Самые значимые открытия в истории медицины. Великие научные открытия, которые были сделаны во сне

Доктор биологических наук Ю. ПЕТРЕНКО.

Несколько лет назад в Московском государственном университете был открыт факультет фундаментальной медицины, на котором готовят врачей, обладающих широкими знаниями в естественных дисциплинах: математике, физике, химии, молекулярной биологии. Но вопрос о том, насколько необходимы фундаментальные знания врачу, продолжает вызывать острые споры.

Наука и жизнь // Иллюстрации

Среди символов медицины, изображенных на фронтонах здания библиотеки Российского государственного медицинского университета, - надежда и исцеление.

Настенная роспись в фойе Российского государственного медицинского университета, на которой изображены великие врачи прошлого, сидящие в раздумье за одним длинным столом.

У. Гильберт (1544-1603), придворный врач английской королевы, естествоиспытатель, открывший земной магнетизм.

Т. Юнг (1773-1829), известный английский врач и физик, один из создателей волновой теории света.

Ж.-Б. Л. Фуко (1819-1868), французский врач, увлекавшийся физическими исследованиями. С помощью 67-метрового маятника доказал вращение Земли вокруг оси и сделал много открытий в области оптики и магнетизма.

Ю. Р. Майер (1814-1878), немецкий врач, установивший основные принципы закона сохранения энергии.

Г. Гельмгольц (1821-1894), немецкий врач, занимался физиологической оптикой и акустикой, сформулировал теорию свободной энергии.

Надо ли преподавать физику будущим врачам? В последнее время этот вопрос волнует многих, и не только тех, кто готовит профессионалов в области медицины. Как обычно, существуют и сталкиваются два крайних мнения. Те, кто "за", рисуют мрачную картину, которая явилась плодом пренебрежительного отношения к базисным дисциплинам в образовании. Те, кто "против", считают, что в медицине должен доминировать гуманитарный подход и врач прежде всего должен быть психологом.

КРИЗИС МЕДИЦИНЫ И КРИЗИС ОБЩЕСТВА

Современная теоретическая и практическая медицина достигла больших успехов, и физические знания ей сильно в этом помогли. Но в научных статьях и публицистике не перестают звучать голоса о кризисе медицины вообще и медицинского образования в частности. Факты, свидетельствующие о кризисе, определенно есть - это и появление "божественных" целителей, и возрождение экзотических методов врачевания. Заклинания типа "абракадабры" и амулеты вроде лягушачьей лапки вновь в ходу, как в доисторические времена. Приобретает популярность неовитализм, один из основоположников которого, Ханс Дриш, считал, что сущность жизненных явлений составляет энтелехия (своего рода душа), действующая вне времени и пространства, и что живое не может сводиться к совокупности физико-химических явлений. Признание энтелехии в качестве жизненной силы отрицает значение физико-химических дисциплин для медицины.

Можно привести множество примеров того, как псевдонаучные представления подменяют и вытесняют подлинно научные знания. Почему так происходит? По мнению нобелевского лауреата, открывателя структуры ДНК Фрэнсиса Крика, когда общество становится очень богатым, молодежь проявляет нежелание работать: она предпочитает жить легкой жизнью и заниматься пустяками, вроде астрологии. Это справедливо не только для богатых стран.

Что касается кризиса в медицине, то преодолеть его можно, только повышая уровень фундаментальности. Обычно считают, что фундаментальность - это более высокий уровень обобщения научных представлений, в данном случае - представлений о природе человека. Но и на этом пути можно дойти до парадоксов, например, рассматривать человека как квантовый объект, полностью абстрагируясь от физико-химических процессов, протекающих в организме.

ВРАЧ-МЫСЛИТЕЛЬ ИЛИ ВРАЧ-ГУРУ?

Никто не отрицает, что вера больного в исцеление играет важную, иногда даже решающую роль (вспомним эффект плацебо). Так какой же врач нужен больному? Уверенно произносящий: "Ты будешь здоров" или же долго раздумывающий, какое лекарство выбрать, чтобы получить максимальный эффект и при этом не навредить?

По воспоминаниям современников, знаменитый английский ученый, мыслитель и врач Томас Юнг (1773-1829) нередко застывал в нерешительности у постели больного, колебался в установлении диагноза, часто и надолго умолкал, погружаясь в себя. Он честно и мучительно искал истину в сложнейшем и запутанном предмете, о котором писал так: "Нет науки, сложностью превосходящей медицину. Она выходит за пределы человеческого разума".

С точки зрения психологии врач-мыслитель мало соответствует образу идеального врача. Ему недостает смелости, самонадеянности, безапелляционности, нередко свойственных именно невеждам. Наверное, такова природа человека: заболев, уповать на быстрые и энергичные действия врачующего, а не на размышления. Но, как сказал Гёте, "нет ничего страшнее деятельного невежества". Юнг как врач большой популярности у больных не приобрел, а вот среди коллег его авторитет был высоким.

ФИЗИКУ СОЗДАВАЛИ ВРАЧИ

Познай самого себя, и ты познаешь весь мир. Первым занимается медицина, вторым - физика. Изначально связь между медициной и физикой была тесной, недаром совместные съезды естествоиспытателей и врачей проходили вплоть до начала XX века. И между прочим, физику во многом создали врачи, а к исследованиям их часто побуждали вопросы, которые ставила медицина.

Врачи-мыслители древности первыми задумались над вопросом, что есть теплота. Они знали, что здоровье человека связано с теплотой его тела. Великий Гален (II век н.э.) ввел в обиход понятия "температура" и "градус", ставшие основополагающими для физики и других дисциплин. Так что врачи древности заложили основы науки о тепле и изобрели первые термометры.

Уильям Гильберт (1544-1603), лейб-медик английской королевы, изучал свойства магнитов. Он назвал Землю большим магнитом, доказал это экспериментально и придумал модель для описания земного магнетизма.

Томас Юнг, о котором уже упоминалось, был практикующим врачом, но при этом сделал великие открытия во многих областях физики. Он по праву считается, вместе с Френелем, создателем волновой оптики. Кстати, именно Юнг открыл один из дефектов зрения - дальтонизм (неспособность различать красный и зеленый цвета). По иронии судьбы это открытие обессмертило в медицине имя не врача Юнга, а физика Дальтона, который оказался первым, у кого обнаружился этот дефект.

Юлиус Роберт Майер (1814-1878), внесший огромный вклад в открытие закона сохранения энергии, служил врачом на голландском корабле "Ява". Он лечил матросов кровопусканием, которое считалось в то время средством от всех болезней. По этому поводу даже острили, что врачи выпустили больше человеческой крови, чем ее было пролито на полях сражений за всю историю человечества. Майер обратил внимание, что, когда корабль находится в тропиках, при кровопускании венозная кровь почти такая же светлая, как артериальная (обычно венозная кровь темнее). Он предположил, что человеческий организм, подобно паровой машине, в тропиках, при высокой температуре воздуха, потребляет меньше "топлива", а потому и "дыма" выделяет меньше, вот венозная кровь и светлеет. Кроме того, задумавшись над словами одного штурмана о том, что во время штормов вода в море нагревается, Майер пришел к выводу, что всюду должно существовать определенное соотношение между работой и теплотой. Он высказал положения, которые легли по существу в основу закона сохранения энергии.

Выдающийся немецкий ученый Герман Гельмгольц (1821-1894), тоже врач, независимо от Майера сформулировал закон сохранения энергии и выразил его в современной математической форме, которой до настоящего времени пользуются все, кто изучает и использует физику. Помимо этого Гельмгольц сделал великие открытия в области электромагнитных явлений, термодинамике, оптике, акустике, а также в физиологии зрения, слуха, нервных и мышечных систем, изобрел ряд важных приборов. Получив медицинское образование и будучи профессиональным медиком, он пытался применить физику и математику к физиологическим исследованиям. В 50 лет профессиональный врач стал профессором физики, а в 1888 году - директором физико-математического института в Берлине.

