроса на железобетонные изделия (не просто высокого, а очень высокого спроса - с учётом огромной производительности данных линий).

Средняя стоимость комплекта оборудования БОФ под ключ составляет около 60 млн. рублей! Высокая стоимость отличает и обычные запасные части к линиям БОФ, которая на деле усугубляется долгими сроками поставки необходимых запасных частей.

Трудности модернизации линий. Производство различных видов ЖБИ на линиях БОФ стало возможным благодаря съёмным формообразующим оснасткам, однако переоборудовать такую линию под другой тип производства без капитальных вложений просто невозможно. Также необходимо помнить о сложностях операции замены оснастки на сплитформере и, опять же, учитывать среднюю стоимость оснастки под одно изделие - около 1 млн. рублей.

Проблема согласования рабочих чертежей. Несмотря на высокое заявленное количество изделий, которое с технической точки зрения может быть изготовлено на линиях БОФ, количество альбомов согласованных рабочих чертежей намного меньше. А использовать при многоэтажном строительстве несогласованные изделия, просто невозможно.

На практике внедрение столь «капризных» линий безопалубочного формования бывает оправдано только при гарантированном обеспечении широкого сбыта продукции (на несколько лет вперёд) и соблюдении самых высоких требований к организации производства.

Москва 1981

Печатается по решению секции заводской технологии бетона и железобетона НТС НИИЖБ Госстроя СССР от 6 марта 1981 г.

Изложена технология производства предварительно-напряженных железобетонных конструкций безопалубочным методом на всех переделах (приготовление бетонной смеси, подготовка стальных стендов, укладка и натяжение арматуры, формование, термообработка, резка полосы затвердевшего бетона на изделия и их транспортирование). Приведены требования к качеству готовых изделий.

ПРЕДИСЛОВИЕ

В последние годы в СССР получает развитие безопалубочное производство железобетонных конструкций на линейных стендах, на которых методом непрерывного формования можно изготавливать изделия постоянного по длине стенда сечения: многопустотные панели перекрытий, плоские и корытообразные плиты, однослойные и трехслойные стеновые панели и т.д.

Настоящие Рекомендации предназначаются для практического использования на заводах сборного железобетона, где будет внедряться безопалубочное производство железобетонных конструкций на линейных стендах, оснащенных самоходными формующими агрегатами и другим оборудованием, закупленным у фирмы «Макс Рот» (ФРГ) или воспроизводимым в СССР по лицензии этой фирмы, а также описывают порядок технологического процесса.

Безопалубочный метод производства с помощью самоходных формующих агрегатов предусматривает специальные требования к качеству бетонных смесей, их транспортированию к формующим агрегатам, управлению непрерывно движущимся формующим агрегатом, укладке и натяжению арматуры, термообработке, распалубке и транспортированию изделий.

Рекомендации составлены на основании практической проверки положений технической документации оборудования фирмы «Макс Рот» в производственных условиях на Северском заводе ЖБИ Главсредуралстроя Минтяжстроя СССР.

Рекомендации разработаны НИИЖБ Госстроя СССР (кандидаты техн. наук С.П. Радошевич, Е.З. Аксельрод, М.В. Младова, В.Н. Ярмаковский, Н.Н. Куприянов) при участии Главсредуралстроя Минтяжстроя СССР (инженеры Е.П. Варнавский, С.Н. Поиш, В.Н. Хлыбов) и УралпромстройНИИпроекта Госстроя СССР (кандидаты техн. наук А.Я. Эпп, Р.В. Сакаев, Т.В. Кузина, И.В. Филиппова, Ю.Н. Карнет, инж. В.В. Анищенко).

Дирекция НИИЖБ

ОБЩИЕ ПОЛОЖЕНИЯ

1.1. Настоящие Рекомендации распространяются на изготовление предварительно-напряженных железобетонных изделий шириной до 1,5 м и высотой до 30 см (многопустотные панели перекрытий и стеновые панели) из тяжелого и легкого бетонов безопалубочным методом.

1.3. Особенностями безопалубочного производства по лицензии фирмы «Макс Рот» являются:

многоступенчатое непрерывное формование изделий из жестких бетонных смесей;

осуществление вибрационного воздействия на бетонную смесь рабочими органами путем контакта только со смесью (поверхностное послойное уплотнение);

непрерывное перемещение уплотняющих органов машины относительно укладываемой бетонной смеси.

Технологическая линия безопалубочного производства преднапряженных железобетонных изделий должна иметь следующий комплект оборудования:

стальные стенды размером 150 ´ 4 м с масляными нагревательными регистрами под ними (технологические линии с воспроизводимым в СССР оборудованием могут иметь стенды меньших размеров);

гидравлические натяжные устройства для группового натяжения арматуры и компенсации потерь натяжения при нагреве стенда и арматуры во время термообработки (групповые гидродомкраты);

гидродомкрат типа «Пауль» для одиночного натяжения арматуры (одиночный гидродомкрат);

самоходный раскладчик арматуры с отклоняющим и отрезным устройствами;

бухтодержатели проволочной или прядевой арматуры;

самоходный формующий агрегат с бункерами-дозаторами;

тележки с термоизолирующим покрывалом для покрытия свежеотформованной бетонной полосы на время термообработки;

вибронож для резки массива сырого бетона;

пилы с алмазным диском для резки затвердевшего бетона;

самоходную подъемно-транспортную машину с пневмоприсосками для снятия со стенда и транспортирования готовых изделий;

машину для чистки стенда;

установку для нагрева масла (теплоносителя) типа МТ-3000 (фирма «Хайнц») или НЕ-2500 (фирма «Керхер»).

Кроме того, технологическая линия должна иметь специальный пост мойки формовочного агрегата.

1.4. Особенность формования заключается в том, что формующий агрегат, выполненный в виде портала, на котором смонтированы раздаточные бункера-дозаторы, три ступени уплотняющих виброэлементов, подвижные пустотообразователи, формообразующие и разделительные подвижные элементы, система смазки и пластификации стенда и органы управления, передвигается с помощью плавно регулируемого канатно-натяжного гидравлического устройства. При этом формующий агрегат посредством автоматического устройства укладывает и вдавливает поперечную верхнюю стержневую арматуры и заглаживает открытую поверхность изделия.

1.5. Формующий агрегат позволяет путем соответствующей переналадки изготавливать различные по ширине и толщине изделия. При этом суммарная ширина формуемых изделий не превышает 3,6 м, высота не более 30 см.

1.6. Для изготовления изделий могут применяться бетонные смеси с жесткостью 20 - 40 с (ГОСТ 10181 -81).

2. ТЕХНОЛОГИЯ ИЗГОТОВЛЕНИЯ ЖЕЛЕЗОБЕТОННЫХ КОНСТРУКЦИЙ БЕЗОПАЛУБОЧНЫМ МЕТОДОМ

Требования к бетонной смеси

2.1. Формование многопустотных панелей и сплошных плит производится из бетонной смеси на плотном заполнителе с проектной маркой бетона по прочности на сжатие 300 - 500.

2.2. Для формования многопустотных панелей и сплошных плит могут применяться бетонные смеси с жесткости (25 ± 5) с по ГОСТ 10181 -81 при скорости формования (1,0 ± 0,2) м/мин.

2.3. Для приготовления бетона следует использовать цемент с нормальной густотой цементного теста (НГЦТ) не более 27 %. Применение цементов с большей НГЦТ может привести к нарушению соотношения между песком и цементом и, следовательно, к плохой формуемости смеси.

