Несущая способность буронабивных свай. Расчет несущей способности буронабивных свай

Свайно-ростверковый фундамент на буронабивных сваях — комбинированный тип основания из опорных свай, сформированных в грунте путем бетонирования скважин, пробуренных в земле. Вторая часть фундамента — ростверк, распределяющий нагрузку на свайное поле. Такой тип фундамента обладает высочайшей несущей способностью и может использоваться для постройки больших домов и частных коттеджей из любых материалов.

Буронабивной фундамент с ростверком позволяет возводить строения на сложных грунтах: вязких, болотистых, плывунах, пучинистых. Основание на буронабивных сваях незаменимо в сейсмически активных районах, зонах с разветвленными сетями подземных коммуникаций, а также в грунтах с повышенной щелочностью, где невозможно использовать винтовые опоры.

Преимущества конструкции:

  • повышенная устойчивость к вибрации;
  • возможность возведения при неблагоприятных геологических условиях;
  • простота монтажа;
  • отсутствие больших объемов земляных работ;
  • относительно небольшая себестоимость.

Сделать буронабивной фундамент с монолитным ростверком можно без привлечения специалистов и профессиональной техники.

Недостатки:

  • опасность неравномерной осадки опор;
  • невозможность устройства цокольного этажа и подвала.

Расчет буронабивного фундамента с ростверком

При расчете необходимо руководствоваться данными о характеристиках грунтов и материалов, указанных в СНиП 2.03.01-84, 11-23-81, 11-25-80, 2.05.03-84 и 2.06.06-85. Всего проводится три расчетные операции:

Расчет буронабивных свай

В ходе расчета определяется длина свай (глубина залегания), их сечение, количество и схема расположения. Диаметр буронабивной сваи для строительства коттеджа составляет от 15 до 40 см. Наиболее часто этот параметр принимают равным 20 см. Чтобы не проводить сложные расчеты с использованием громоздких формул, предлагаем воспользоваться готовой таблицей, в которой указана несущая способность опор различного диаметра, а также приблизительный расход бетона и арматуры:

Бурение скважины

Бурение проводится ручным буром, который заглубляется на нужную глубину. При проходке грунт не выбрасывается на поверхность, уплотняясь по стенкам.

В процессе бурения необходимо контролировать, чтобы бур входил строго перпендикулярно, не отклоняясь.

После разработки скважины, диаметр которой должен быть на 5-7 см больше, чем выбранный диаметр свай, основание тщательно трамбуется. При необходимости подсыпается песчано-гравийная подушка в 10-30 см.

Установка обсадных труб

Обсадные трубы препятствуют обсыпанию стенок скважины и обеспечивают безопасное проведение работ. По технологии на плотных глинистых грунтах и суглинках трубы можно не использовать, однако при устройстве буронабивных свай своими руками рекомендуется их установить. Внутри трубы значительно проще монтировать армирующий каркас. Кроме того упрощается процесс заливки и виброутрамбовки бетонной смеси.

В качестве обсадных труб можно использовать пластиковые, металлические или асбестоцементные изделия нужного диаметра. Если финансовые возможности позволяют, то лучше купить специальные обсадные трубы для скважин, на которых имеются подготовленные стыки с удобными соединениями. Труба строго вертикально устанавливается в скважину. Если образовался зазор между стенкой трубы и скважиной, то его необходимо засыпать грунтом с уплотнением.

Армирование

Для создания армокаркаса используется арматура 12 мм. По данным таблицы 1 при строительстве коттеджа нет необходимости использовать сложный план армирования, достаточно 4 или 6 прутов арматуры. Технология связывания армирующего каркаса очень простая: стержни располагаются по кругу, образуя окружность диаметром на 3-5 см меньше, чем размер обсадной трубы. Стержни связываются проволокой. Для закрепления можно использовать хомуты. Длина каркаса = длине обсадной трубы + 30 см. Готовый армокаркас устанавливается в скважину внутри обсадной трубы и заглубляется в грунт.

Арматурный каркас не должен соприкасаться со стенками обсадных труб!

Заливка бетонной смеси

Бетон, используемый для заливки буронабивных опор должен соответствовать СНиП 2.03.01-84 и быть не ниже класса В12,5. Для массивных домов лучше использовать бетон В15. Для заливки бетона в устье скважины опускается загрузочная воронка. Если заливать смесь без воронки, то возможно появление пустот. Заливать бетонную смесь необходимо медленно, каждый слой толщиной 0,5 м необходимо уплотнять 5-10 минут при помощи глубинного виброинструмента и только после этого заливать следующую порцию. К устройству ростверка можно приступать после того, как бетон наберет прочность — через 3-7 суток.

Устройство ростверка

Для фундамента частного дома выполняется железобетонный ленточный ростверк. Легкие конструкции, например бани, дачные брусовые домики допускают использование деревянного ростверка. Самый простой и менее трудозатратный вариант — низкий ростверк, который возвышается над уровнем земли на 0,2-0,3 м. Высокий ростверк до 0,5-0,6 м может использоваться на влажных почвах, для максимального поднятия дома от поверхности.

Этапы строительства монолитного ростверка:

Устройство основания и опалубки

Для низких ростверков применяется гравийно-песчаная подушка 10-20 см, поверх которой укладывает подбетонка — 5 см слой тощего бетона и гидроизоляция. В качестве гидроизолирующего слоя используется рубероид или гидроизол. Опалубка монтируется из досок по всей длине ростверка.

Армирование

Технология армирования ленточного ростверка подразумевает продольную укладку стержней арматуры, которые связываются как между собой, так и с арматурой буронабивных свай. Правильное армирование обеспечивает жесткое соединение буронабивной опоры с ростверком. На растянутых участках укладывается 4 стержня арматуры 20 мм, на углах — 12-15 мм. Для крепления арматуры в единый каркас применяются вертикальные пруты 5-8 мм, расстояние между ними составляет 25-30 см. Узел связки арматурных каркаса и ростверка будет выглядеть следующим образом:


Заливка бетона

Бетон класса В12,5…В15 заливается внутрь опалубки и утрамбовывается виброоборудованием. При температуре воздуха +25 С бетон необходимо периодически увлажнять. Для обеспечения постепенного затвердевания ростверк нужно закрывать полиэтиленом. Окончательно свайно-ростверковыйфундамент на сваях будет готов через 20-25 дней.

Утепление буронабивного фундамента с ростверком

Для создания благоприятного микроклимата в доме рекомендуется утеплить фундамент. Закопанные в грунт сваи утеплять не нужно, теплоизоляция необходима той части ростверка, которая расположена выше нулевого уровня. Утепление и гидроизоляция основания с заглубленным ростверком проводится в горизонтальной и вертикальной плоскости.