Французский врач Жан-Луи Пуазейль (1799-1869) экспериментально изучал мощность сердца как насоса, качающего кровь, и исследовал законы движения крови в венах и капиллярах. Обобщив полученные результаты, он вывел формулу, оказавшуюся чрезвычайно важной для физики. За заслуги перед физикой его именем названа единица динамической вязкости - пуаз.

Картина, показывающая вклад медицины в развитие физики, выглядит достаточно убедительной, но можно добавить к ней еще несколько штрихов. Любой автомобилист слышал о карданном вале, передающем вращательное движение под разными углами, но мало кто знает, что изобрел его итальянский врач Джероламо Кардано (1501-1576). Знаменитый маятник Фуко, сохраняющий плоскость колебаний, носит имя французского ученого Жан-Бернара-Леона Фуко (1819-1868), врача по образованию. Знаменитый русский врач Иван Михайлович Сеченов (1829-1905), чье имя носит Московская государственная медицинская академия, занимался физической химией и установил важный физико-химический закон, описывающий изменение растворимости газов в водной среде в зависимости от присутствия в ней электролитов. Этот закон и сейчас изучают студенты, причем не только в медицинских вузах.

"НАМ ФОРМУЛ НЕ ПОНЯТЬ!"

В отличие от врачей прошлого многие современные студенты-медики попросту не понимают, зачем им преподают естественно-научные дисциплины. Вспоминается одна история из моей практики. Напряженная тишина, второкурсники факультета фундаментальной медицины МГУ пишут контрольную. Тема - фотобиология и ее применение в медицине. Заметим, что фотобиологические подходы, основанные на физических и химических принципах действия света на вещество, признаются сейчас самыми перспективными для лечения онкологических заболеваний. Незнание этого раздела, его основ - серьезный ущерб в медицинском образовании. Вопросы не слишком сложные, все в рамках материала лекционных и семинарских занятий. Но итог неутешителен: почти половина студентов получили двойки. И для всех, кто не справился с заданием, характерно одно - в школе физику не учили или учили спустя рукава. На некоторых этот предмет наводит самый настоящий ужас. В стопке контрольных работ мне попался листок со стихами. Студентка, не сумевшая ответить на вопросы, в поэтической форме жаловалась, что ей приходится зубрить не латынь (вечное мучение студентов-медиков), а физику, и в конце восклицала: "Что делать? Ведь мы - медики, нам формул не понять!" Юная поэтесса, назвавшая в своих стихах контрольную "судным днем", испытания физикой не выдержала и в конце концов перевелась на гуманитарный факультет.

Когда студенты, будущие медики, оперируют крысу, никому и в голову не придет спрашивать, зачем это надо, хотя организмы человека и крысы различаются довольно сильно. Зачем будущим врачам физика - не так очевидно. Но сможет ли врач, не понимающий основных физических законов, грамотно работать со сложнейшим диагностическим оборудованием, которым "напичканы" современные клиники? Кстати, многие студенты, преодолев первые неудачи, начинают с увлечением заниматься биофизикой. В конце учебного года, когда были изучены такие темы, как "Молекулярные системы и их хаотические состояния", "Новые аналитические принципы рН-метрии", "Физическая природа химических превращений веществ", "Антиоксидантное регулирование процессов перекисного окисления липидов", второкурсники написали: "Мы открывали фундаментальные законы, определяющие основу живого и, возможно, мироздания. Открывали их не на основе умозрительных теоретических построений, а в реальном объективном эксперименте. Нам было тяжело, но интересно". Возможно, среди этих ребят есть будущие Федоровы, Илизаровы, Шумаковы.

"Лучший способ изучить что-либо - это открыть самому, - утверждал немецкий физик и писатель Георг Лихтенберг. - То, что вы были принуждены открыть сами, оставляет в вашем уме дорожку, которой вы сможете снова воспользоваться, когда в том возникнет необходимость". Этот самый эффективный принцип обучения стар как мир. Он лежит в основе "метода Сократа" и носит название принципа активного обучения. Именно на этом принципе построено обучение биофизике на факультете фундаментальной медицины.

РАЗВИВАЯ ФУНДАМЕНТАЛЬНОСТЬ

Фундаментальность для медицины - залог ее сегодняшней состоятельности и будущего развития. По-настоящему достичь цели можно, рассматривая организм как систему систем и идя путем более углубленного ее физико-химического осмысления. А как быть с медицинским образованием? Ответ ясен: повышать уровень знаний студентов в области физики и химии. В 1992 году в МГУ создан факультет фундаментальной медицины. Цель состояла в том, чтобы не только вернуть в университет медицину, но и, не снижая качества врачебной подготовки, резко усилить естественно-научную базу знаний будущих врачей. Такая задача требует интенсивной работы и преподавателей и студентов. Предполагается, что студенты сознательно выбирают фундаментальную медицину, а не обычную.

Еще раньше серьезной попыткой в этом направлении стало создание медико-биологического факультета в Российском государственном медицинском университете. За 30 лет работы факультета подготовлено большое число врачей-специалистов: биофизиков, биохимиков и кибернетиков. Но проблема этого факультета в том, что до сих пор его выпускники могли заниматься только медицинскими научными исследованиями, не имея права лечить больных. Сейчас эта проблема решается - в РГМУ совместно с Институтом повышения квалификации врачей создан учебно-научный комплекс, который позволяет студентам старших курсов пройти дополнительную врачебную подготовку.

Доктор биологических наук Ю. ПЕТРЕНКО.

Прошедший год для науки был очень плодотворным. Особенного прогресса ученые достигли в сфере медицины. Человечество совершило удивительные открытия, научные прорывы и создало множество полезных медикаментов, которые непременно в скором времени окажутся в свободном доступе. Предлагаем ознакомиться с десяткой самых удивительных медицинских прорывов 2015 года, которые обязательно внесут серьезный вклад в развитие медицинских услуг в самое ближайшее время.

Открытие теиксобактина

В 2014 году Всемирная организация здравоохранения предупредила всех о том, что человечество вступает в так называемую постантибиотическую эру. И ведь, она оказалась правой. Наука и медицина аж с 1987 не производили, действительно, новых видов антибиотиков. Однако, болезни не стоят на месте. Каждый год появляются новые заразы, более устойчивые к существующим медикаментам. Это стало настоящей мировой проблемой. Тем не менее, в 2015 году ученые совершили открытие, которое, по их мнению, привнесет кардинальные перемены.

Ученые открыли новый класс антибиотиков из 25 противомикробных препаратов, включая очень важный, получивший название теиксобактин. Этот антибиотик уничтожает микробов, блокируя их способность производить новые клетки. Другими словами, микробы, под воздействием этого лекарства, не могут развиваться и вырабатывать со временем устойчивость к препарату. Теиксобактин, к настоящему моменту, доказал свою высокую эффективность в борьбе с резистентным золотистым стафилококком и несколькими бактериями, вызывающими туберкулез.

Лабораторные испытания теиксобактина проводились на мышах. Подавляющее большинство экспериментов показали эффективность препарата. Человеческие испытания должны начаться в 2017 году.

Медики вырастили новые голосовые связки

Одно из самых интересных и перспективных направлений в медицине является регенерация тканей. В 2015 году список воссозданных искусственным методом органов пополнился новым пунктом. Врачи из Висконсинского университета научились выращивать человеческие голосовые связки, фактически, из ничего.
Группа ученых под руководством доктора Натана Вельхэна биоинженерным способом создала ткань, способную имитировать работу слизистой оболочки голосовых связок, а именно, ту ткань, которая представляется двумя лепестками связок, которые вибрируя позволяют создавать человеческую речь. Клетки-доноры, из которых впоследствии были выращены новые связки, были взяты у пяти пациентов-добровольцев. В лабораторных условиях за две недели ученые вырастили необходимую ткань, после чего добавили ее к искусственному макету гортани.