2.4. Песок должен соответствовать требованиям ГОСТ 10268-70. Наличие в песке зерен крупностью более 10 мм не допускается.

Прочность заполнителя должна не менее чем в 2 раза превышать прочность бетона .

2.6. С целью обеспечения требований по жесткости бетонной смеси и прочности бетона для расчета и корректирования состава бетонной смеси необходимо определять следующие характеристики сырьевых материалов:

для цемента

активность R ц , МПа - в каждой партии;

НГНТ, % - 1 раз в смену;

плотность ρ, г/см 3 - по каждому виду цемента;

для песка

насыпная плотность g , кг/м 3 - 1 раз в смену;

стандарт (среднеквадратичное отклонение) зерен крупностью более 5 мм в смену, % - в каждой партии;

модуль крупности М кр - 1 раз в смену;

загрязненность (отмучивание), % - 1 раз в смену;

естественная влажность, % - 1 раз в смену;

для щебня

плотность ρ, г/см 3 - для каждого карьера;

насыпная плотность g , кг/м 3 - 1 раз в смену;

стандарт зерен крупностью более 5 мм в смену, % - в каждой партии;

загрязненность, % - 1 раз в смену;

прочность (дробимость), МПа - в каждой партии;

естественная влажность, % - 1 раз в смену.

По полученным характеристикам заводская лаборатория производит расчет состава бетонной смеси, руководствуясь положениями, изложенными в пп. - настоящих Рекомендаций.

Щ = Щ р - 0,01Щ р · (к + f ), (2)

где к и f - стандарты зерен крупностью более 5 мм в смену соответственно в щебне и песке, %;

Щ р - расчетное количество щебня, кг.

В этом случае расход смешанного песка П см и смешанного щебня Щ см определяется по формулам

(3)

где с и d - соответственно количество песка в щебне и щебня в песке, %;

Щ см = Щ + П - П см. (4)

2.10. Корректирование расхода материалов в зависимости от влажности заполнителей W, наличия песка в щебне и щебня в песке, активности цемента R ц , НГЦТ, пустотности щебня a проводят, если вновь полученная при испытании величина будет отличаться от используемой ранее следующим образом:

W - на ± 0,2 %; R - на ± 2,5 МПа; НГЦТ - на ± 0,5 %;

a - на ± 1,0; М кр - на ± 0,1.

2.11. Прочность бетона определяется по результатам испытания образцов-кубов, отформованных из контрольной пробы бетона с пригрузом, удельное давление которого составляет 4 · 10 -3 МПа. Объемная масса свежеотформованных образцов должна быть равна теоретической (расчетной) объемной массе с допуском ± 2 %. Контрольные кубы пропариваются вместе с изделием на стенде.

Испытание образцов для определения прочности производится в горячем состоянии (по 3 образца на стенд).

2.12. Формование стеновых панелей и блоков производится из бетонных смесей на пористом заполнителе, при этом используются бетоны: конструкционный - марок M150 - M200, конструкционно-теплоизоляционный - марок M50 - M100 и теплоизоляционный - марок M15 - M25.

2.13. При изготовлении конструкционно-теплоизоляционного легкого бетона марок M50 - M100 следует применять смесь керамзитового гравия фракции 5 - 10 мм марки по насыпной плотности не выше 500 и фракции 10 - 20 мм марки по насыпной плотности не выше 400, керамзитовый песок марки по насыпной плотности не выше 800, удовлетворяющие требованиям ГОСТ 9759-76.

Для изготовления теплоизоляционного слоя из крупнопористого бетона M15 - M25 рекомендуется применять керамзитовый гравий фракции 10 - 20 марки по насыпной плотности не более 350.

При изготовлении конструкционного керамзитобетона марок M150 - M200 необходимо применять керамзитовый гравий фракции 5 - 10 мм марки по прочности не ниже H125.

2.14. Удобоукладываемость бетонной смеси для конструкционного керамзитобетона должна характеризоваться жесткостью в пределах 20 - 40 с по ГОСТ 10181 -81.

2.15. Рабочая дозировка материалов на замес выдается заводской лабораторией не реже раза в смену с обязательной проверкой жесткости бетонной смеси первых замесов.

2.16. Дозирование цемента, воды и заполнителей должно осуществляться по ГОСТ 7473 -76.

Дозирование керамзитового гравия и пористого песка следует производить объемно-весовым способом с корректировкой состава смеси на основе контроля насыпной плотности крупного пористого заполнителя и песка в весовом дозаторе.

2.17. Приготовление бетонной смеси для тяжелого конструкционного и конструкционно-теплоизоляционного легкого бетона рекомендуется производить в смесителях принудительного действия.

Приготовление бетонной смеси для теплоизоляционного слоя из крупнопористого бетона следует производить в бетоносмесителях гравитационного действия.

2.18. Продолжительность перемешивания бетонной смеси заданной жесткости устанавливается заводской лабораторией в соответствии с ГОСТ 7473 -76 и соблюдается с точностью ± 0,5 мин.

2.19. Контроль режима перемешивания производится не реже двух раз в смену.

2.20. Жесткость бетонной смеси, поступающей из каждого бетоносмесителя, проверяется не менее трех раз при формовании одного стенда.

Подготовка стендов

2.21. После съема готовых изделий производят чистку стенда путем передвижения по нему очистительной машины, устанавливаемой на стенд с помощью крана.

2.22. Очистительная машина может работать в двух режимах:

«нормальная очистка» - при очистке стенда без присохшего бетона;

«полный режим щетки» - при наличии на стенде остатков присохшего бетона.

2.23. Для очистки большого количества остатков сырого бетона на очистительную машину навешивают специальный скребок в виде ковша с боковыми стенками. Для очистки затвердевшего бетона, имеющего сильное сцепление со стендом, используют скребковую балку, подвешиваемую на машину. Скорость движения машины подбирают таким образом, чтобы стенд был очищен за один проход машины.

2.24. Стенд с малым количеством мелких остатков крошек бетона очищают струей воды, подаваемой из шланга под давлением.

Укладка и натяжение арматуры

2.25. Укладку арматуры производят после очистки стенда. Протяжку проволоки (прядей) осуществляют с помощью самоходного раскладчика арматуры из трех или шести бухтодержателей, расположенных за стендами со стороны групповых гидродомкратов.

Самоходный раскладчик арматуры должен двигаться по стенду со скоростью 30 м/мин.

Закрепление арматуры в упорах на концах стенда осуществляют вручную.

2.26. Закрепленную на стенде партию проволок (прядей) подтягивают одиночным гидродомкратом на пассивном конце стенда до получения монтажного натяжения арматуры, равного 90 % заданного усилия.

Операцию повторяют до набора монтажного натяжения всех арматурных элементов.

2.27. После натяжения арматуры на стенде должны быть установлены защитные скобы на случай обрыва арматурных элементов при ее окончательном натяжении.

2.28. Натяжение всего пакета арматуры до 100 % заданного усилия производят групповым гидродомкратом на активном конце стенда после установки на него и подготовки к работе самоходного формующего агрегата.

Весь процесс должен осуществляться в соответствии с инструкциями фирмы «Макс Рот».