Теплоизоляция выполняется плитами пеноплекса или другого пенопластового утеплителя. Использовать теплоизоляторы на основе минваты нельзя, т.к. они усиленно впитывают влагу из грунта и быстро приходят в негодность. Алгоритм создания гидро- и теплоизоляции ростверка простой:

  1. Выполняется гидроизоляция: слой битума или рулонного рубероида. Гидроизолируется верхняя и боковые части ростверка.
  2. Плиты утеплителя приклеиваются клеем и крепятся дюбель-гвоздями.
  3. Заделка стыков и углов производится при помощи монтажной пены или жидкого пенополиуретана.
  4. Боковые стены ростверка отделываются штукатуркой или другим декоративным материалом.

Одновременно с теплоизоляцией делается отмостка, которая также способствует сохранению тепла и отводу влаги от фундамента.

Правильно выполненный свайно-ростверковый фундамент на буронабивных сваях прослужит не менее 100 лет. Конструкция не требует технического обслуживания и имеет доступную стоимость.

Характерным показателем прочности свайного фундамента является несущая способность отдельно взятой сваи. Эта характеристика влияет на общее количество свай в периметре фундамента – регулируя частотность, можно повышать предел нагрузки, которую будет способен выдержать фундамент. Количество буронабивных свай и несущая способность отдельно взятой свайной колонны это взаимосвязанные характеристики, оптимальное соотношение которых определяется путем проведения несложных расчетов.

Подготовка к расчету


Исходные данные, которые понадобятся для расчета несущей способности буронабивной сваи, получают в итоге проведения геологических изысканий и подсчета общей предполагаемой нагрузки здания. Это обязательные этапы расчета, проведение которых обосновано теорией расчета прочностных характеристик буронабивных фундаментов.

Такие показатели как глубина промерзания, уровень залегания грунтовых вод, разновидность грунта и его механические характеристики очень важны для получения точного результата. Информация о глубине промерзании грунта находится в СНиП 2.02.01-83*, данные разделены по климатическим районам, представлены картографически и в виде таблиц.

Не стоит полагаться на данные геологической и гидрогеологической разведки, полученные на соседних участках. Даже в пределах периметра одного земельного надела состояние грунтов оснований может резко изменяться. Три-четыре контрольные скважины в контрольных точках периметра дадут точную информацию о состоянии почв.

Расчет массы постройки ведут с учетом климатического района, расположения здания относительно румба ветров, среднего количества осадков в зимний период, массы строительных конструкций и оборудования. Этот показатель наиболее значим при проектировании фундамента – данные для проведения этой части расчета, а также схему и расчетные формулы можно найти в СНиП 2.01.07-85.

Проведение геологии


Проведение геологических изысканий ответственное мероприятие и в массовом поточном строительстве этим занимаются специалисты-геологи. В индивидуальном жилищном строительстве часто проводят самостоятельную оценку состояния грунтов. Не имея опыта проведения изысканий такого уровня очень сложно оценить реальное положение вещей. Работа грамотного специалиста по большей части заключается в визуальной оценке состояния напластований.

Для начала на участке устраивают шуфры – вертикальные выработки грунта прямоугольного или круглого сечения, глубиной от двух метров и шириной достаточной для визуального осмотра основания стенок ямы. Назначение шуфров – раскрытие почвы с целью осуществления доступа к напластованиям, скрытым под верхним слоем грунта. Геологи измеряет глубину пластов, берет пробу грунта из середины каждого слоя, а также впоследствии наблюдает за накоплением воды на дне забоя. Вместо шуфров могут устраиваться круглые скважины, из которых с помощью специального устройства вынимают керн или берут локальные пробы.

Шуфры укрывают на некоторое время – два-три дня – ограничивая попадание атмосферных осадков. После оценивают уровень воды, поднявшийся в полости скважины – эта отметка, отсчитанная от верхней границы, и будет уровнем залегания грунтовых вод.

Все полученные данные заносятся в сводную таблицу.Кроме того, составляется профиль сечения грунта, который позволяет предугадать состояние грунтов в точках, где бурение не производилось. При самостоятельной оценке оснований следует руководствоваться сведениями, представленными в СНиП 2.02.01-83* и ГОСТ 25100-2011, где в соответствующих разделах представлены классификации грунтов с описаниями, методы визуального определения типов грунта и характеристики в соответствии с типами.

Как использовать данные геологической разведки

После того как проведена геология местности – самостоятельно или нанятыми специалистами – можно приступать к определению начальных геометрических характеристик свай.

Нас интересуют тип грунта, показатель коэффициента неоднородности грунта, глубина промерзания и уровень расположения грунтовых вод. Схема расчета несущей способности буронабивной сваи для различных типов грунтов находится в приложениях СП 24.13330.2011.

Глубина заложения сваи должна быть как минимум на полметра ниже глубины промерзания, чтобы предотвратить воздействие морозного пучения грунтов на опорную часть колонны. Средняя глубина промерзания в центральной полосе России 1,2 метра, значит, минимальная длина сваи должна составлять в таком случае 1,7 метра. Значение меняется для отдельно взятых регионов.

Не только относительная влажность, но и взаимное расположение нижней отметки промерзания грунта и глубины залегания грунтовых вод. В холодное время года высоко расположенные замерзшие грунтовые воды будут оказывать сильное боковое давление на тело свайной колонны – такие грунты сильно деформируются и считаются пучинистыми.

Некоторые грунты, характеризующихся как слабые, высокопучинистые и просадочные, не подходят для устройства свайных фундаментов – для них больше подходят ленточные или плитные фундаменты. Определить тип грунта, а также тип совместимого фундамента, значит исключить скорое разрушение конструкций. Показатели неоднородности грунта, указанные в таблицах вышеперечисленных нормативных документов, используются в дальнейших расчетах.

Расчет общей нагрузки

Сбор нагрузок позволяет определить массу здания, а значит усилие, с которым постройка будет воздействовать на фундамент в целом и на его отдельно взятые элементы. Существует два типа нагрузок, воздействующих на опорную конструкцию – временные и постоянные. Постоянные нагрузки включают в себя:

  • Массу стеновых конструкций;
  • Суммарную массу перекрытий;
  • Массу кровельных конструкций;
  • Массу оборудования и полезной нагрузки.