Создаваемый полученными голосовыми связками звук, ученые описывают как металлический и сравнивают его со звуком роботизированного казу (игрушечный духовой музыкальный инструмент). Однако ученые уверены в том, что созданные ими голосовые связки в реальных условиях (то есть при имплантации в живой организм) будут звучать, почти, как настоящие.

В рамках одного из последних экспериментов на лабораторных мышах с привитым человеческим иммунитетом исследователи решили проверить, будет ли организм грызунов отторгать новую ткань. К счастью, этого не случилось. Доктор Вельхэм уверен, что ткань не будет отторгаться и человеческим организмом.

Лекарство от рака может помочь и пациентам с болезнью Паркинсона

Тисинга (или нилотиниб) является проверенным и одобренным лекарством, которое обычно используют для лечения людей с признаками лейкемии. Однако, новое исследование, проведенное медицинским центром Джорджтаунского университета, показывает, что лекарство Тасинга может являться очень сильным средством для контроля моторных симптомов у людей с болезнью Паркинсона, улучшая их моторные функции и контролируя немоторные симптомы этой болезни.

Фернандо Паган, один из докторов, проводивших данное исследование, считает, что нилотинибная терапия может являться первым в своем роде эффективным методом снижения деградации когнитивных и моторных функции у пациентов с нейродегенеративными заболеваниями, такими как болезнь Паркинсона.

Ученые в течение шести месяцев давали увеличенные дозы нилотиниба 12 пациентам-добровольцам. У всех 12 пациентов, прошедших данное испытание препарата до конца, наблюдалось улучшение моторных функций. У 10 из них отметили значительное улучшение.

Основной задачей данного исследования была проверка безопасности и безвредности нилотиниба на человеческий организм. Используемая доза препарата была гораздо меньше той дозы, которая обычно дается пациентам с лейкемией. Несмотря на то, что препарат показал свою эффективность, исследование все же проводилось на небольшой группе людей без привлечения контрольных групп. Поэтому перед тем, как Тасингу начнут использовать в качестве терапии болезни Паркинсона, придется провести еще несколько испытаний и научных исследований.

Первая в мире 3D-напечатанная грудная клетка

Последние несколько лет технология 3D-печати проникает во многие сферы, приводя к удивительным открытиям, разработкам и новым методам производства. В 2015 году доктора из университетского госпиталя Саламанка в Испании провели первую в мире операцию по замене поврежденной грудной клетки пациента на новый 3D-напечатанный протез.

Человек страдал редким видом саркомы, и у врачей не осталось другого выбора. Чтобы избежать распространение опухоли дальше по организму, специалисты удалили у человека почти всю грудину и заменили кости титановым имплантатом.

Как правило, имплантаты для крупных отделов скелета производят из самых разных материалов, которые со временем могут изнашиваться. Помимо этого, замена столь сложного сочленения костей, как кости грудины, которые, как правило, уникальны в каждом отдельном случае, потребовала от врачей провести тщательное сканирование грудины человека, чтобы разработать имплантат нужного размера.

В качестве материала для новой грудины было решено использовать титановый сплав. После проведения высокоточной трехмерной компьютерной томографии, ученые использовали принтер Arcam стоимостью 1,3 миллиона долларов и создали новую титановую грудную клетку. Операция по установке новой грудины пациенту прошла успешно, и человек уже прошел полный курс реабилитации.

Из клеток кожи в клетки мозга

Ученые из калифорнийского Института Солка в Ла-Холья посвятили ушедший год исследованиям человеческого мозга. Они разработали метод трансформирования клеток кожи в мозговые клетки и уже нашли несколько полезных сфер применения новой технологии.

Следует отметить, что ученые нашли способ превращения кожных клеток в старые мозговые клетки, что упрощает дальнейшее их использование, например, при исследованиях болезней Альцгеймера и Паркинсона и их взаимосвязи с эффектами, вызываемыми старением. Исторически сложилось, что для таких исследований применялись клетки мозга животных, однако, ученые, в этом случае, были ограничены в своих возможностях.

Относительно недавно, ученые смогли превратить стволовые клетки в клетки мозга, которые можно использовать для исследований. Однако, это довольно трудоемкий процесс, и на выходе получаются клетки, не способные имитировать работу мозга пожилого человека.

Как только, исследователи разработали способ искусственного создания клеток мозга, они направили свои усилия на создание нейронов, которые обладали бы возможностью производства серотонина. И хотя, полученные клетки обладают лишь крошечной долей возможностей работы человеческого мозга, они активно помогают ученым в исследованиях и поиске лекарств от таких болезней и расстройств, как аутизм, шизофрения и депрессия.

Противозачаточные таблетки для мужчин

Японские ученые из Научно-исследовательского института исследований микробных заболеваний в Осаке опубликовали новую научную работу, согласно которой в недалеком будущем мы сможем производить реально действующие противозачаточные таблетки для мужчин. В своей работе ученые описывают исследования препаратов «Такролимус» и «Цикслоспорин А».

Обычно, эти лекарства используются после проведения операций по трансплантации органов для подавления иммунной системы организма, чтобы та не отторгала новую ткань. Блокада происходит благодаря ингибированию производства энзима кальцинейрина, который содержит белки PPP3R2 и PPP3CC, обычно имеющиеся в мужском семени.

В своем исследовании на лабораторных мышах ученые обнаружили, что как только в организмах грызунов производится недостаточно белка PPP3CC, то их репродуктивные функции резко сокращаются. Это натолкнуло исследователей к выводу, что недостаточный объем этого белка может привести к стерильности. После более тщательного изучения специалисты заключили, что данный белок дает клеткам спермы гибкость и необходимые силу и энергию для проникновения через мембрану яйцеклетки.

Проверка на здоровых мышах только подтвердила их открытие. Всего пять дней применения препаратов «Такролимус» и «Цикслоспорин А» привело к полной бесплодности мышей. Однако, их репродуктивная функция полностью восстановилась всего через неделю после того, как им перестали давать эти препараты. Важно отметить, что кальцинейрин не является гормоном, поэтому применение препаратов никоим образом не снижает половое влечение и возбудимость организма.

Несмотря на многообещающие результаты, потребуется несколько лет для создания реальных мужских противозачаточных таблеток. Около 80 процентов исследований на мышах не применимы для человеческих случаев. Однако, ученые по-прежнему надеются на успех, так как эффективность препаратов была доказана. Кроме того, аналогичные препараты уже прошли человеческие клинические испытания и широко используются.

Печать ДНК

Технологии 3D-печати привели к появлению уникальной новой индустрии - печати и продаже ДНК. Правда, термин «печать» здесь скорее используется именно для коммерческих целей, и необязательно описывает то, что же в этой сфере происходит на самом деле.

Исполнительный директор компании Cambrian Genomics объясняет, что данный процесс лучше всего описывает фраза «проверка на ошибки», нежели «печать». Миллионы частей ДНК помещаются на крошечные металлические подложки и сканируются компьютером, который отбирает те цепи, которые в конечном итоге должны будут составлять всю последовательность ДНК-цепочки. После этого, лазером аккуратно вырезаются нужные связи и помещаются в новую цепочку, предварительно заказанную клиентом.

Такие компании, как Cambrian, считают, что в будущем люди смогут благодаря специальному компьютерному оборудованию и программному обеспечению создавать новые организмы просто для развлечения. Конечно же, такие предположения сразу же вызовут праведный гнев людей, сомневающихся в этической корректности и практической пользе данных исследований и возможностей, но рано или поздно, как бы мы этого хотели или не хотели, мы к этому придем.

Сейчас же ДНК-печать демонстрирует немногообещающий потенциал в медицинской сфере. Производители лекарств и исследовательские компании - вот, список первых клиентов таких компаний, как Cambrian.