Формование

2.29. Формующий агрегат устанавливают краном на пассивный конец стенда; на агрегат устанавливают приемные бункера, а кабель электропитания и трос канатно-натяжной системы доставляют к активному концу стенда при помощи тележки-раскладчика арматуры и крепят соответственно к электроразъему и скобе специального упора, расположенным за групповыми гидродомкратами.

2.30. Регулировку и наладку формующего агрегата осуществляют на основании инструкций по обслуживанию формующего агрегата, входящих в комплект технической документации к оборудованию, поставляемому заводом-изготовителем, а также согласно настоящим Рекомендациям.

2.31. Пустотообразователи должны быть установлены таким образом, чтобы расстояние от поверхности стенда до нижней кромки задней части пустотообразователей соответствовало проектному в изделии, а в передней части было выше на 2 мм. Задняя часть бортов и разделительных перегородок должна быть установлена на 1 мм выше стенда, а передняя - на 2 мм.

2.32. Виброуплотнители 1-й ступени устанавливают в соответствии с толщиной основания изготавливаемых панелей. Передняя часть планок, опирающихся на резиновые амортизаторы, должна быть установлена на 5 мм выше, чем задняя часть. При этом задняя часть виброуплотнителей 1-й ступени должна быть опущена на 5 мм от нижней поверхности следующих за ними пустотообразователей.

2.33. Виброуплотнители 2-й ступени устанавливают таким образом, чтобы задняя часть их находилась на расстоянии 5 мм над пустотообразователями.

Угол наклона виброуплотнителей выбирают в зависимости от толщины панели и консистенции бетонной смеси.

2.34.Механическое трамбующее устройство для утапливания поперечной арматуры должно быть установлено в нижнем положении на 10 мм выше верхней отметки формуемого изделия. Контрольной отметкой при этом служит задняя часть виброуплотнителей 3-й ступени или поверхность стального листа стендов.

2.35. Пластины, на которые крепят виброуплотнители 3-й ступени, должны быть установлены горизонтально и опираться на резиновые амортизаторы. При этом соприкасающаяся с бетонной смесью рабочая уплотняющая плита примет проектное наклонное положение.

2.36. Блок бункеров общей емкостью 10 м 3 с автоматическим устройством для загрузки бетонной смеси и подачи смеси в бункера-дозаторы устанавливают с помощью мостового крана на портале формовочной машины и закрепляют болтами.

2.37. Перед началом формования должна быть проверена на холостом ходу работа всех трех ступеней виброуплотнения, пустотообразователей, бортов и разделительных перегородок, механизма автоматической подачи бетонной смеси.

2.38. Вращение вибраторов всех трех ступеней уплотнения должно осуществляться навстречу движению формовочной машины. В случае несоответствия направления вращения необходимо сменить фазы.

2.39. При регулировании положения бортов и разделительных перегородок, образующих боковые кромки изделий, необходимо исключить возможность соприкосновения бортов со стендом в процессе формования. Установку бортов и разделительных перегородок производят по самой высокой точке всех стендов, для определения которой формующий агрегат последовательно перемещается по всем стендам после их монтажа перед пробным формованием.

2.40. Зазор между виброуплотнителями 2-й ступени и натянутой верхней арматурой должен быть (20 ± 5) мм.

2.41. Перед началом формования агрегат устанавливают в исходном положении в начале пассивного конца стенда; бункера автоматического механизма загрузки наполняют бетонной смесью, подаваемой из бадьи с помощью мостового крана.

2.42. Перед началом формования устанавливают устройство для поддержания и фиксации напряженной арматуры. Его установка производится в таком положении формующего агрегата, когда расстояние между раздаточным бункером 1-й ступени уплотнения и распорками арматуры равно 100 - 150 мм. Направление проволок (прядей) должно совпадать с направлением оси стенда; при необходимости регулируют положение направляющих планок.

2.43. В процессе формования бетонная смесь должна подаваться в расходные бункера-дозаторы всех трех ступеней уплотнения в количестве, равном 1/3 объема бункера, которое обеспечивает постоянный подпор, необходимый для равномерной подачи смеси под уплотняющие органы машины. При отсутствии подпора смеси в расходных бункерах, смесь подается под уплотняющие органы в недостаточном количестве, что приводит к недоуплотнению бетона в изделиях.

2.44. Дозирование смеси из расходных бункеров осуществляют шиберами, размещенными на задней стенке бункеров, с помощью рычагов-ползунов.

Возвратно-поступательное движение бункеров-дозаторов 2-й и 3-й ступеней должно быть отрегулировано на 20 - 30 кол/мин. При этом на 3-ю ступень уплотнения нужно подавать такое количество бетонной смеси, которое образовало бы перед виброуплотнителями небольшой валик. Это требование выполняется дозированием смеси из бункера 3-й ступени, а также перестановкой механического устройства трамбования по высоте.

2.45. Формование изделий должно осуществляться непрерывно на протяжении всего стенда без остановки формующего агрегата. Скорость формования в зависимости от жесткости смеси и высоты формуемого изделия должна подбираться экспериментально и может приниматься равной 0,5 - 2,0 м/мин.

При формовании многопустотных панелей из бетонных смесей жесткостью (25 ± 5) с рекомендуется скорость (1,0 ± 0,2) м/мин. При формовании трехслойных стеновых панелей толщиной 250 - 300 мм из бетонных смесей жесткостью 20 - 40 с рекомендуется скорость 1,0 - 1,5 м/мин.

Общая продолжительность формования полосы стенда длиной 150 м не должна превышать 3 ч, а прочность отформованных в начале бетонирования образцов-кубов перед термообработкой не должна превышать 0,5 МПа.

2.46. При формовании многослойных панелей из керамзитобетона заднюю часть виброуплотнителей 1-й ступени устанавливают согласно чертежу изделия выше поверхности стенда на расстоянии, равном толщине нижнего конструкционного слоя изделия; шибер бункера-дозатора должен устанавливаться на 100 - 120 мм выше нижнего конструкционного слоя.

2.47. Заднюю часть виброуплотнителей 2-й ступени устанавливают выше заданного теплоизоляционного слоя на 10 мм, а шибер бункера-дозатора - на 50 - 60 мм.

При этом вибраторы 2-й ступени уплотнения должны быть отключены.

2.48. Заднюю часть виброуплотнителей 3-й ступени устанавливают выше поверхности стенда на расстоянии, равном толщине изделия, а шибер бункера-дозатора - на 100 - 120 мм выше поверхности изделия.

2.49. Обработку стенда смазкой ОЭ-2 и пластификацию водой нижнего слоя бетонной смеси осуществляют с помощью специальных устройств, установленных в передней части формующего агрегата.

2.50. Перед окончанием формования за 2 м до края стенда необходимо снять планки направляющих устройств арматуры. Бетонная смесь должна подаваться в бункера загрузочного устройства и расходные бункера равномерно с таким расчетом, чтобы к концу формования она была израсходована полностью.

2.51. После завершения формования агрегат придвигается вплотную к поворотному устройству натяжного каната, движение его прекращается и отключаются все функциональные узлы агрегата.

2.52. По окончании формования на каждом стенде, формующий агрегат моют струей воды высокого давления на специально оборудованном посту мойки.

После рабочей смены производят генеральную мойку формующего агрегата. Перед этим целесообразно демонтировать 2-е и 3-ю ступени уплотнения. Механическое воздействие (простукивание) воспрещается. Все механизмы и моторы перед мойкой должны быть укрыты.