Посчитать массу конструкций можно, определив объем конструкций, и умножив его на плотность использованного материала. Пример расчета массы для одноэтажного здания с железобетонными перекрытиями, кровлей из керамической черепицы и со стенами 600 мм из железобетона, размерами 10 на 10 метров в плане, высотой этажа 2 метра:

  • Вычисляем объем стен, для этого умножаем площадь поперечного сечения стены на периметр. Получаем V стены = 20 ∙ 2 ∙ 0,6 = 24 м3. Полученное значение умножаем на плотность тяжелого бетона, которая равняется 2500 кг/см3. Итоговая масса стеновых конструкций умножается на коэффициент надежности, для бетона равный k = 1,1. Получаем массу M стены = 66 т.
  • Аналогично считаем объем перекрытий(подвального и чердачного),масса которых при толщине 250 мм будет равняться Мпк = 137,5 т, с учетом аналогичного коэффициента надежности.
  • Вычисляем массу кровельных конструкций. Масса кровли для 1 м2 металлочерепицы – 65 кг, мягкой кровли – 75 кг, керамической черепицы – 125 кг. Площадь двускатной кровли для здания такого периметра будет составлять примерно 140 м2, а значит масса конструкций составит Мкр = 17,5 т.
  • Общий размер постоянной нагрузки будет равняться Мпост = 221 т.

Коэффициенты надежности для различных материалов находятся в седьмом разделе СП 20.13330.2011. При расчете следует учитывать массу перегородок, облицовочных материалов фасада и утеплителя. Объем, который занимают оконные и дверные проемы не вычитают из общего объема для простоты вычислений, поскольку он составляет незначительную часть общей массы.

Расчет временных нагрузок


Ростверк на винтовых сваях

Временные нагрузки рассчитываются в соответствии с климатическим районом и указаниями свода правил «Нагрузки и воздействия». К временным относятся снеговая и полезная нагрузки. Полезная нагрузка для жилых зданий составляет 150 кг на 1 м2 перекрытия, а значит общее число полезного веса будет равняться Мпол = 15 т.

Масса оборудования, которое предполагается установить в здании, также суммируется в этот показатель. Для определенного типа оборудования применяется коэффициент надежности, расположенный в вышеуказанном своде правил.

Существуют различные типы особых нагрузок, которые также необходимо учитывать при проектировании. Это сейсмические, вибрационные, взрывные и прочие.

где ce – коэффициент сноса снега, равный 0,85;

ct – термический коэффициент, равный 0,8;

m – переходный коэффициент, для зданий в плане менее 100 м принимаемый по таблице Г вышеуказанного СП;

St – вес покрова снега на 1 м2. Принимается по таблице 10.1, в зависимости от снегового района.

Показатели временных нагрузок суммируются с постоянными и получается количественный показатель общей нагрузки здания на фундамент. Это число используется для расчета нагрузки на одну свайную колонну и сравнения предела прочности. Для удобства расчета и наглядности примера примем временные нагрузки Мвр = 29 т, что в сумме с постоянными даст Мобщ = 250 т.

Определение несущей способности сваи

Геометрические параметры сваи и предел прочности это взаимосвязанные величины. В данном примере, нагрузка на один метр фундамента будет составлять 250/20 = 12,5 тонн.

Расчет предела предела нагрузки на отдельно взятой буронабивной сваи ведут по формуле:

где F – предел несущей способности; R – относительное сопротивление грунта, пример расчета которого находится в СНиП 2.02.01-83*; А – площадь сечения сваи; Eycf, fi и hi – коэффициенты из вышеуказанного СНиП; y – периметр сечения свайного столба, разделенный на длину.

Посмотрите видео, как проверить несущую способность сваи с помощью профессионального оборудования.

Для сваи полутораметровой длины диаметром 0,4 метра несущая способность будет равняться 24,7 тонны, что позволяет увеличить шаг свайных колонн до 1,5 метров. В таком случае нагрузка на сваю будет составлять 18, 75 тонн, что оставляет довольно большой запас прочности. Изменением геометрических характеристик, а также шага свайных колонн регулируется несущая способность. Данная таблица, представленная ниже, показывает зависимость несущей способности полутораметровой сваи от диаметра:

Зависимость несущей способности от ширины сваи

Существует масса сервисов, позволяющих провести расчет несущей способности сваи онлайн. Пользоваться следует только проверенными порталами, с хорошими отзывами.

Важно не превышать допустимую нагрузку на сваю и оставлять запас прочности – немногие сервисы умеют планировать распределение нагрузки, поэтому следует обратить внимание на алгоритм расчета.

Расчет свайного фундамента выполняется в зависимости от его типа. Важно понимать, что расчет буронабивных свай будет отличаться от вычислений для винтовых. Но во всех случаях требуется выполнить предварительную подготовку, которая включает в себя сбор нагрузок и геологические изыскания.

Изучение характеристик грунта

Несущая способность буронабивной сваи будет во многом зависеть от прочностных характеристик основания . В первую очередь стоит выяснить прочностные показатели грунтов на участке. Для этого пользуются двумя методами: ручным бурением или отрывкой шурфов. Грунт разрабатывается на глубину на 50 см больше, чем предполагаемая отметка фундамента.





Сбор нагрузок

Перед расчетом буронабивного фундамента также необходимо выполнить сбор нагрузок от всех вышележащих конструкций. Потребуется два отдельных вычисления:

Это необходимо потому, что отдельно будет выполнен расчет ростверка свайного фундамента и характеристик свай.

При сборе нагрузок необходимо уесть все элементы здания, а также временные нагрузки, к которым относится масса снегового покрова на крыше, а также полезная нагрузка на перекрытие от людей, мебели и оборудования.

Для расчета свайно-ростверкового фундамента составляется таблица, в которую вносится информация о массе конструкций. Чтобы рассчитать эту таблицу, можно пользоваться следующей информацией:

Конструкция
Каркасная стена с утеплителем, толщиной 15 см 30-50 кг/кв.м.
Деревянная стена толщиной 20 см 100 кг/кв.м.
Деревянная стена толщиной 30 см 150 кг/кв.м.
Кирпичная стена толщиной 38 см 684 кг/кв.м.
Кирпичная стена толщиной 51 см 918 кг/кв.м.
Гипсокартонные перегородки 80 мм без утепления 27,2 кг/кв.м.
Гипсокартонные перегородки 80 мм с утеплением 33,4 кг/кв.м.
Междуэтажные перекрытия по деревянным балкам с укладкой утеплителя 100-150 кг/кв.м.
Междуэтажные перекрытия из железобетона толщиной 22 см 500 кг/кв.м.
Пирог кровли с использованием покрытия из
листов металлической черепицы и металлических 60 кг/кв.м.
керамочерепицы 120 кг/кв.м.
битумной черепицы 70 кг/кв.м.
Временные нагрузки
От мебели, людей и оборудования 150 кг/кв.м.
от снега определяется по табл. 10.1 СП "Нагрузки и воздействия" в зависимости от климатического района

Собственный вес фундаментов и ростверка определяется в зависимости от геометрических размеров. Сначала требуется вычислить объем конструкции. Плотность железобетона при этом принимается равной 2500 кг/куб.м. Чтобы получить массу элемента, нужно объем умножить на плотность.