Исследователи из Каролинского института в Швеции пошли еще дальше и начали создавать из ДНК-цепочек различные фигурки. ДНК-оригами, как они это называют, может на первый взгляд показаться обычным баловством, однако, практический потенциал использования у этой технологии тоже имеется. Например, его можно будет применять при доставке лекарственных средств в организм.

Наноботы в живом организме

В начале 2015 года сфера робототехники одержала большую победу, когда группа исследователей из Калифорнийского университета в Сан-Диего объявила о том, что провела первые успешные тесты с применением наноботов, которые выполнили поставленную перед ними задачу, находясь внутри живого организма.

Живым организмом в данном случае выступали лабораторные мыши. После помещения наноботов внутрь животных микромашины направились к желудкам грызунов и доставили помещенный на них груз, в качестве которого выступали микроскопические частички золота. К концу процедуры ученые не отметили никаких повреждений внутренних органов мышей и, тем самым, подтвердили полезность, безопасность и эффективность наноботов.

Дальнейшие тесты показали, что доставленных наноботами частичек золота в желудках остается больше, чем тех, которые были просто введены туда с приемом пищи. Это натолкнуло ученых на мысль о том, что наноботы в будущем смогут гораздо эффективные доставлять нужные лекарства внутрь организма, чем при более традиционных методах их введения.

Моторная цепь крошечных роботов состоит из цинка. Когда она попадает в контакт с кислотно-щелочной средой организма, происходит химическая реакция, в результате которой производятся пузырьки водорода, которые и продвигают наноботов внутри. Спустя какое-то время, наноботы просто растворяются в кислотной среде желудка.

Несмотря на то, что данная технология разрабатывается уже почти десятилетие, только в 2015 году ученые смогли провести ее фактические тесты в живой среде, а не обычных чашках Петри, как делалось много раз до этого. В будущем наноботов можно будет использовать для определения и даже лечения различных болезней внутренних органов, путем воздействия нужными лекарствами на отдельные клетки.

Инъекционный мозговой наноимплантат

Группа ученых из Гарварда разработала имплантат, обещающий возможность лечения ряда нейродегенеративных расстройств, которые приводят к параличу. Имплантат представляет собой электронное устройство, состоящее из универсального каркаса (сетки), к которому в дальнейшем можно будет подсоединять различные наноустройства уже после введения его в мозг пациента. Благодаря имплантату, можно будет следить за нейронной активностью мозга, стимулировать работу определенных тканей, а также ускорять регенерацию нейронов.

Электронная сетка состоит из проводящих полимерных нитей, транзисторов или наноэлектродов, которые соединяют между собой пересечения. Почти вся площадь сетки состоит из отверстий, что позволяет живым клеткам образовывать новые соединения вокруг нее.

К началу 2016 года команда ученых из Гарварда, по-прежнему, проводит тесты безопасности использования подобного имплантата. Например, двум мышам имплантировали в мозг устройство, состоящее из 16 электрических компонентов. Устройства успешно используются для мониторинга и стимуляции определенных нейронов.

Искусственное производство тетрагидроканнабинола

Многие годы марихуана использовалась в медицине в качестве обезболивающего средства и в частности, для улучшения состояний больных раком и СПИДом. В медицине также активно используется и синтетический заменитель марихуаны, а точнее ее основного психоактивного компонента тетрагидроканнабинола (или THC).

Однако, биохимики из Технического университета Дортмунда объявили о создании нового вида дрожжевого грибка, производящего THC. Более того, по неопубликованным данным известно, что эти же ученые создали еще один вид дрожжевого грибка, который производит каннабидиол, другой психоактивный компонент марихуаны.

В марихуане содержится сразу несколько молекулярных соединений, которые интересуют исследователей. Поэтому, открытие эффективного искусственного способа создания этих компонентов в больших количествах могло бы принести медицине огромную пользу. Однако, метод обычного выращивания растений и последующая добыча необходимых молекулярных соединений является сейчас наиболее эффективным способом. Внутри 30 процентов сухой массы современных видов марихуаны может содержаться нужный компонент THC.

Несмотря на это, дортмундские ученые уверены, что смогут найти более эффективный и быстрый способ добычи THC в будущем. К настоящему моменту, созданный дрожжевой грибок повторно выращивается на молекулах такого же грибка, вместо предпочтительной альтернативы в виде простых сахаридов. Все это приводит к тому, что с каждой новой партией дрожжей уменьшается и количество свободного компонента THC.

В будущем, ученые обещают оптимизировать процесс, максимизировать производство THC и увеличить масштабы до индустриальных нужд, что, в конечном итоге, удовлетворит нужды медицинских исследований и европейских регуляторов, которые ищут новый способы производства тетрагидроканнабинола без выращивания самой марихуаны.

ИСТОРИЯ МЕДИЦИНЫ:
ОСНОВНЫЕ ВЕХИ И ВЕЛИКИЕ ОТКРЫТИЯ

По материалам телеканала Дискавери
(«Discovery Channel»)

Открытия в медицине преобразили мир. Они изменили ход истории, сохранив несчётное количество жизней, раздвинув границы наших познаний до рубежей, на которых мы стоим сегодня, готовые к новым великим открытиям.

Анатомия человека

В Древней Греции лечение болезней основывалось скорее на философии, чем на истинном понимании анатомии человека. Хирургическое вмешательство было редкостью, а препарирование трупов ещё не практиковалось. В результате врачи практически не имели сведений о внутреннем устройстве человека. Лишь в эпоху Ренессанса анатомия зародилась как наука.

Бельгийский врач Андреас Везалий шокировал многих, когда решил изучать анатомию, вскрывая трупы. Материал для исследований приходилось добывать под покровом ночи. Учёные типа Везалия должны были прибегать к не совсем легальным методам. Когда Везалий стал профессором в Падуе, он завёл дружбу с распорядителем казней. Везалий решил передать опыт, накопленный за годы искусных вскрытий, написав книгу по анатомии человека. Так появилась книга «О строении человеческого тела». Опубликованная в 1538 году, книга считается одним из величайших трудов в области медицины, а также одним из величайших открытий, так как в ней впервые даётся верное описание строения человеческого тела. Это был первый серьёзный вызов, брошенный авторитету древнегреческих врачей. Книга разошлась огромным тиражом. Её покупали образованные люди, даже далёкие от медицины. Весь текст очень скрупулёзно иллюстрирован. Так сведения об анатомии человека стали гораздо более доступными. Благодаря Везалию, изучение анатомии человека посредством вскрытия, стало неотъемлемой частью подготовки врачей. И это подводит нас к следующему великому открытию.

Кровообращение

Сердце человека – мышца размером с кулак. Оно сокращается более ста тысяч раз в день, за семьдесят лет – это два с лишним миллиарда сердцебиений. Сердце перекачивает 23 литра крови в минуту. Кровь течёт по телу, проходя через сложную систему артерий и вен. Если все кровеносные сосуды в человеческом теле вытянуть в одну линию, то получится 96 тысяч километров, что в два с лишним раза больше окружности Земли. До начала 17 века процесс кровообращения представляли неверно. Преобладала теория, согласно которой кровь приливала к сердцу через поры в мягких тканях тела. Среди приверженцев этой теории был и английский врач Уильям Гарвей. Работа сердца завораживала его, но чем больше он наблюдал биение сердца у животных, тем сильнее понимал, что общепринятая теория кровообращения попросту неверна. Он недвусмысленно пишет: «…Я подумал, не может ли кровь двигаться, словно по кругу?». И первая же фраза в следующем абзаце: «Впоследствии я выяснил, что так оно и есть…». Проводя вскрытия, Гарвей обнаружил, что у сердца есть однонаправленные клапаны, позволяющие крови течь лишь в одном направлении. Одни клапаны впускали кровь, другие - выпускали. И это было великое открытие. Гарвей понял, что сердце качает кровь в артерии, затем она проходит через вены и, замыкая круг, возвращается к сердцу, чтобы затем начать цикл сначала. Сегодня это кажется прописной истиной, но для 17 века открытие Вильяма Гарвея было революционным. Это был сокрушительный удар по установившимся в медицине представлениям. В конце своего трактата Гарвей пишет: «При мысли о бессчетных последствиях, которое это будет иметь для медицины, я вижу поле почти безграничных возможностей».
Открытие Гарвея серьёзно продвинуло вперёд анатомию и хирургию, а многим попросту спасло жизнь. Во всём мире в операционных применяют хирургические зажимы, блокирующие течение крови и сохраняющие систему кровообращения пациента в неприкосновенности. И каждый из них - напоминание о великом открытии Уильяма Гарвея.