Дефекты формования и их устранение

2.53. Обрыв проволоки (пряди) . Следует проверить, не соприкасается ли какая-либо из трех ступеней уплотнения с проволокой. В противном случае проволока может захлестнуть ее и оборваться в уплотненном бетоне.

2.54. Нарушение сцепления пряди с бетоном или отклонение от проектного положения . Необходимо проверить, не соприкасаются ли проволока (пряди) и виброуплотнители 2-й ступени и не попадает ли в бетонную смесь заполнитель фракции более 10 мм.

2.55. Шероховатость верхней поверхности панелей и поперечные трещины . Рекомендуется проверить соответствие консистенции бетонной смеси требуемой, а также соответствие требуемых скоростей формования и дозирования бетонной смеси для 3-й ступени уплотнения.

2.56. Трещины на нижней поверхности панелей . Необходимо проверить угол наклона при установке виброуплотнителей 1-й ступени. В случае большого угла наклона горизонтальная составляющая при движении рабочего органа увеличивается и может привести к разрывам сплошности (превышает силу сцепления бетонной смеси со стендом).

Следует проверить положение виброуплотнителей 1-й ступени по отношению к пустотообразователям. При неправильной установке их, пустотообразователи будут разрушать уже уплотненное основание панелей.

2.57. Образование трещин на боковых гранях панелей . Рекомендуется проверить скорость перемещения бортов и разделительных элементов и при необходимости откорректировать ее.

Следует проверить, не соприкасаются ли борта и разделительные элементы со стендом.

2.58. Недостаточное уплотнение стенок между пустотами . Следует проверить дозировку бетонной смеси во 2-й ступени уплотнения. Рекомендуется проверить угол наклона виброуплотнителей 2-й ступени и их работу.

2.59. При проверке работы виброуплотнителей необходимо убедиться в том, что все вибраторы исправны.

Амплитуда колебаний уплотнителей должна быть:

для 1-й ступени - 0,9 - 1,0 мм;

для 2-й ступени - 0,7 - 0,8 мм;

для 3-й ступени - 0,3 - 0,35 мм.

Термообработка

2.60. В период формования масло, разогретое в маслонагревательной установке до 100 °C и циркулирующее в регистрах стенда, обеспечивает температуру стальных листов стенда не менее 20 °C.

2.61. По окончании формования и покрытия свежеотформованного бетона теплоизолирующим покрывалом температуру масла в течение 7 ч поднимают до 170 - 200 °C, что обеспечивает температуру стенда около 90 °C, а бетон прогревается до 65 - 70 °C.

Контроль температуры бетона в период термообработки осуществляют согласно графикам связи температуры масла в системе и температуры бетона на основании показаний температуры масла на пульте масляной нагревательной установки.

2.62. Изотермический прогрев производят в течение 7 ч, при этом температура масла плавно снижается до 100 °C.

2.63. Охлаждение изделий до передачи напряжения на бетон не допускается [см. «Руководство по тепловой обработке бетонных и железобетонных изделий» (М., 1974)]. Передачу усилий обжатия на бетон рекомендуется производить не позднее чем через 0,5 ч после окончания изотермии и испытания контрольных образцов. При этом температура бетона должна быть снижена не более чем на 15 - 20 °C относительно температуры бетона при изотермическом прогреве.

2.64. Во время термообработки осуществляют подтяжку стенда и арматуры при их удлинении автоматическим устройством, смонтированным на групповых гидродомкратах, за счет срабатывания концевого выключателя и автомата поддержания усилия натяжения арматуры. Время срабатывания автомата рекомендуется устанавливать с помощью реле времени на 3 мин.

Резка изделий и их транспортирование

2.65. Отпуск натяжения производят групповым гидродомкратом на активном конце стенда с последующей обрезкой арматуры на пассивном конце стенда.

2.66. Резку бетонной полосы на изделия заданной длины производят пилой с алмазным диском, начиная с пассивного конца стенда. Возможно применение абразивных дисков. Время одного поперечного реза бетонного массива шириной 3,6 м - 5 мин.

2.67. Съем изделий со стенда и складирование их на свободном конце стенда или его продолжении производят самоходной подъемно-транспортной машиной с пневмоприсосками.

2.68. Дальнейшее транспортирование изделий на вывозную тележку или автомашину производят мостовым краном при помощи специальной траверсы бесветлевого подъема.

Контроль качества готовых изделий

2.69. Контроль качества готовых изделий производят отделом технического контроля завода на основании действующих нормативных документов (ТУ, рабочих чертежей) и данных Рекомендаций.

2.70. Отклонение размеров многопустотных панелей не должно превышать:

по длине и ширине - ± 5 мм;

по толщине - ± 3 мм.

2.71. Толщина защитного слоя бетона до рабочей арматуры должна быть не менее 20 мм.

2.72. Панели должны иметь прямолинейные грани. В отдельных панелях допускается искривление нижней или боковой поверхности не более 3 мм на длине 2 м и не более 8 мм по всей длине панели.

2.73. На нижней (потолочной) поверхности панелей не должно быть раковин. На верхних и боковых поверхностях панелей допускаются отдельные мелкие раковины диаметром не более 10 мм и глубиной до 5 мм.

2.74. В панелях не допускаются обвалы, а также заполнение пустотных каналов бетоном.

2.75. Панели выпускаются без усиленных торцов.

2.76. Внешний вид панелей должен удовлетворять следующим требованиям:

нижняя (потолочная) поверхность должна быть гладкой, подготовленной под окраску без дополнительной отделки;

на нижней (потолочной) поверхности панелей не допускаются местные наплывы, жировые и ржавые пятна и открытые воздушные поры диаметром и глубиной более 2 мм;

не допускаются околы и наплывы по продольным нижним граням панелей;

не допускаются околы бетона по горизонтальным кромкам торцов панелей глубиной более 10 мм и длиной 50 мм на 1 м панели;

не допускаются трещины, за исключением усадочных поверхностных шириной не более 0,1 мм;

проскальзывание напряженной арматуры недопустимо.

2.77. Отклонения от проектных размеров стеновых панелей не должны превышать:

по длине

для панелей длиной до 9 м - +5, -10 мм;

для панелей длиной более 9 м - ± 10 мм;

по высоте и толщине - ± 5 мм.

2.78. Разность диагоналей панелей не должна превышать:

для панелей длиной до 9 м - 10 мм;

для панелей длиной более 9 м - 12 мм.

2.79. Неплоскостность панелей, которая характеризуется величиной наибольшего отклонения одного из углов панели от плоскости, проходящей через три угла, не должна превышать:

для панелей длиной более 9 м - 10 мм.

2.80. Панели должны иметь прямолинейные грани. Отклонение от прямой линии реального профиля поверхности и ребер панели не должно превышать 3 мм на длине 2 м.

На всей длине панели отклонение не должно превышать:

для панелей длиной до 9 м - 6 мм;

для панелей длиной более 9 и - 10 мм.

2.81. Раковины, воздушные поры, местные наплывы и впадины на поверхности панели, предназначенной под окраску, не должны превышать:

по диаметру - 3 мм;

по глубине - 2 мм.

2.82. Жировые и ржавые пятна на поверхности изделий не допускаются.

2.83. Не допускаются околы бетона ребер глубиной более 5 мм на лицевых поверхностях и 8 мм - на нелицевых, общей длиной более 50 мм на 1 м панели.

2.84. Не допускаются трещины в панелях, за исключением местных единичных поверхностных усадочных трещин шириной не более 0,2 мм.