Каждую составляющую нагрузки нужно умножить на специальный коэффициент, который повышает надежность. Его подбирают в зависимости от материала и способа изготовления. Точное значение можно найти в таблице:

Расчет сваи

На этом этапе вычислений необходимо определиться со следующими характеристиками:

  • шаг свай;
  • длина сваи до края ростверка;
  • сечение.

Чаще всего размеры сечения определяют заранее, а остальные показатели подбирают исходя их имеющихся данных. Таким образом, результатом расчета должны стать расстояние между сваями и их длина.


Всю массу здания, полученную на предыдущем этапе, требуется разделить на общую длину ростверка. При этом учитываются как наружные, так и внутренние стены. Результатом деления станет нагрузка на каждый пог.м фундаментов.

Несущую способность одного элемента фундамента можно найти по формуле:
P = (0,7 R S) + (u 0,8 fin li), где:

  • P - нагрузка, которую без разрушения выдерживает одна свая;
  • R - прочность почвы, которую можно найти по таблицам, представленным ниже после изучения состава грунта;
  • S - площадь сечения сваи в нижней части, для круглой сваи формула выглядит следующим образом: S = 3,14*r2/2 (здесь r - это радиус окружности);
  • u - периметр элемента фундамента, можно найти по формуле периметра окружности для круглого элемента;
  • fin - сопротивление почвы по боковым сторонам элемента фундамента, см. таблицу для глинистых грунтов выше;
  • li - толщина слоя грунта, соприкасающегося с боковой поверхностью сваи (находят для каждого слоя почвы отдельно);
  • 0,7 и 0,8 - это коэффициенты.

Шаг фундаментов рассчитывается по более простой формуле: l = P/Q, где Q-это масса дома на пог.м фундамента, найденная ранее. Чтобы найти расстояние между буронабивными сваями в свету, из найденной величины просто вычитают ширину одного элемента фундамента.

Армирование буронабивных свай выполняется в соответствии с нормативными документами. Арматурные каркасы состоят из рабочей арматуры и хомутов. Первая берет на себя изгибающие воздействия, а вторые обеспечивают совместную работу отдельных стержней.

Каркасы для буронабивных свай подбираются в зависимости от нагрузки и размеров сечения. Рабочая арматура устанавливается в вертикальном положении, для нее используют стальные стержни D от 10 до 16 мм. При этом выбирают материал класса А400 (с периодическим профилем). Для изготовления поперечных хомутов потребуется закупить гладкую арматуру класса А240. D = минимум 6-8 мм.


Каркасы буронабивных свай устанавливаются так, чтобы металл не доходил за край бетона на 2-3 см. Это нужно для обеспечения защитного слоя, который предотвратить появление коррозии (ржавчины на арматуре).

Размеры ростверка и его армирование

Элемент проектируется так же, как и ленточный фундамент. Высота ростверка зависит от того, насколько нужно поднять здание, а также от его массы. Самостоятельно можно выполнить расчет элемента, который опирается вровень с землей, или немного заглублен в нее. Основа расчетов висячего варианта слишком сложна для неспециалиста, поэтому такую работу стоит доверить профессионалам.


Пример правильной вязки арматурного каркаса

Размеры ростверка вычисляются так: В = М / (L R), где:

  • B - это минимальное расстояние для опирания ленты (ширина обвязки);
  • М - масса здания без учета веса свай;
  • L - длина обвязки;
  • R - прочность почвы у поверхности земли.

Арматурные каркасы обвязки подбираются так же, как и для здания на ленточном фундаменте. В ростверке требуется установить рабочее армирование (вдоль ленты), горизонтальное поперечное, вертикальное поперечное.

Общую площадь сечения рабочего армирования подбирают так, чтобы она была не меньше 0,1% от сечения ленты. Чтобы подобрать сечение каждого стержня и их количество (четное), пользуются сортаментом арматуры. Также необходимо учитывать указания СП по наименьшим размерам.

Пример расчета

Чтобы лучше понять принцип выполнения вычислений, стоит изучить пример расчета. Здесь рассматривается одноэтажное здание из кирпича с вальмовой крышей из металлочерепицы. В здании предполагается наличие двух перекрытий. Оба изготавливаются из железобетона толщиной 220 мм. Размеры дома в плане 6 на 9 метров. Толщина стен составляет 380 мм. Высота этажа - 3,15 м (от пола до потолка - 2,8 м), общая длина внутренних перегородок - 10 м. Внутренних стен нет. На участке найдена тугопластичная супесь, пористость которой - 0,5. Глубина залегания этой супеси - 3,1 м. Отсюда по таблицам находим: R = 46 тонн/кв.м., fin = 1,2 тонн/кв.м. (для расчетов среднюю глубину принимаем равной 1 м). Снеговая нагрузка берется по значениям Москвы.

Сбор нагрузок делаем в форме таблицы. При этом не забываем про коэффициенты надежности.

Вид нагрузки Расчет
Стены из кирпича периметр стен = 6+6+9+9 = 30 м;
площадь стен = 30 м*3м = 90 м2;
масса стен = (90 м2* 684)*1,2 = 73872 кг
Перегородки изготовленные из гипсокартона не утепленные высотой 2,8 м 10м*2,8*27,2кг*1,2 = 913,92 кг
Перекрытие из ж/б плит толщиной 220 мм, 2 шт. 2шт*6м*9м*500 кг/м2 *1,3 = 70200 кг
Кровля 6 м*9 м*60 кг*1,2 /соs30ᵒ (уклон крыши) = 4470 кг
Нагрузка от мебели и людей на 2 перекрытия 2*6м*9м*150кг*1,2 = 19440 кг
Снег 6м*9м*180кг*1,4/cos30° = 15640 кг
ИТОГО: 184535,92 кг ≈ 184536 кг

Предварительно назначаем ростверк шириной 40 см, высотой 50 см. Длину сваи - 3000 мм, D сечения = 500 мм. Используем примерный шаг свай 1500 мм.
Чтобы рассчитать общее количество опор нужно 30 м (длину ростверка) поделить на 1,5 м (шаг свай) и прибавить 1 шт. При необходимости значение округляется до целого числа в сторону уменьшения. Получаем 21 шт.