Группы крови

Другое великое открытие, связанное с кровью, было сделано в Вене в 1900 году. Всю Европу переполнял энтузиазм по поводу переливания крови. Сначала прошли заявления, что лечебный эффект поразительный, а затем, через несколько месяцев, сообщения о погибших. Почему иногда переливание проходило удачно, а иногда - нет? Австрийский врач Карл Ландштейнер был полон решимости найти ответ. Он смешал образцы крови от разных доноров и изучил результаты.
В некоторых случаях кровь смешалась удачно, зато в других - свернулась и стала вязкой. При ближайшем рассмотрении Ландштейнер обнаружил, что кровь сворачивается, когда особые белки в крови реципиента, так называемые антитела, вступают в реакцию с другими белками в эритроцитах донора – антигенами. Для Ландштейнера это был поворотный момент. Он осознал, что не вся человеческая кровь одинакова. Оказалось, что кровь можно чётко разделить на 4 группы, которым он дал обозначения: А, Б, АБ и нулевая. Выяснилось, что переливание крови проходит успешно лишь в том случае, если человеку переливают кровь той же группы. Открытие Ландштейнера тут же отразилось на медицинской практике. Через несколько лет переливанием крови занимались уже во всём мире, спасая множество жизней. Благодаря точному определению группы крови, к 50-м годам стала возможна пересадка органов. Сегодня в одних только Соединённых Штатах каждые 3 секунды производится переливание крови. Без него ежегодно погибало бы около 4, 5 миллионов американцев.

Анестезия

Хотя первые великие открытия в области анатомии и позволили врачам спасти множество жизней, они никак не могли облегчить боль. Без анестезии операции были кошмаром наяву. Пациентов держали или привязывали к столу, хирурги старались работать как можно быстрее. В 1811 году одна женщина писала: «Когда ужасная сталь вонзилась в меня, рассекая вены, артерии, плоть, нервы, меня уже не нужно было просить не вмешиваться. Я издала вопль и кричала, пока всё не закончилось. Так невыносима была мука». Хирургия была последним средством, многие предпочитали умереть, чем лечь под нож хирурга. На протяжении веков для облегчения боли во время операций использовались подручные средства некоторые из них, например, опиум или экстракт мандрагоры, были наркотиками. К 40-м годам 19 века сразу несколько человек занимались поиском более эффективного анестетика: два бостонских дантиста Вильям Мортон и Хорост Уэлс, знакомые друг с другом, и доктор по имени Крофорд Лонг из Джорджии.
Они экспериментировали с двумя веществами, способными, как считалось, облегчить боль - с закисью азота, она же - веселящий газ, а также - с жидкой смесью спирта и серной кислоты. Вопрос о том, кто именно открыл анестезию, остаётся спорным, на это претендовали все трое. Одна из первых публичных демонстраций анестезии состоялась 16 октября 1846 года. В. Мортон месяцами экспериментировал с эфиром, пытаясь найти дозировку, которая позволила бы пациенту перенести операцию без боли. На суд широкой публики, состоявшей из бостонских хирургов и студентов медицины, он представил устройство своего изобретения.
Пациенту, которому предстояло удалить опухоль на шее, дали эфир. Мортон подождал, хирург произвёл первый надрез. Поразительно, но пациент не закричал. После операции пациент сообщил, что всё это время ничего не чувствовал. Весть об открытии разнеслась по всему миру. Оперировать без боли можно, теперь есть анестезия. Но, несмотря на открытие, многие отказывались воспользоваться анестезией. Согласно некоторым вероучениям, боль надо терпеть, а не облегчать, особенно родовые муки. Но здесь свое слово сказала королева Виктория. В 1853 году она рожала принца Леопольда. По её просьбе ей дали хлороформ. Оказалось, что он облегчает муки деторождения. После этого женщины стали говорить: «Я тоже приму хлороформ, ведь если им не брезгует королева, то и мне не зазорно».

Рентгеновские лучи

Невозможно представить себе жизнь без следующего великого открытия. Вообразите, что мы не знаем, где оперировать больного, или какая именно кость сломана, где застряла пуля и какая может быть патология. Способность заглянуть внутрь человека, не разрезая его, стала поворотным моментом в истории медицины. В конце 19 века люди использовали электричество, толком не понимая, что это такое. В 1895 году немецкий физик Вильгельм Рентген экспериментировал с электронно-лучевой трубкой, стеклянным цилиндром с сильно разреженным воздухом внутри. Рентгена заинтересовало свечение, создаваемое лучами, исходившими из трубки. Для одного из экспериментов Рентген окружил трубку чёрным картоном и затемнил комнату. Затем он включил трубку. И тут, его поразила одна вещь - фотографическая пластина в его лаборатории светилась. Рентген понял, что происходит нечто, весьма необычное. И что луч, исходящий из трубки - вовсе не катодный луч; он также обнаружил, что на магнит он не реагирует. И его нельзя было отклонить магнитом, как катодные лучи. Это было совершенно неизвестное явление, и Рентген назвал его «лучи икс». Совершенно случайно Рентген открыл излучение, неизвестное науке, которое мы зовём рентгеновским. Несколько недель он вёл себя очень загадочно, а потом позвал жену в кабинет и сказал: «Берта, давай я покажу тебе, чем я тут занимаюсь, потому что никто в это не поверит». Он положил её руку под луч и сделал снимок.
Утверждают, что жена сказала: «Я видела свою смерть». Ведь в те времена нельзя было увидеть скелет человека, если он не умер. Сама мысль о том, чтобы заснять внутреннее строение живого человека, просто не укладывалась в голове. Словно распахнулась тайная дверь, а за ней открылась целая вселенная. Рентген открыл новую, мощную технологию, которая произвела переворот в области диагностики. Открытие рентгеновского излучения - это единственное в истории науки открытие, сделанное непреднамеренно, совершенно случайное. Едва оно было сделано, мир тотчас же принял его на вооружение безо всяких дебатов. За неделю-другую наш мир преобразился. На открытие рентгена опираются многие из самых современных и мощных технологий, от компьютерной томографии до рентгенографического телескопа, улавливающего рентгеновские лучи из глубин космоса. И всё это – из-за открытия, сделанного случайно.

Теория микробного происхождения болезней

Одни открытия, например, рентгеновские лучи, совершаются случайно, над другими долго и упорно работают различные учёные. Так было и в 1846 год. Вена. Воплощение красоты и культуры, но в венской городской больнице витает призрак смерти. Многие из находившихся здесь рожениц умирали. Причина – родильная горячка, инфекция матки. Когда доктор Игнац Земмельвейс начал работать в этой больнице, он был встревожен масштабом бедствия и озадачен странной несообразностью: там было два отделения.
В одном роды принимали врачи, а в другом роды у матерей принимали акушерки. Земмельвейс обнаружил, что в том отделении, где роды принимали врачи, 7% рожениц умерло от так называемой родильной горячки. А в отделении, где работали акушерки, от родильной горячки скончались лишь 2%. Это его удивило, ведь у врачей подготовка гораздо лучше. Земмельвейс решил выяснить, в чём же причина. Он заметил, что одним из главных различий в работе врачей и акушерок было то, что врачи проводили вскрытие умерших рожениц. Затем они шли принимать роды или осматривать матерей, даже не вымыв рук. Земмельвейс задумался, не переносят ли врачи на своих руках некие невидимые частички, которые затем передаются пациенткам и влекут за собой смерть. Чтобы выяснить это, он провёл опыт. Он решил проследить, чтобы все студенты медики в обязательном порядке мыли руки в растворе хлорной извести. И количество летальных исходов тут же упало до 1%, ниже, чем у акушерок. Благодаря этому эксперименту, Земмельвейс осознал, что инфекционные заболевания, в данном случае, родильная горячка, имеют лишь одну причину и если ее исключить, болезнь не возникнет. Но в 1846 году никто не усматривал связи между бактериями и инфекцией. Идеи Земмельвейса не приняли всерьёз.