2.85. Влажность бетона в панелях (в % по массе) не должна превышать 15 % для бетонов на пористом гравии и 20 % - для бетонов на пористом щебне.

Влажность бетона в панелях проверяется заводом-изготовителем не реже одного раза в месяц.

Отделка стеновых панелей

2.86. Получение фактуры стеновых панелей осуществляют при помощи специального оборудования. Нанесение на поверхность бетонной полосы цементно-песчаного отделочного раствора и получение гладкой лицевой поверхности изделий осуществляют при помощи отделочного узла, прикрепляемого к формующему агрегату и состоящего из растворного бункера и заглаживающих брусьев.

2.87. При декоративной рельефной отделке изделий цементно-песчаными растворами нужно руководствоваться «Инструкцией по отделке фасадных поверхностей панелей для наружных стен» (ВСН 66-89-76).

3. ТЕХНИКА БЕЗОПАСНОСТИ

3.1. На заводе, где организовано производство сборных железобетонных конструкций безопалубочным методом на линейных стендах, все работы ведутся согласно «Правилам техники безопасности и производственной санитарии на заводах и заводских полигонах железобетонных изделий» (М., 1979), а также главе СНиП III-16-80 «Бетонные и железобетонные конструкции сборные».

3.2. Специальные правила техники безопасности при проведении отдельных технологических операций (разогрев масла, укладка и натяжение арматуры на стенде, резка готовых изделий и т.д.) изложены в специальных инструкциях по проведению этих работ, содержащихся в технической документации на оборудование и поставляемых вместе с оборудованием заводом-изготовителем.

3.3. Специальные правила техники безопасности должны быть продублированы на плакатах в цехе.

3.4. Поступающий на завод персонал должен проходить специальный курс обучения по технологии проведения работ на стенде, сдать зачет и проходить ежеквартальный инструктаж.

3.5. При работе на установке для нагрева масла необходимо учитывать «Рекомендации по снижению пожарной опасности установок с применением ароматизированного масла-теплоносителя АМТ-300» (М., 1967).

4./2011 ВЕСТНИК _7/202J_МГСУ

СОВРЕМЕННЫЕ ТЕХНОЛОГИЧЕСКИЕ ЛИНИИ ДЛЯ ПРОИЗВОДСТВА ПЛИТ ПЕРЕКРЫТИЙ

MODERN PROCESS LINES FOR THE FLOOR SLABS PRODUCTION

E.C. Романова, П.Д. Капырин

E.S. Romanova, P.D. Kapyrin

ГОУ ВПО МГСУ

В статье рассматриваются современные технологические линии для производства плит перекрытий методом безопалубочного формования. Разобран технологический процесс, состав линии, указаны характеристики используемого оборудования.

In current article the modern process lines for off-formwork slabs production is investigated. The whole technological process is examined as well as lines composition. The characteristics and qualities of the used equipment are mentioned.

B настоящее время залогом успеха предприятия по производству ЖБИ служит выпуск широкой номенклатуры изделий. Следовательно, современное предприятие, завод, комбинат нуждается в автоматизированных технологических линиях, легкопе-реналаживаемом оборудовании, универсальных машинах, применение энергосберегающих и энергоэффективных технологий.

Технологии производства железобетонных изделий и конструкций можно разделить на традиционные (конвейерная, агрегатно-поточная, кассетная) и современные, среди которых особое место занимает непрерывное безопалубочное формование.

Безопалубочное формование, как технология, была разработана во времена Советского Союза и носила название «технология комбайн-настил». Сегодня технология востребована в России, она, с каждым опытом эксплуатации, совершенствуется нашими специалистами, при этом используется опыт зарубежных компаний.

Технологический процесс метода безопалубочного формования заключается в следующем: изделия формуются на подогреваемом металлическом полу (около 60°С), армируются предварительно напряженной высокопрочной проволокой или прядями, формующая машина перемещается по рельсам, оставляя за собой непрерывную ленту формованного железобетона.

Известны три метода непрерывного безопалубочного формования: вибропрессование, экструзия и трамбование.

Метод трамбования

Суть метода трамбования заключается в следующем: формующая машина передвигается по рельсам, при этом уплотнение бетонной смеси в формующей установке осуществляется специальными молоточками. На рис. 1 показана схема формующей установки для непрерывного формования трамбованием.

Рис. 1 Схема формующей установки для непрерывного формования методом трамбования

Нижний слой бетонной смеси укладывается на формовочные дорожки из бункера 1 и уплотняется высокочастотными вибрационным уплотнителем 3. Верхний слой бетонной смеси подается из бункера 2, и тоже уплотняется высокочастотным уплотнителем 6. Дополнительно поверхность плиты уплотняется ударно-вибрационной трамбовкой. После обоих поверхностных уплотнителей установлены стабилизирующие плиты 4 для улучшения уплотнения бетонной смеси. Метод не получил широкого распространения, так как установка чрезвычайно сложна как в эксплуатации, так и в обслуживании.

Метод экструзии

Технологический процесс состоит из нескольких последовательных этапов:

1. Предварительно, специальная машина для чистки дорожек очищает металлопокрытие, а затем смазывает дорожки маслом.

2. Натягиваются арматурные канаты, которые используются для армирования, создается напряжение.

3. Затем начинается движение экструдера 1 (рис. 2), который оставляет за собой полосу отформованного железобетона 2 (рис. 2).

Рис. 2 Экструдер

4/2011 ВЕСТНИК _4/2011_МГСУ

Бетонная смесь в экструдере шнекамн нагнетается через отверстия формообразующей оснастки в направлении, противоположном движению машины. Формование идет по горизонтали, и формующая машина как бы отталкивается от готового изделия. Тем самым обеспечивается равномерное по высоте уплотнение, благодаря чему экструзия незаменима при формовании крупногабаритных изделий с высотой больше 500 мм.

4. Затем изделие проходит тепловую обработку - накрывается теплоизоляционным материалом, а снизу подогревается сам стенд.

5. После того, как бетон набрал необходимую прочность, плиту режут на проектную длину алмазной пилой с лазерным прицелом, предварительно сняв напряжение.

6. После распиловки пустотные плиты снимаются с производственной линии при помощи подъемных захватов.

Технология позволяет изготавливать плиты легче традиционных на 5-10%. Обеспечиваемое шнеками высокое уплотнение бетонной смеси дает возможность экономить около 20 кг цемента на каждом кубометре смеси.

Кроме преимуществ технология имеет существенные недостатки:

Велики эксплуатационные расходы. Жесткая бетонная смесь абразивна, что приводит к изнашиванию шнеков

Экструзионное оборудование рассчитано на цемент и инертные материалы только высшего качества (как правило, марки М500)

Ограничена номенклатура изделий. Экструзия не предназначена для формования балок, колонн, ригелей, столбов и других изделий малого сечения .

Метод вибропрессования

Метод вибропрессования оптимален для изготовления любых изделий с высотой не более 500 мм. Формующая машина оснащена вибраторами для уплотнения бетонной смеси. Она надежна и долговечна, не содержит быстроизнашивающихся частей. Номенклатура выпускаемых изделий разнообразна, с равным успехом производятся плиты пустотного настила, ребристые плиты, балки, ригели, столбы, опускные сваи, перемычки и т.д. Важное достоинство формующей машины ее неприхотливость к качеству сырья и связанная с этим экономичность. Высокое качество изделий достигается при использовании цемента марки 400, песка и щебня среднего качества.