Площадь одной сваи = 3,14 0,52/4 = 0,196 кв.м., периметр = 2 3,14 0,5 = 3,14 м.

Найдем массу ростверка: 0,4м 0,5 м 30 м 2500 кг/куб.м. 1,3 = 19500 кг.

Найдем массу свай: 21 3 м 0,196 кв.м. 2500 кг/куб.м. 1,3 = 40131 кг.

Найдем массу всего здания: сумма из таблицы + масса свай + масса ростверка = 244167 кг или 244 тонн.

Для расчета потребуется нагрузка на пог.м ростверка = Q = 244 т/30 м = 8,1 т/м.

Расчет свай. Пример

Находим допустимое нагружение на каждый элемент по формуле указанной ранее:
P = (0,7 46 тонн/кв.м. 0,196 кв.м.) + (3,14 м 0,8 1,2 тонн/кв.м. 3 м) = 15,35 т.
Шаг свай принимается равным P/Q = 15,35/8,1= 1,89 м. Округляем до 1,9 м. Если шаг получается слишком большим или маленьким, нужно проверить еще несколько вариантов, меняя при этом длину и диаметр фундаментов.

Для каркасов применяются пруты D = 14 мм и хомуты D = 8 мм.

Расчет ростверка. Пример

Нужно посчитать массу здания без учета свай. Отсюда М = 204 тонн.
Ширина ленты принимается равной М / (L R) = 204/ (30 75) = 0,09 м.
Такой ростверк использовать нельзя. Свесы стен кирпичного здания с фундамента не должны превышать 4 см. Ширину назначаем конструктивно 400 мм. Высота остается равной 500 мм.

Армирование ростверка свайного фундамента:

  • Рабочее 0,1%*0,4*0,5 = 0,0002 кв.м. = 2 кв.см. Здесь достаточно будет 4 стержней диаметром 8 мм, но по нормативным требованиям используем минимально возможный диаметр 12 мм;
  • Горизонтальные хомуты - 6 мм;
  • Вертикальные хомуты - 6 мм.

Выполнение расчетов займет определенный промежуток времени. Но с их помощью можно сберечь деньги и время в процессе строительства.

Также вы можете рассчитать фундамент при помощи онлайн калькулятора. Просто нажмите на ссылку Расчет фундамента столбчатого типа и следуйте инструкциям.

Возведение любого фундамента начинается с проектирования. Расчеты и чертежи могут быть выполнены без привлечения специалистов, самостоятельно. Конечно, эти вычисления не будут иметь высокую точность и представят собой упрощенный вариант расчета, но они могут дать представление о том, как обеспечить несущую способность фундамента. Далее рассмотрены буронабивные сваи и пример их расчета.

Конструкторские работы выполняют в следующем порядке:

  • изучение характеристик грунта;
  • сбор нагрузок на фундамент;
  • расчеты по несущей способности, определение расстояния между сваями и их сечения.

О каждом пункте по порядку.

Геологические изыскания

При массовом строительстве характеристики для расчетчиков подготавливают геологи. Они берут пробы грунта, проводят лабораторные испытания и дают точные значения несущей способности того или иного слоя, расположение грунтов с различными характеристиками. Если буронабивные сваи используются для частного домостроения, проводить такие мероприятия экономически невыгодно. Работу выполняют самостоятельно двумя способами:

  • шурфы;
  • ручное бурение.

Важно! Характеристики изучаются в нескольких точках, все из них располагаются под пятном застройки здания. Одна — обязательно в самой низкой части поверхности земли. Глубину разработки грунта при исследовании характеристик почвы назначают на 50 см ниже предполагаемой отметки подошвы фундамента.

Шурф — яма прямоугольной или квадратной формы, грунт изучают, анализируя почву стенок отрытого шурфа. При бурении выполняют анализ почвы на лопастях бура. Ознакомившись с , определяют тип почвы. Для некоторых типов оснований, потребуется определить консистенцию или влажность. С данным вопросом поможет таблица1.

Внешние признаки и способы Консистенция
Глинистые основания
Если грунт сжимают или ударяют, он рассыпается на куски Полутвердый или твердый грунт
Образец трудно разминать, при попытке разлома бруска, перед тем как распасться на две части он сильно изгибается Тугопластичный
Сохраняет вылепленную форму, легко поддается лепке Мягкопластичный
Мнется руками без затруднений, но не сохраняет вылепленную форму Текучепластичный
Если образец поместить на наклонную поверхность, то он будет медленно по ней сползать (стекать) Текучий
Песчаные основания
Рассыпается при сжатии в руке, не имеет внешних признаков наличия влаги Сухие
Проверку выполняют с помощью фильтровальной бумаги, она должна оставаться сухой или сыреть через промежуток времени. При сжатии в ладони образец дает ощущение прохлады Маловлажные
Образец кладут на фильтровальную бумагу и наблюдают сырое пятно. При сжатии создается ощущение влажности. Способен в течении некоторого времени сохранять форму Влажные
Встряхивают образец на ладони, он должен превращаться в лепешку Насыщенные влагой
Растекается или расползается без внешнего механического воздействия (в покое) Переувлажненные

Определив по внешним признакам тип и консистенцию основания с применением и таблицы, приступают к выяснению нормативных сопротивлений. Эти значения нужны для вычисления несущей способности фундамента и расчета расстояния между сваями.

Буронабивные сваи предают нагрузку не только на тот слой грунта, на который опираются, но и по всей боковой поверхности. Это увеличивает их эффективность.

В таблице 2 приводятся нормативные сопротивления оснований, в местах опирания на них подошвы буронабивных свай.

Грунт Нормативное сопротивление с учетом дополнительных испытаний, т/м 2
Глинистые основания
Коэф-т пористости Твердая

консистенция

Полутвердая Тугопластичная Мягкопластичная
Супесь 0,50 47 46 43 41
0,70 39 38 35 33
Суглинок 0,50 47 46 43 41
0,70 37 36 33 31
1,00 30 29 24 21
Глина 0,50 90 87 78 72
0,60 75 72 63 57
0,80 45 43 39 36
1,10 37 35 28 24
Песчаные основания
Плотные Среднеплотные
влажные маловлажные влажные маловлажные
Крупная фракция 70 70 50 50
Средняя фракция 55 55 40 40
Мелкая фракция* 37 45 25 30
Пылеватые* 30 40 20 30
Крупнообломочные основания
Щебень с добавлением песка 90
Гравий, образовавшийся из кристаллических пород 75
Гравий, образовавшийся из осадочных пород 45

Коэффициент пористости грунта — это отношение объема пустот к общему объему породы. Чтобы вычислить размеры пор связных пород (глинистых) применяют такие величины как удельный и объемный вес.