Прошло ещё целых 10 лет, прежде чем на микроорганизмы обратил внимание другой учёный. Его звали Луи Пастер.Трое из пяти детей Пастера умерли от брюшного тифа, что отчасти объясняет, почему он так упорно искал причину инфекционных болезней. На верный след Пастера вывела его работа для винодельческой и пивоваренной промышленности. Пастер пытался выяснить, почему лишь малая часть вина, производимого в его стране, портится. Он обнаружил, что в прокисшем вине есть особые микроорганизмы, микробы, и именно они заставляют вино скисать. Но путём простого нагрева, как показал Пастер, микробы можно убить, и вино будет спасено. Так родилась пастеризация. Поэтому, когда потребовалось найти причину инфекционных заболеваний, Пастер знал, где её искать. Это микробы, сказал он, вызывают определённые болезни, и доказал это, проведя серию экспериментов, из которых родилось великое открытие – теория микробного развития организмов. Её суть состоит в том, что определённые микроорганизмы вызывают определённую болезнь у любого.

Вакцинация

Следующее из великих открытий было сделано в 18 веке, когда от оспы во всём мире умерло около 40 млн. человек. Врачи не могли найти ни причины возникновения болезни, ни средства от неё. Но в одной английской деревушке разговоры о том, что часть местных жителей не восприимчивы к оспе, привлекли внимание местного врача по имени Эдвард Дженнер.

Ходили слухи, что работницы молочных ферм не болеют оспой, потому что уже перенесли коровью оспу, родственную, но более лёгкую болезнь, поражавшую скот. У больных коровьей оспой поднималась температура и на руках возникали язвочки. Дженнер изучил этот феномен и задумался, может быть, гной из этих язвочек каким-то образом защищает организм от оспы? 14 мая 1796 года во время вспышки эпидемии оспы, он решил проверить свою теорию. Дженнер взял жидкость из язвочки на руке доярки, больной коровьей оспой. Затем, он посетил другую семью; там он ввёл здоровому восьмилетнему мальчику вирус коровьей оспы. В последующие дни у мальчика был лёгкий жар, и появилось несколько оспенных пузырьков. Затем он поправился. Через шесть недель Дженнер вернулся. На этот раз он привил мальчику оспу и стал ждать, чем обернётся эксперимент – победой или провалом. Через несколько дней Дженнер получил ответ – мальчик был совершенно здоров и невосприимчив к оспе.
Изобретение вакцинации от оспы произвело революцию в медицине. Это была первая попытка вмешаться в течение болезни, предотвратив её заранее. Впервые средства, изготовленные человеком, активно использовались, чтобы предотвратить болезнь ещё до её появления.
Через 50 лет после открытия Дженнера, Луи Пастер развил идею вакцинации, разработав вакцину от бешенства у людей и от сибирской язвы у овец. А в 20 веке Джонас Солк и Альберт Сейбин, независимо друг от друга, создали вакцину от полиомиелита.

Витамины

Следующее открытие состоялось трудами учёных, многие годы независимо друг от друга бившихся над одной и той же проблемой.
На протяжении всей истории цинга была тяжёлым заболеванием, вызывавшим у моряков поражения кожи и кровотечения. Наконец, в 1747 году корабельный хирург шотландец Джеймс Линд нашёл от неё средство. Он обнаружил, что цингу можно предотвратить, включив в рацион матросов цитрусовые.

Другим частым заболеванием у моряков была бери-бери, болезнь, поражавшая нервы, сердце и пищеварительный тракт. В конце 19 века голландский врач Христиан Эйкман определил, что болезнь обусловлена употреблением в пищу белого шлифованного риса, вместо бурого нешлифованного.

Хотя оба этих открытия указывали на связь заболеваний с питанием и его недостатками, в чём заключалась эта связь смог выяснить лишь английский биохимик Фредерик Хопкинс. Он предположил, что организму необходимы вещества, которые есть только в определённых продуктах. Чтобы доказать свою гипотезу, Хопкинс провёл серию экспериментов. Он давал мышам искусственное питание, состоящее исключительно из чистых белков, жиров, углеводов и солей. Мыши ослабли и перестали расти. Но после небольшого количества молока, мыши снова поправились. Хопкинс открыл, как он выразился, «незаменимый фактор питания», который позже назвали витаминами.
Оказалось, что бери-бери связана с недостатком тиамина, витамина В1, которого нет в шлифованном рисе, но много в натуральном. А цитрусовые предотвращают цингу, потому что содержат аскорбиновую кислоту, витами С.
Открытие Хопкинса стало определяющим шагом в понимании важности правильного питания. От витаминов зависит множество функций организма – от борьбы с инфекциями до регулирования обмена веществ. Без них трудно представить себе жизнь, как и без следующего великого открытия.

Пенициллин

После Первой Мировой войны, унесшей свыше 10 млн. жизней, поиски безопасных методов отражения бактериальной агрессии усилились. Ведь многие умерли не на полях сражений, а от инфицированных ран. В исследованиях участвовал и шотландский врач Александр Флеминг. Изучая бактерии стафилококки, Флеминг заметил, что в центре лабораторной чаши растёт нечто необычное - плесень. Он увидел, что вокруг плесени бактерии погибли. Это заставило его предположить, что она выделяет вещество, губительное для бактерий. Это вещество он назвал пенициллином. Следующие несколько лет Флеминг пытался выделить пенициллин и применить его в лечении инфекций, но неудачно, и, в конце концов, сдался. Однако результаты его трудов оказались неоценимыми.

В 1935 году сотрудники Оксфордского университета Хоуард Флори и Эрнст Чейн наткнулись на отчёт о любопытных, но незаконченных экспериментах Флеминга, и решили попытать счастья. Этим учёным удалось выделить пенициллин в чистом виде. И в 1940-ом году они провели его испытание. Восьми мышам была введена смертельная доза бактерий стрептококков. Затем, четырём из них ввели пенициллин. Через несколько часов результаты были налицо. Все четыре, не получившие пенициллин мыши умерли, но три из четверых получивших его - выжили.

Так, благодаря Флемингу, Флори и Чейну, мир получил первый антибиотик. Это лекарство стало настоящим чудом. Оно лечило от стольких недугов, которые причиняли много боли и страданий: острый фарингит, ревматизм, скарлатина, сифилис и гонорея… Сегодня мы уже совсем забыли, что от этих болезней можно умереть.