Рассмотрим современный комплекс безопалубочного производства пустотных плит перекрытий (рис. 3) и опишем подробно технологический процесс.

Производственный цикл безопалубочного формования содержит следующие операции: очистку и смазку формовочной дорожки, раскладку арматуры, натяжение арматуры, приготовление бетонной смеси, формовку изделий, тепловую обработку, снятие напряжения с арматуры, разрезание изделий на отрезки заданной длины, вывоз готовых изделий.

В комплекс входят:

Производственные настилы

Слипформер

Аспиратор для бетона

Многофункциональная вагонетка

Автоматический плоттер (разметочное устройство)

Универсальная распиловочная машина

Пила для свежего бетона

Рис. 3 Технологическая линия производства преднапряженных пустотных плит перекрытий

Технические характеристики и преимущества, изготавливаемых изделий:

1. Высокие прочностные характеристики.

2. Высокая точность габаритных размеров.

4. Возможность изготовления различных типоразмеров по длине с любым шагом.

5. Возможность изготовления косых торцов изделий (возможно производить рез под любым углом).

6. Возможность формирования отверстий в перекрытиях для пропуска вентиляционных и санитарно-технических блоков за счет применения укороченных плит, а также выполнение этих отверстий стандартной ширины и положения в плане при формовании изделий.

7. Технология производства обеспечивает строгое соблюдение заданных геометрических параметров.

8. Расчетная равномерно распределенная нагрузка без учета собственной массы для всей номенклатуры от 400 до 2000 кгс/м2.

Номенклатура изделий

Таблица 1

Плиты перекрытий шириной 1197 мм

Толщина, мм Длина, м Масса, кг

120 мм От 2,1 до 6,3 От 565 ДО 1700

От 1,8 до 9,6

От 705 до 3790

От 2850 до 5700

Плиты перекрытий шириной 1497 мм

От 1,8 до 9,6

От 940 до 5000

От 3700 до 7400

От 7,2 до 14

От 5280 до 10260

Краткое описание и характеристики оборудования

1. Производственные настилы (рис.4)

Рис. 4 Устройство технологического пола: 1 - резьбовая шпилька; 2 - основание (фундамент); 3 - швеллер; 4 - арматурная сетка; 5 - металлопластиковая труба для обогрева; 6 - бетонная стяжка; 7 - утеплитель и бетонная стяжка; 8 - металлический лист покрытия

Бетонное основание под технологическим полом должно быть идеально ровным и иметь небольшой уклон в сторону канализационного стока. Пол нагревается электрическим кабелем или горячей водой до температуры +60°С. Предприятиям, имеющим собственную котельную, выгоднее применять водяной обогрев. Кроме того, при водяном обогреве пол нагревается быстрее. Технологический пол является сложным инженерным сооружением, которое должно выдержать вес формуемых железобетонных изделий. Поэтому толщина металлического листа составляет 12-14 мм. Из-за теплового изменения длины металлического листа (до 10 см на стометровой дорожке) лист закрепляется металлическими пластинами с миллиметровым зазором. Подготовку и сварку металлического листа следует производить на высшем уровне, так как чем чище обработана поверхность листа, тем ровнее потолочная поверхность плиты.

2. Слипформер (рис. 5)

Рис. 5 Слипформер

Формовочная машина - Слипформер (ш=6200кг) - предназначена для изготовления пустотелых плит. Машина оснащена всем необходимым оборудованием, включая такие принадлежности как, электрические кабели, кабельный барабан, емкость для воды и устройство заглаживания верхней поверхности - финишер.

Необходимая толщина плиты достигается путем замены трубно-опалубочного комплекта (замена занимает около 1 часа). Электрогидравлическое управление машины рассчитано на работу одного оператора.

Машина оснащена четырьмя ведущими колесами с электроприводом и вариатором, что обеспечивает разнообразие скорости передвижения и формования в зависимости от типа изготавливаемой плиты перекрытия и используемой бетонной смеси. Обычно скорость варьируется от 1,2 до 1,9 м/мин.

Машина оборудована одним стационарным передним и одним гидравлическим задним приемными бункерами для бетонной смеси. Она также оснащена двумя вибраторами с регулируемой мощностью. У машины имеется один кабельный барабан с гидроприводом и в комплекте с электрокабелем (максимальная длина 220 м). Для финишера предусмотрено крепежное устройство и электрическое присоединение.

Трубно-опалубочный комплект оснащены гидроприводом, боковые опалубочные элементы подвешены, что обеспечивает хорошее сцепление с направляющими. Бетон подается через двойной бункер с двумя выпускными раструбами, управляемыми

ВЕСТНИК _МГСУ

вручную (объем бетона для каждого раструба составляет 2 кубометра). Имеется одна гальванизированная емкость для воды.

Машина настраивается в соответствии с типом бетона, имеющимся на предприятии.

3. Аспиратор для бетона (рис. 6)

Рис. 6 Аспиратор для бетона

Аспиратор предназначен для удаления неотвержденного (свежего) бетона (ш=5000кг, 6000x1820x2840) применяется для вырезания в плитах профилей и изготовления плит с выступающей арматурой. Аспиратор может также применяться для очистки пола вдоль направляющих, а также между производственными стендами. Электропривод имеет две скорости движения вперед и две скорости движения назад. Низкая скорость составляет 6,6 м/мин, высокая - 42 м/мин.

В аспиратор входит:

1. Один встроенный фильтр и корпус фильтра, включая:

Фильтрующую поверхность площадью 10 м2

Полиэфирный игольчатый и войлочный фильтр с микропористым водо- и мас-лоотталкивающим внешним слоем

Автоматический клапан, меняющий мешочные фильтры при помощи нагнетания воздуха каждые 18 секунд

Емкость для отходов под фильтром

Сепаратор бетона, расположенный перед выпускным отверстием.

2. Аспирационное устройство в шумоизолирующем корпусе. Максимальная подача воздуха - 36 кПа, двигатель 11 кВт.

3. Центробежный насос и одна добавочная емкость для водяной форсунки.

4. Одна гальванизированная емкость для воды объемом 500 л.

Всасывающее сопло со встроенной водяной форсункой с ручным управлением и

пружинным балансировочным устройством, присоединенное к поперечине, позволяет осуществлять поперечное и продольное перемещение. Контейнер для отходов емкостью 1090 л. оборудован двумя пневматическими герметизирующими клапанами. Контейнер имеет крюк, облегчающий его подъем, а так же устройство для очищения контейнера путем подъемника. Регулируемая по высоте рабочая платформа предназначена для очистки направляющих. Аспиратор имеет крюк с проушиной, воздушный компрессор с емкостью на 50 литров, электрический выключатель и блок управления с возможностью установки до 4 пультов.

4. Многофункциональная вагонетка (рис. 7)

Рис. 7 Многофункциональная вагонетка

Вагонетка (ш=2450кг, 3237x1646x2506) работает от аккумулятора, выполняя следующие три функции:

1. Растягивание арматурных канатов и проволоки вдоль производственных стендов

2. Смазка производственных стендов

3. Чистка производственных стендов

Машина оснащена: анкерной плитой для крепления тросов и арматуры, скребком для очистки производственных стендов, пульверизатором для нанесения смазывающего состава, ручным тормозом.