Также при вычислении несущей способности буронабивных свай необходимо учитывать сопротивление по боковой поверхности. Значения для глинистых пород представлены в таблице 3.

Выяснив все необходимые данные, связанные с сопротивлением грунтов приступают к следующему пункту расчета по несущей способности фундамента.

Сбор нагрузок

Здесь необходимо учесть массу всех конструкций. К ним относятся:

  • стены и перегородки;
  • перекрытия;
  • кровля;
  • временные нагрузки.

Первые три нагрузки относятся к постоянным. Они зависят от того, из каких материалов будет строиться дом. Чтобы вычислить массу стен, перекрытий или перегородок берут плотность материала, из которого планируется их изготавливать, и умножают на толщину и площадь. При расчете кровли все немного сложнее. Нужно учесть:

  • подшивку;
  • нижнюю и верхнюю обрешетку;
  • стропильные ноги;
  • утеплитель (если он есть);
  • кровельное покрытие.

Можно привести средние значения для трех самых распространенных типов кровельного покрытия:

  1. масса 1 м2 пирога крыши с покрытием из металлочерепицы — 60 кг;
  2. керамической черепицы — 120 кг;
  3. битумной (гибкой) черепицы — 70 кг.

К временным нагрузкам относят снеговую и полезную. Обе принимаются по . Снеговая зависит от климатического района, который определяют по СП «Строительная климатология». Полезная назначается в зависимости от назначения здания. Для жилого — 150 кг/м² перекрытий.

Вычислить все нагрузки недостаточно, каждую из них требуется умножить на коэффициент надежности.

  • коэффициент для расчета постоянных нагрузок зависит от материала и способа изготовления конструкции и принимается по таблице 7.1 ;
  • коэффициент для снеговой нагрузки — 1,4;
  • коэффициент для полезной в жилом доме — 1,2.

Все значения складывают и приступают к расчету буронабивных свай по несущей способности.

Формулы для вычислений

P = Росн + Рбок. пов-ти,

где Р — несущая способность сваи, Росн — несущая способность сваи у основания, Рбок. пов-ти — несущая способность боковой поверхности.

Росн = 0,7 * Rн * F,

где Rн — нормативная несущая способность из таблицы 2, F — площадь основания буронабивной сваи, а 0,7 — коэффициент однородности грунта.

Рбок. пов-ти = 0,8 * U * fiн * h,

где 0,8 -коэффициент условий работы, U — периметр сваи по сечению, fiн — нормативное сопротивление грунта у боковой поверхности буронабивной сваи по таблице 3, h — высота слоя грунта, контактирующего с фундаментом.

Q = M/Uдома,

где Q — нагрузка на погонный метр фундамента от здания, М — сумма всех нагрузок от конструкций здания, вычисленная ранее, Uдома — периметр здания.

Важно! Если дом имеет большую площадь и предусмотрен монтаж внутренних стен, под которые будет устроен фундамент, их длину прибавляют к периметру для расчета расстояния между буронабивными сваями фундамента.

где P и Q — найденные ранее значения, а L — максимальное расстояние между сваями.

Расчет для вычисления расстояния между сваями фундамента обычно проводится несколько раз. При этом подбираются разные сечения и глубина заложения.

Важно! За счет того, что работает не только опорная часть буронабивного фундамента, несущая способность с увеличением глубины заложения в большинстве случаев повышается (зависит от характеристик основания для фундамента). При проектировании опоры для будущего дома рекомендуется рассмотреть несколько примеров, изменяя сечение и глубину заложения. Рассчитывается расстояние между сваями и их количество. После этого «прикидывается» смета (точные вычисления могут быть трудоемки, поэтому достаточно примерных значений), и выбирается наиболее экономичный вариант.

Перед расчетом нужно ознакомиться с . По требованиям этого норматива буронабивные сваи длиной до 3 метров рекомендуется предусматривать диаметром от 30 см.

Пример расчета

Исходные данные:

  • Геологические условия местности: на глубине 2 метра от поверхности почвы залегают суглинки тугоплатичные, далее на всю глубину исследования располагаются твердые глины с коэффициентом пористости 0,5.
  • Требуется спроектировать фундамент под одноэтажный дом с мансардой. Размеры дома в плане — 4 на 8 метров, кровля с покрытием из металлочерепицы вальмовая (высота наружной стены по всем сторонам одинаковая), стены из кирпича толщиной 0,38 м, перегородки гипсокартонные, перекрытия — железобетонные плиты. Высота стен в пределах первого этажа — 3 метра, на мансардном этаже наружные стены имеют высоту 1,5 метра. Внутренних стен нет (только перегородки).

Сбор нагрузок:

  1. масса стен = 1,2 * (24 м (периметр дома) * 3м (первый этаж) + 24 м * 1,5 м (мансарда))*0,38 м * 1,8 т/м³ (плотность кирпичной кладки) = 88,65 т (1,2 — коэффициент надежности по нагрузке);
  2. масса перегородок = 1,2 * 2,7 м (высота) * 20 м (общая длина) * 0,03 т/м² (масса квадратного метра перегородок) = 2 тонны;
  3. масса перекрытий с учетом цементной стяжки 3 см = 1,2 * 0,25 м (толщина) * 32 м²(площадь одного перекрытия) * 2(пол первого этажа и пол мансарды) * 2,5 т/м² = 48 тонн;
  4. масса кровли = 1,2 * 4 м * 8 м * 0,06 т/м² = 2,3 тонны;
  5. снеговая нагрузка = 1,4 * 4 м * 8 м * 0,18 т/м2 = 8,1 тонн;
  6. полезная нагрузка = 1,2 * 4 м * 8 м * 0,15 т/м² * 2 (2 перекрытия) = 11,5 тонн.

Итого: М = 112,94 т. Периметр здания Uдома = 24 м, нагрузка на погонный метр Q= 160,55/24 = 6,69 т/м. Предварительно подбираем сваю диаметром 30 см и длиной 3 м.

По формулам для определения расстояния между сваями

Все необходимые формулы приведены ранее, нужно просто воспользоваться ими по порядку.