Сульфидные препараты

Следующее великое открытие подоспело во время Второй Мировой войны. Оно избавило от дизентерии американских солдат, сражавшихся в тихоокеанском бассейне. А затем привело к революции в химиотерапевтическом лечении бактериальных инфекций.
Случилось всё это благодаря патологу по имени Герхард Домагк. В 1932 году он изучал возможности применения в медицине некоторых новых химических красителей. Работая с недавно синтезированным красителем под названием пронтозил, Домагк ввёл его нескольким лабораторным мышам, заражённым бактериями стрептококками. Как и ожидал Домагк, краситель обволок бактерии, но бактерии выжили. Казалось, краситель недостаточно токсичен. Затем случилось нечто поразительное: хотя краситель и не убил бактерии, он остановил их рост, распространение инфекции прекратилось и мыши выздоровели. Когда Домагк впервые испытал пронтозил на людях - неизвестно. Однако новое лекарство стяжало славу после того, как спасло жизнь мальчику, серьёзно больному стафилококком. Пациентом был Франклин Рузвельт-младший, сын президента Соединённых Штатов. Открытие Домагка мгновенно стало сенсацией. Поскольку пронтозил содержал сульфамидную молекулярную структуру, его назвали сульфамидным препаратом. Он стал первым в этой группе синтетических химических веществ, способных лечить и предотвращать бактериальные инфекции. Домагк открыл новое революционное направление в лечении болезней, использовании химиотерапевтических препаратов. Оно спасёт десятки тысяч человеческих жизней.

Инсулин

Следующее великое открытие помогло спасти жизнь миллионам больных диабетом во всём мире. Диабет - это недуг, нарушающий процесс усвоения организмом сахара, что может привести к слепоте, отказу почек, заболеваниям сердца и даже к смерти. Столетиями медики изучали диабет, безуспешно ища от него средства. Наконец, в конце 19 века, произошёл прорыв. Было установлено, что у больных диабетом есть общая черта - неизменно поражена группа клеток в поджелудочной железе - эти клетки выделяют гормон, контролирующий содержание сахара в крови. Гормон назвали инсулином. А в 1920 году - новый прорыв. Канадский хирург Фредерик Бантинг и студент Чарльз Бест изучали секрецию инсулина поджелудочной железы у собак. Повинуясь интуиции, Бантинг ввёл экстракт из вырабатывающих инсулин клеток здоровой собаки собаке, страдающей диабетом. Результаты были ошеломляющими. Через несколько часов уровень сахара в крови больного животного существенно понизился. Теперь внимание Бантинга и его помощников сосредоточилось на поисках животного, чей инсулин был бы схож с человеческим. Они нашли близкое соответствие в инсулине, взятом у зародышей коров, очистили его для безопасности эксперимента и в январе 1922 года провели первое клиническое испытание. Бантинг ввёл инсулин 14-летнему мальчику, умиравшему от диабета. И тот стремительно пошёл на поправку. На сколько важно открытие Бантинга? Спросите об этом 15 миллионов американцев, которые ежедневно получают инсулин, от которого зависит их жизнь.

Генетическая природа рака

Рак - вторая по летальности болезнь в Америке. Интенсивные исследования его возникновения и развития привели к замечательным научным свершениям, но, пожалуй, самым важным из них стало следующее открытие. Нобелевские лауреаты, исследователи рака Майкл Бишоп и Харольд Вармус, объединили усилия в исследовании рака в 70-х годах 20 века. В то время доминировало несколько теорий о причине этого заболевания. Злокачественная клетка очень непроста. Она способна не только делиться, но и вторгаться. Это клетка с высокоразвитыми возможностями. В одной из теорий рассматривался вирус саркомы Рауса, вызывающий рак у кур. Когда вирус нападает на клетку курицы, он вводит свой генетический материал в ДНК хозяина. Согласно гипотезе, ДНК вируса становится впоследствии агентом, вызывающим заболевание. По другой теории, при вводе вирусом своего генетического материала в клетку хозяина, гены, вызывающие рак, не активируются, а ждут, пока их не запустит внешнее воздействие, например, вредные химикаты, радиация или обычная вирусная инфекция. Эти вызывающие рак гены, так называемые онкогены, и стали объектом исследований Вармуса и Бишопа. Главный вопрос: содержит ли геном человека гены, являющиеся или способные стать онкогенами вроде тех, что содержатся в вирусе, вызывающем опухоли? Есть ли такой ген у кур, у других птиц, у млекопитающих, у человека? Бишоп и Вармус взяли меченную радиоактивную молекулу и использовали её в качестве зонда, чтобы выяснить, похож ли онкоген вируса саркомы Рауса на какой-нибудь нормальный ген в хромосомах курицы. Ответ утвердительный. Это было настоящее откровение. Вармус и Бишоп установили, что вызывающий рак ген уже содержится в ДНК здоровых клеток курицы и, что ещё важнее, они обнаружили его и в ДНК человека, доказав, что зародыш рака может явиться в любом из нас на клеточном уровне и ждать активации.

Как может наш собственный ген, с которым мы прожили всю жизнь, вызвать рак? При делении клеток случаются ошибки и они чаще, если клетка угнетена космическим излучением, табачным дымом. Важно также помнить, что, когда клетка делится, ей надо скопировать 3 млрд. комплементарных пар ДНК. Всякий, кто хоть раз пытался печатать, знает, как это трудно. У нас есть механизмы, позволяющие замечать и исправлять ошибки, и всё же, при больших объёмах, пальцы промахиваются.
В чём же важность открытия? Раньше рак пытались осмыслить, исходя из различий между геном вируса и геном клетки, а теперь мы знаем, что совсем небольшое изменение в определённых генах наших клеток может превратить здоровую клетку, которая нормально растёт, делится и т.д., в злокачественную. И это стало первой ясной иллюстрацией истинного положения вещей.

Поиски данного гена - определяющий момент в современной диагностике и предсказании дальнейшего поведения раковой опухоли. Открытие дало чёткие цели специфическим видам терапии, которых раньше попросту не было.
Население Чикаго около 3 млн. человек.

ВИЧ

Столько же ежегодно умирают от СПИДа, одной из самых страшных эпидемий в новой истории. Первые признаки этого заболевания появились в начале 80-х годов прошлого века. В Америке стало расти число пациентов, умиравших от редких видов инфекций и рака. Анализ крови у жертв выявил крайне низкий уровень лейкоцитов - белых кровяных клеток, жизненно важных для иммунной системы человека. В 1982 году Центр контроля и предотвращения заболеваний дал болезни название СПИД - синдром приобретённого иммунодефицита. За дело взялись двое исследователей, Люк Монтанье из института Пастера в Париже и Роберт Галло из Национального института онкологии в Вашингтоне. Им обоим удалось сделать важнейшее открытие, которое выявило возбудителя СПИДа - ВИЧ, вирус иммунодефицита человека. В чём отличие вируса иммунодефицита человека от других вирусов, например, гриппа? Во-первых, этот вирус годами не выдаёт наличие болезни, в среднем, 7 лет. Вторая проблема весьма уникальна: например, СПИД наконец проявился, люди понимают, что больны и идут в клинику, а у них, мириад других инфекций, что именно стало причиной заболевания. Как это определить? В большинстве случаев вирус существует ради единственной цели: проникнуть в клетку-акцептор и размножиться. Обычно, он прикрепляется к клетке и выпускает в неё свою генетическую информацию. Это позволяет вирусу подчинить себе функции клетки, перенаправив их на производство новых особей вирусов. Затем эти особи нападают на другие клетки. Но ВИЧ - это не рядовой вирус. Он принадлежит к той категории вирусов, которых учёные называют ретровирусами. Что же в них необычного? Подобно тем классам вирусов, куда входят полиомиелит или грипп, ретровирусы - особые категории. Они уникальны тем, что их генетическая информация в виде рибонуклеиновой кислоты конвертируется в дезоксирибонуклеиновую кислоту (ДНК) и как раз то, что происходит с ДНК, и составляет нашу проблему: ДНК встраивается в наши гены, ДНК вируса становится частью нас, и тогда клетки, призванные защищать нас, начинают воспроизводить ДНК вируса. Имеются клетки, содержащие вирус, иногда они воспроизводят его, иногда - нет. Молчат. Затаиваются…Но лишь для того, чтобы потом снова воспроизводить вирус. Т.е. когда инфекция становится очевидной, она, скорее всего, укоренилась на всю жизнь. В этом заключается главная проблема. Лекарство от СПИДа до сих пор не найдено. Но открытие, что ВИЧ - ретровирус, и что он является возбудителем СПИДа, привело к значительным достижениям в борьбе с этим недугом. Что изменилось в медицине после открытия ретровирусов, в особенности ВИЧ? Например, из СПИДа мы убедились, что медикаментозная терапия возможна. Раньше считалось, что поскольку для размножения вирус узурпирует наши клетки, воздействовать на него без тяжёлого отравления самого пациента практически невозможно. Никто не инвестировал антивирусных программ. СПИД открыл дверь антивирусным исследованиям в фармацевтических кампаниях и университетах всего мира. К тому же, СПИД дал положительный социальный эффект. По иронии судьбы, этот ужасный недуг сплачивает людей.