5. Автоматический плоттер (разметочное устройство) (рис. 8)

Рис. 8 Плоттер

Плоттер (ш= 600 кг, 1600x1750x1220) предназначен для автоматической разметки плит и нанесения на них чертежей по любым геометрическим данным выполненным в формате ёхГ (скорость работы 24 м/мин), например, угол распила, вырезаемые области и идентификационный номер проекта. Панель управления плоттером - сенсорная. Данные о плите могут быть переданы на плоттер при помощи любого носите -

ВЕСТНИК _МГСУ

ля или посредством беспроводного присоединения к сети. Для измерений, точность которых составляет ±1 мм, используется лазер.

6. Универсальная распиловочная машина (рис. 9)

Рис. 9 Универсальная распиловочная машина

Данная распиловочная машина (ш=7500кг, 5100x1880x2320) позволяет пилить от-вержденные плиты необходимой длины и под любым углом. В машине используются диски 900-1300 мм с алмазной режущей кромкой; диски предназначены для распиловки плит с максимальной толщиной 500 мм. Скорость движения машины составляет 0-40 м/мин. Скорость распиловки 0-3 м/мин, имеется разнообразная регулировка. Скорость распиловки устанавливается автоматически при помощи экономичной регулировки мощности двигателя пилы. Подача охлаждающей воды производится со скоростью 60л в минуту. Режущий диск охлаждается с обеих сторон струями, регулируемыми при помощи датчика давления и расхода, установленного в системе подачи воды. Расположенные спереди сопла легко могут быть повернуты для быстрой смены пильного диска. Скорость распиловки регулируется для оптимального выполнения операции.

Распиловочная машина имеет следующие характеристики:

1. Электрические моторы, обеспечивающие точность движения.

2. Распиловочная машина полностью автоматизирована.

3. Оператору необходимо лишь ввести угол распила.

4. Ручное позиционирование выполняется при помощи лазерного луча.

7. Пила для свежего бетона (рис. 10)

Рис. 10 Пила для свежего бетона

Пила с ручным управлением (m= 650 кг, 2240x1932x1622) для продольной разрезки свежеуложенной бетонной смеси для получения плит нестандартной ширины, отличающейся от заданной в формовочной машине. Максимальная высота плиты составляет 500 мм. Пильный диск имеет электрический привод. Для экономии использованный алмазный диск (1100-1300) может быть утилизирован. Позиционирование и движение станка осуществляется вручную. Пила передвигается вдоль стенда на роликах, и снабжается электропитанием при помощи кабеля.

Использование такого технологического процесса позволяет:

Обеспечить повышенную несущую способность плит перекрытий (так как армирование осуществляется предварительно напряженной арматуры)

Обеспечить высокую плоскостность верхней поверхности за счет принудительного заглаживания поверхности плит

Обеспечить строгое соблюдение заданных геометрических параметров

Выпускать плиты с высокими прочностными характеристиками за счет принудительного уплотнения нижнего и верхнего слоев бетона и т.д.

Нами были рассмотрены современные технологические линии для производства плит перекрытий. Эти технологии отвечают большинству требованиям, предъявляемым к современному производству ЖБИ. Следовательно, являются перспективными, т.е. их использование позволяет предприятиям КПД, ЖБК и т.д. быть конкурентоспособными и в полной мере удовлетворять потребности заказчика.

Литература

1. Уткин В. Л. Новые технологии строительной индустрии. - М. : Русский издательский дом, 2004. - 116 с.

2. http://www.echo-engineering.net/ - производитель оборудования (Бельгия)

3. А. А. Борщевский, А.С. Ильин; Механическое оборудование для производства строительных материалов и изделий. Учебник для вузов по спец. «Пр-во строит. изд. и конструкций».- М: Издательский дом Альянс, 2009. - 368с.: ил.

1. Utkin V. L. New technologies of the building industry. - M: the Russian publishing house, 2004. - 116 with.

2. http://www.echo-engineering.net/ - the manufacturer of the equipment (Belgium)

3. A.A.Borschevsky, A.S.Ilyin; the Mechanical equipment for manufacture of building materials and products. The textbook for high schools on «Pr-in builds. изд. And designs». Publishing house the Alliance, 2009. - 368c.: silt.

Ключевые слова: перекрытия, формование, технологии, опалубка, оборудование, технологические линии, плиты

Keywords: overlappings, formation, technologies, a timbering, the equipment, technological lines, plates

Статья представлена Редакционным советом «Вестника МГСУ»

Изготовление методом безопалубочного формования на длинных стендах широкого спектра железобетонных изделий

На линиях безопалубочного формования (ЛБФ) освоено производство плит пустотного настила, свай, колонн, ригелей, балок, перемычек, плит аэродромных (ПАГов), бортового камня, заборных секций. Все изделия проходят проектную и документальную проработку в ведущих профильных проектных организациях страны.

Запатентована уникальная технология производства дорожных плит в полном соответствии с профильными ГОСТами. В работе – документация на производство столбов ЛЭП.

Разработка, производство и поставка оборудования для безопалубочного формования железобетонных изделий на длинных стендах, является одним из приоритетных направлений деятельности .

Номенклатура продукции

Производительность

Линия безопалубочного формования ST 1500
(6 дорожек по 90 метров, ширина изделий — до 1500 мм)

Вид изделия Ед. измерения Производительность
в сутки в месяц в год (250 дней)
Плиты перекрытия
ширина 1500 мм,
высота 220 мм
Погонные метры 540 11 340 136 000
М 3 178 3 738 44 856
Плита перекрытий
ширина 1200 мм,
высота 220мм
Погонные метры 540 11 340 136 000
М 3 142 2 982 35 784
Сваи
300 мм х 300 мм
Погонные метры 2 160 45 360 544 320
М 3 194 4 074 48 900
Ригели
310 мм х 250 мм
Погонные метры 2 160 45 360 544 320
М 3 194 4 074 48 900
Ригели
400мм х 250мм
Погонные метры 1 620 34 020 408 240
М 3 162 3 402 40 824

В общей сложности более 30 типоразмеров изделий.

Примечание: при изменении количества, ширины и длины дорожек производительность меняется.

Технические характеристики

Характеристика ЛБФ-1500
Установленная мощность (минимальная), кВт
* в зависимости от комплектации
200 *
Габаритные размеры цеха (минимальные), м 18 х 90
Высота до ГАКа крана, м 6
Грузоподъемное оборудование
Количество мостовых кранов, шт. 2
Грузоподъемность мостового крана не менее, тонн 10

Обслуживающий персонал

Численность обслуживающего персонала приведена для одной смены

Наименование операции Количество рабочих, чел.
1. Чистка и смазка дорожки, раскладка проволоки с натяжением, укрывание защитным покрытием, передача напряжения на бетон, вывоз готовой продукции на склад 3
2. Формование, мойка формующей машины 2
3. Разрезание 1
4. Управление работой мостового крана 2
Итого 8

Краткое описание и принцип работы

Технологический процесс начинается с очистки одной из формовочных дорожек специализированной машиной для очистки дорожек и напыления на неё смазки в виде тонкой воздушной дисперсии. Средняя скорость очистки с помощью специальной машины – 6 м/мин. Время очистки – 15 минут. Смазка дорожки производится сразу же после очистки с помощью ранцевого насоса.

Очистка и смазка дорожки

После этого с помощью машины для раскладки проволоки арматуру разматывают из бобин и раскладывают на дорожке.