1. F= 3,14 D²/4(площадь круглой сваи) = 3,14 * 0,3 м * 0,3 м / 4 =0,071 м², U = 3,14 D = 3,14*0,3 м = 0,942м; (периметр сваи по кругу);

2. Pосн = 0,7 * 90 т/м² * 0,071 м2 = 4,47 т;

3. Рбок. пов-ти = 0,8 * (2,8 т/м² * 2 м + 4,8 т/м² * 1) * 0,942 = 7,84 т;

В этой формуле 2,8 т/м² — расчетное сопротивление боковой поверхности сваи в тугопластичном суглинке, 2м — высота слоя суглинка, в котором располагается фундамент. Сопротивление находят по таблице 3. Там представлены значения для подходящей в данном случае глубины 50, 100 и 200 см. В расчет принимаем минимальное для того, чтобы обеспечить запас по несущей способности.

4,8 т/м² — расчетное сопротивление боковой поверхности сваи в полутвердой глине, 1м — высота фундамента, располагающегося в этом слое. Последнее число в формуле — найденный в первом пункте периметр сваи. Значения 0,7 и 0,8 в пунктах 2 и 3 — коэффициенты из формул.

4. Р = 4,47 т + 7,84 т = 12,31 т (полная несущая способность одной сваи);

5. L = 12,31 т/6,69 т/м = 1,84 м — максимальное значение расстояния между сваями (между центрами).

Назначаем расстояние 1,8 м. Т.к. длина наших стен кратна 2 м метрам, удобнее чтобы и расстояние между сваями было 2 м, для этого нужно немного увеличить несущую способность сваи, например увеличив её диаметр. Если полученное значение шага достаточно велико, разумнее найти минимальное, поскольку, чем больше расстояние между сваями, тем больше понадобиться сечение ростверка, что приведет к дополнительным затратам. По такому же принципу выполняют расчеты для уменьшенного диаметра. Рассчитывают применое количество материала для нескольких вариантов и подбирают оптимальное значение.

Фундаменты являются крайне ответственной частью любого здания. Появятся ли трещины на стенах, будет ли дом проседать со временем - все это зависит от того, насколько грамотно подобраны размеры и материалы для опорной части. Чтобы правильно запроектировать буронабивной свайно-ростверковый фундамент, потребуется выполнить его расчет по несущей способности.

Несущая способность фундамента - это нагрузка, которую он сможет выдержать без разрушений, деформаций или других неприятных процессов. При конструировании буронабивного основания потребуется выяснить следующую информацию:

  • сечение элемента;
  • длина;
  • расстояние между отдельными сваями.

Расчет свай по несущей способности часто выполняется с заранее известным сечением фундамента. Эта характеристика зависит от имеющейся в наличии техники. В качестве исходных данных необходимо подготовить:

  • состав грунтов на участке;
  • сбор нагрузок на опору дома.

Сбор исходных данных для расчета

Перед тем, как рассчитать буронабивной свайно-ростверковый фундамент, потребуется изучить свойства почвы на участке строительства. Выполнить это можно двумя методами: отрывка шурфов (глубоких ям) или бурение ручным инструментом. Изучение почвы проводят чуть глубже предполагаемой подошвы (примерно на 50 см). При выполнении работ необходимо анализировать каждый плат грунта, определять его тип.

Чтобы получить представление о том, какие бывают грунты, как правильно их различать, рекомендуется прочитать . Особого внимания заслуживает приложение А, в котором даны основные определения.

Следующий этап расчета буронабивной сваи и ростверка - сбор нагрузок. Его проще выполнять в тоннах. Для его выполнения потребуется знать объемы строительных конструкций и плотности материалов, из которых они изготовлены. Чтобы подсчитать массу здания нужно вспомнить простую формулу из школьной физики: «Массу мы легко найдем, умножив плотность на объем». В сбор нагрузок на фундаменты включают:

  • собственную массу опорной части (назначают ориентировочно);
  • массу перекрытий, стен, перегородок (проемы из общего объема лучше не вычитать);
  • полезную нагрузку на перекрытия (для жилых зданий эта нагрузка назначается 150 кг/м 2 пола, берется на каждом этаже);
  • массу кровли;
  • снеговую нагрузку (зависит от климатического района строительства, расчет выполняется по ).

Совет! Для упрощения задачи снеговую нагрузку можно назначать по специальной карте или таблице. То есть без выполнения сложного расчета.

Найденную массу каждого элемента нужно умножить на коэффициент надежности по нагрузке. Величина этого коэффициента зависит от материала, из которого изготовлена конструкция. Для снеговой и полезной нагрузок коэффициенты постоянны и составляют 1,4 и 1,2 соответственно.

Более подробную информацию о сборе нагрузок на фундаменты можно найти в статье « .

Справочная информация

Чтобы правильно рассчитать буронабивной свайный фундамент потребуется знать прочностные характеристики грунта. Информацию об этом можно найти в ВСН 5-71. Для удобства далее представлены адаптированные таблицы из этого документа отдельно по каждому типу почв.

Таблица 1. Несущая способность глинистых грунтов в зависимости от консистенции и пористости на опорном участке сваи, т/м 2 .

Таблица 2. Несущая способность глинистых грунтов по длине буронабивной сваи, т/м 2 .

Таблица 3. Несущая способность песчаных грунтов, т/м 2 .

Таблица 4. Несущая способность крупнообломочных грунтов, т/м 2 .

Чтобы выполнить расчет сечения и расстояния между сваями необходимо выбрать одно или два (для глин) значения из приведенных в таблице в зависимости от результатов отрывки шурфов или бурения.

Порядок расчета

После внимательного изучения всех предыдущих пунктов для расчета свайно-ростверкового фундамента должна иметься следующая информация:

  • масса дома в тоннах и нагрузка на каждый погонный метр ростверка;
  • несущая способность грунта в тоннах на м 2 .

Чтобы найти нагрузку на погонный метр фундамента, нужно массу дома поделить на суммарную длину ростверка.

Несущая способность одной сваи находится по формуле:

P = (0,7*R*S) + (u*0,8*fin*li), где

P - несущая способность каждой сваи фундамента;

R - прочность грунта, найденная по табл. 1, 3 или 4;

S - площадь сечения сваи на конце (формула для нахождения приведена далее);

u - периметр сваи;

fin - сопротивление почвы на боковой поверхности буронабивного свайного фундамента, найденное по табл. 2;

li - толщина слоя грунта, который оказывает сопротивление боковой поверхности;

0,7 и 0,8 - коэффициенты, которые учитывают однородность грунта и условия работы сваи.

Для сваи круглого сечения площадь находится через диаметр или радиус: S = 3,14*D 2 /4 = 3,14*r 2 /2. Здесь D и r - это диаметр и радиус соответственно.

l - расстояние между сваями буронабивного фундамента;

P - несущая способность одной сваи, найденная ранее;

Q -нагрузка на погонный метр фундамента (масса дома делить на длину ростверка).

Совет! Перед началом расчета необходимо ознакомиться с . Минимальный диаметр свайного основания при длине элемента менее 3 метров составляет 30 см. Чтобы найти наиболее рациональное решение рекомендуется рассмотреть 2-3 варианта геометрических размеров свай. Для каждого случая находят расстояние между опорами и оценивают затраты на строительство. Выбирают наиболее экономичный вариант.

Подробный расчет расстояния между сваями с рассмотрением нескольких примеров может занять много времени. Но здесь перед будущим владельцем дома стоит выбор, что экономить: время или деньги.

Армирование буронабивной сваи

Рабочая арматура располагается вертикально вдоль сваи. В качестве нее используют пруты класса А400 (Аlll) диаметром 10-16 мм. Поперечную обвязку изготавливают из гладкой арматуры А240 (Al) диаметром 6-8 мм. В каждой свае должно быть не менее четырех рабочих вертикальных прутка.

Расчет ростверка

Расчет ростверка свайного фундамента выполняется примерно так же, как и вычисления для ленточного типа опорной части дома. Чтобы рассчитать ширину ленты потребуется воспользоваться формулой:

В = М/L*R, где

B - необходимая ширина ростверка;

М - масса дома (за вычетом массы свай);

L - длина ростверка;

R - несущая способность грунта (слоя у поверхности).

Этот расчет подойдет для ленты, расположенной непосредственно на земле или с небольшим заглублением. Для висячего ростверка расчет будет более сложным, выполнять его самостоятельно проблематично.

Армирование ростверка

Подобрав ширину ростверка буронабивного фундамента, необходимо грамотно его армировать. Можно использовать требования к стальным стержням из .

В качестве материала для армирования выбирают пруты класса А400 (Alll). Максимально допустимый диаметр рабочих прутов - 40 мм. Минимальные значения приведены в таблице.

Пример расчета свайного буронабивного фундамента

Исходные данные для расчета:

  • одноэтажный кирпичный дом с мансардой, толщина стены 380 мм;
  • размеры в плане 7 на 9 метров, внутренних несущих стен нет (только перегородки), высота этажа 3 м;
  • кровля стропильная мансардная с покрытием из металлочерепицы;
  • грунты на участке - полутвердая глина с коэффициентом пористости 0,6, залегает на 3 м, R = 72 т/м2, fin = 3,5 т/м2 (взято значение для глубины 1 м).

Сбор нагрузок удобнее выполнять в табличной форме. Необходимо не забывать коэффициенты по надежности.

Ростверк предварительно принимаем шириной 0,4 м и высотой 0,5 м. Длина буронабивной сваи предварительно - 3 м, сечение диаметром 40 см, устанавливаются с шагом 1,5 м.

Количество свай = 32 м (L, длина ростверка)/1,5 м (шаг свай) +1 = 22 шт. (округляем до целых в меньшую сторону). S = 3,14*0,42/4 (формула площади через диаметр, см. ранее) = 0,126 м 2 .

Масса ростверка: 0,4м *0,5 м *32 м (длина) *2500 кг/м3 (плотность ж/б)* 1,3 (коэффициент) = 20800 кг.

Масса свай: 22 шт.*3 м *0,126 м2 *2500 кг/м 3 *1,3 = 27030 кг.

Суммарная масса всего дома = 235830 кг = 236 т.

Нагрузка на погонный метр = Q = 236 т/32 м = 7,36 т/м.

Расчет свай

Вариант расчета сваи 1.

Несущая способность одной сваи = P = (0,7*R*S) + (u*0,8*fin*li) = (0,7*72 т/м2*0,126 м2) + (1,26 м*0,8 *3,5 т/м 2 *3 м (длина сваи)) = 16,93 т.

u = 3,14*D = 3,14*0,4 = 1,26 м, где D - диаметр сваи.

Расстояние между сваями = l = P/Q = (16,93 т)/(7,36 т/м) = 2,3 м. Шаг достаточно большой, можно уменьшить длину сваи до 2м.

Вариант расчета сваи 2.

В расчетах для предыдущего случая требуется заменить всего одно значение. Несущая способность одной сваи = P = (0,7*R*S) + (u*0,8*fin*li) = (0,7*72 т/м 2 *0,126 м2) + (1,26 м*0,8 *3,5 т/м 2 *2 м (длина сваи)) = 13,41 т.

Расстояние между сваями = l = P/Q = (13,41 т)/(7,36 т/м) = 1,82 м.

Вариант расчета сваи 3.

Рассмотрим еще один вариант с диаметром сваи 50 см и длиной 2 м.

S = 3,14*0,52/4 = 0,196 м 2 ;

u = 3,14*D = 3,14*0,5 = 1,57 м.

Максимальное нагружение одной сваи = P = (0,7*72 т/м2*0,196 м 2) + (1,57 м*0,8 *3,5 т/м 2 *2 м (длина сваи)) = 18,67 т.

Расстояние между опорами = l = P/Q = (18,67 т)/(7,36 т/м) = 2,54 м.

Рекомендуется выбирать шаг свай приближенный к 2 м. В рассматриваемом случае оптимальным станет 2 вариант с фундаментами небольшого сечения и длины. Для более точного результата можно рассчитать расход материала во всех случаях и сравнить его.

Поскольку планируется строительство тяжелого кирпичного дома, в качестве рабочего армирования назначаем пруты побольше, диаметром 14 мм. Для изготовления поперечных хомутов используется арматура 8 мм.

Расчет железобетонного ростверка
Из массы дома, использованной при предыдущих вычислениях, необходимо вычесть массу свай. Получаем нагрузку в 208800 кг = 209 т.

Ширина ростверка = В = М/L*R = 209 т/ (32 м*72 т/м 2) = 0,1 м. Требуемая ширина ростверка меньше ширины стены здания. Назначаем величину конструктивно 0,4 м. Свесы стены с ростверка не должны быть слишком большими, максимальное значение 0,04м. Высоту ростверка также выбираем конструктивно 0,5 м. Остается назначить армирование:

  • Рабочее принимается 0,001*0,6 м *0,5 м = 0,0003 м2 = 3 см 2 . По сортаменту подходят 4 стержня диаметром 10 мм, но по требованиям СП минимальное значение при длине стороны ростверка 6 м - 12 мм. Принимаем 4 прута диаметром 12 мм (два сверху и два снизу).
  • Поперечное армирование диаметром 6 мм.
  • Вертикальное армирование диаметром 6 мм (поскольку высота ленты менее 0,8 м).

Выполнение расчета позволит оптимально использовать материалы и рабочую силу на строительной площадке.

Loading...Loading...