После раскладки необходимого количества проволоки (в соответствии с альбомом рабочих чертежей) производится её натяжение при помощи гидравлической группы для натяжения. Концы проволоки фиксируются в фильерных отверстиях упоров при помощи цанговых зажимов. Концы проволоки отрезаются ручной отрезной машинкой и закрываются защитным кожухом, после чего дорожка готова к формованию. В среднем, на раскладку армирующей проволоки с учётом времени на заправку, высадку головок, обрезку концов и натяжения проволоки уходит не более 70 минут.

При помощи мостового крана (грузоподъемностью не менее 10 т) формующую машину устанавливают на рельсы формовочной дорожки за упорами начала дорожки. С гидравлического барабана для кабеля разматывают кабель питания и запитывают его от цеховой сети 380 В. Тяговый трос сматывается с тяговой лебедки машины и закрепляется за анкерный якорь в конце дорожки.

В бункер-накопитель формующей машины при помощи ёмкости для подачи бетона мостовым краном подается готовая бетонная смесь. Включаются тяговая лебедка и вибраторы. На протяжении непрерывного процесса формования дорожки в бункер-накопитель своевременно подается бетонная смесь. Средняя скорость формующей машины при производстве пустотных плит – 1,5 м/мин; с учетом времени на установку машины принимаем 90 минут. После окончания формования одной дорожки формующая машина краном устанавливается на пост мойки и тщательно промывается установкой высокого давления для мойки машин от остатков бетонной смеси. Дорожку с лентой отформованного изделия при помощи тележки для раскладки защитного покрытия укрывают специальным укрывным материалом и оставляют на время процесса термообработки.

Термообработка

Процесс термообработки идет по следующей схеме: 2 часа подъем температуры до 60-65˚С, 8 часов выдержка, 6 часов остывание.
После достижения бетоном изделия передаточной прочности снимается укрывной материал, и лента обследуется работниками заводской лаборатории, которые производят разметку ленты на отрезки проектной длины для последующего разрезания.
После этого гидравлическим блоком для снятия напряжения из 3-х цилиндров производят плавный отпуск и передачу усилия натяжения арматуры на бетон изделия. Затем обрезают арматуру это производится с помощью ручной гидравлической группы и занимает, с учетом времени установки ее в рабочее положение, не более 10 минут.

Разрезание ленты выполняется специальной машиной для поперечной резки плит, оснащенной высокопрочным отрезным диском с алмазным напылением.

Резательная машина краном устанавливается на рельсы в начале дорожки. С гидравлического барабана сматывается кабель питания и запитывается от цеховой сети 380 В. В бак заливается необходимое количество воды. Резка осуществляется оператором резательной машины в ручном или автоматическом режиме. Продолжительность разрезания пустотной плиты отрезным диском с алмазным напылением составляет около 2 минут. Принимаем расчетную длину плиты 6мм, отсюда получаем 14 резов, время на резку плит на одной дорожке – около 30 минут; вместе с операцией установки машины и ее перемещения принимаем 70 минут.

Готовые плиты мостовым краном при помощи технологического захвата для транспортировки плит укладываются на грузовую тележку и вывозятся на склад готовой продукции. Боковые поверхности плит маркируются работниками ОТК в установленном порядке.

После формовки каждой дорожки машина устанавливается на стенд, после чего производится обязательная помывка формующей машины и пуансона – матрицы. Промывка производится струей воды под давлением 180 – 200 атмосфер. Эта операция занимает около 20 минут.

Промывка формующей машины

Стоимость

  1. Технологическое оборудование – от 25 млн. рублей (в зависимости от комплектации)
  2. Оборудование технологических полов – от 8 млн. рублей (в зависимости от комплектации)
  3. Услуги (монтаж, пуско-наладочные работы – от 5 млн. рублей (в зависимости от состава работ).

Стоимостные характеристики на этом сайте приведены в справочных целях.

Коммерческое предложение, выставляется Заказчику, в процессе переговоров и действительно в течение 30 дней с момента его выставления.

Вы можете ознакомиться с примером

Прочие условия

Гарантийный срок составляет 12 месяцев.

ОАО «345 механический завод» предлагает бесплатно организовать выезд наших специалистов для согласования размещения ЛБФ-1500 на площадке Заказчика.

Остальные условия согласовываются при заключении договора.

Сегодня достаточно большое распространение получила технология безопалубочного формирования ЖБИ изделий. Она известна уже давно – с конца 1970-х годов, когда проводилось масштабное всесоюзное строительство панельных домов. Но под давлением определенных кругов, технология стала малоприменима, а в 90-е годы практически прекратила использоваться в России.

До недавнего времени, основными поставщиками оборудования для производства ЖБИ по технологии безопалубочного формирования были три зарубежных компании, обеспечивавших поставки вибропрессов, экструдеров и сплитформеров.

Особенности линий безопалубочного формирования ЖБИ

Линии БОФ – это специализированный комплекс оборудования, позволяющий провести формирование балок, свай, перемычек дорожных и пустотелых плит, а также прочих ЖБИ изделий для широкого применения в различных сферах строительства. При этом, применение БОФ далеко не всегда является экономически целесообразным – это связанно с техническими особенностями оборудования, которое достаточно быстро изнашивается, после чего – требует сервисного обслуживания или дорогостоящего капитального ремонта.

Конструкция сплитформера, применяемого при формировании ЖБИ по безопалубочной технологии предусматривает монтаж вибраторов, которые формируют основное оснащение формировочной машины. Недостатком такой конструкции является необходимость длительной высокоточной настройки, дальнейшее обслуживание также занимает много времени.

Механизм работы классического вибропресса гораздо проще, чем сплитформера, в первую очередь, он заключается в постепенном уплотнении смеси перед формообразующей оснасткой. При этом оборудование БОВ, предъявляет очень высокие требования к качественному составу бетонной смеси. При недостаточном качестве смеси или попадании в смесь непредусмотренных фракций, болтов и даже небольших камней, оборудование может выпускать бракованные изделия или вовсе выйти из строя.

Высокое качество бетонной смеси и отсутствие в ней примесей является не единственным требованием производства по технологии безопалубочного формирования ЖБИ. Особое внимание должно уделяться систематическому обслуживанию оборудования. После каждого этапа производства, оно должно проходить качественную очистку с соблюдением регламентных работ.

Ключевой недостаток – высокая цена

Стоимость производственной линии БОФ, значительно выше (в среднем около 55-65 миллионов рублей), чем организация производства по средствам «классических» технологических линий (комплекта оборудования), которое Завод Интэк предлагает «под ключ». Так же стоит отметить высокую стоимость комплектующих к линиям безопалубочного формования, к тому же все это может усугубляться затяжными сроками поставки необходимых комплектующих.

Инвестиции в производство ЖБИ изделий по технологии безопалубочного формования могут быть оправданы только на крупных предприятиях, обеспеченных постоянным потоком заказов, например, многолетней реализации крупных инфраструктурных проектов регионального или государственного значения, где жестко соблюдаются все регламенты по технической эксплуатации данного оборудования.

Из минусов так же стоит отметить сложность модернизации линии БОФ. Производство разных видов ЖБ изделий на таких линиях возможно с помощью специальных съемных формообразующих оснасток, но перенастроить линию БОФ под другой тип производства без огромных вложений просто не представляется возможным. К тому же существуют сложности в процедуре замены оснастки на сплитформере, а стоимость оснастки под производство одного изделия составляет не менее 1 миллиона рублей.

Loading...Loading...