И так день за днем, столетие за столетием, крохотными шажками или грандиозными прорывами, совершались великие и малые открытия в медицине. Они дают надежду, что человечество победит рак и СПИД, аутоиммунные и генетические заболевания, достигнет совершенства в профилактике, диагностике и лечении, облегчая страдания больных людей и предотвращая прогрессирование заболеваний.

СПбГПМА

по истории медицины

История развития медицинской физики

Выполнил: Мызников А.Д.,

студент I курса

Преподаватель: Джарман О.А.

Санкт-Петербург

Введение

Зарождение медицинской физики

2. Средние века и Новое время

2.1 Леонардо да Винчи

2.2 Ятрофизика

3 Создание микроскопа

3. История применения электричества в медицине

3.1 Небольшая предыстория

3.2 Чем мы обязаны Джильберту

3.3 Премия, присужденная Марату

3.4 Спор Гальвани и Вольта

4. Опыты В. В. Петрова. Начало электродинамики

4.1 Применение электричества в медицине и биологии в XIX - XX веках

4.2 История лучевой диагностики и терапии

Краткая история ультразвуковой терапии

Заключение

Список литературы

медицинский физика ультразвуковой лучевой

Введение

Познай самого себя, и ты познаешь весь мир. Первым занимается медицина, а вторым - физика. С древних времен связь между медициной и физикой была тесной. Недаром съезды естествоиспытателей и врачей проходили в разных странах совместно вплоть до начала XX в. История развития классической физики показывает, что ее во многом создали врачи, причем многие физические исследования были вызваны вопросами, которые ставила медицина. В свою очередь достижения современной медицины, особенно в области высоких технологий диагностики и лечения, были основаны на результатах различных физических исследований.

Я не случайно выбрал именно эту тему, потому что она для меня, студента специальности "Медицинская биофизика" как ни для кого близка. Я давно хотел узнать, насколько физика помогла развитию медицину.

Цель моей работы заключается в том, чтобы показать, насколько важную роль играла и играет физика в развитии медицины. Невозможно представить современную медицину без физики. Задачи же заключаются в том, чтобы:

Проследить этапы формирования научной базы современной медицинской физики

Показать значение деятельности ученых физиков в развитии медицины

1. Зарождение медицинской физики

Пути развития медицины и физики всегда были тесно переплетены между собой. Уже в глубокой древности медицина, наряду с лекарствами, использовала такие физические факторы, как механические воздействия, тепло, холод, звук, свет. Рассмотрим основные способы использования этих факторов в древней медицине.

Приручив огонь, человек научился (конечно же, не сразу) использовать огонь в лечебных целях. Особенно хорошо это получалось у восточных народов. Еще в древности лечению прижиганием придавали очень большое значение. В древних медицинских книгах говорится о том, что прижигание оказывается действенным даже тогда, когда бессильны иглоукалывания и лекарства. Когда именно возник такой метод лечения точно не установлено. Но известно, что он существовал в Китае с глубокой древности, и применялся еще в каменном веке для лечения людей и животных. Использовали огонь для лечения тибетские монахи. Они делали ожог на санмингах - биологических активных точках, отвечающих за ту или иную часть тела. На поврежденном месте интенсивно шел процесс заживления, и считалось, что с этим заживлением происходило исцеление.

Звук использовался практически всеми древними цивилизациями. Музыка применялась в храмах для лечения нервных расстройств, она находилась в прямой связи с астрономией и математикой у Китайцев. Пифагор утвердил музыку как точную науку. Его последователи использовали её для избавления от ярости и гнева и считали главным средством для воспитания гармоничной личности. Аристотель также утверждал, что музыка способна оказывать влияние на эстетическую сторону души. Царь Давид своей игрой на арфе вылечил от депрессии царя Саула, а также спас его от не чистых духов. Эскулап лечил радикулит громкими звуками трубы. Также известны тибетские монахи (о них шла речь выше) , которые использовали звуки для лечения практически всех болезней человека. Они назывались мантрами - формами энергии в звуке, чистой сущностной энергией самого звука. Мантры подразделялись на различные группы: для лечения лихорадок, кишечных расстройств и т.д. Метод использования мантр применяется тибетскими монахами и по сегодняшний день.

Фототерапия, или терапия светом (photos - "свет"; греч.), существовала всегда. В Древнем Египте, например, был создан специальный храм, посвященный "все исцеляющему лекарю" - свету. А в Древнем Риме дома строились таким образом, чтобы ничто не мешало светолюбивым гражданам ежедневно предаваться "питью солнечных лучей" - так назывался у них обычай принимать солнечные ванны в особых пристройках с плоскими крышами (соляриях). Гиппократ врачевал с помощью солнца болезни кожи, нервной системы, рахит и артрит. Более 2000 лет назад он назвал такое использование солнечного света гелиотерапией.

Также в древности начали развиваться и теоретические разделы медицинской физики. Одним из них является биомеханика. Исследования в области биомеханики имеют столь же древнюю историю, как и исследования по биологии и механике. Исследования, которые по современным понятиям относятся к области биомеханики, были известны еще в древнем Египте. В знаменитом египетском папирусе (The Edwin Smith Surgical Papyrus, 1800 лет до н.э.) описаны различные случаи двигательных повреждений, в том числе паралич вследствие дислокации позвонков, проведена их классификация, даны методы лечения и прогноз.

Сократ, живший ок. 470-399 гг. до н.э., учил, что мы не сможем постигнуть окружающий мир, пока не постигнем нашу собственную природу. Древние греки и римляне многое знали о магистральных кровеносных сосудах и клапанах сердца, умели прослушивать работу сердца (например, греческий врач Аретей во 2-м веке до н.э.) . Герофил из Халцедока (3 в. до н.э.) различал среди сосудов артерии и вены.

Отец современной медицины древнегреческий врач Гиппократ провел реформу античной медицины, отделив ее от методов лечения заклинаниями, молитвами и принесением жертвы богам. В трактатах "Вправление сочленений", "Переломы", "Раны головы" он провел классификацию известных в то время повреждений опорно-двигательной системы и предложил методы их лечения, в частности механические, с помощью тугих повязок, вытяжения, фиксации. По-видимому, уже в то время появились первые усовершенствованные протезы конечностей, которые служили в том числе для выполнения отдельных функций. Во всяком случае, у Плиния Старшего есть упоминание об одном римском командующем, который участвовал во второй Пунической войне (218-210 в.до н.э.). После полученной раны ему была ампутирована правая рука и заменена железной. При этом он мог протезом удерживать щит и участвовал в битвах.

Платон создал учение об идеях - неизменных умопостигаемых прообразах всех вещей. Анализируя форму человеческого тела, он учил, что "боги, подражая очертаниям Вселенной … включили оба божественных круговращения в сферовидное тело … которое мы ныне именуем головой". Устройство опорно-двигательной системы понимается им так: "чтобы голова не катилась по земле, всюду покрытой буграми и ямами … тело стало продолговатым и, по замыслу бога, сделавшего его подвижным, произрастило из себя четыре конечности, которые можно вытягивать и сгибать; цепляясь ими и опираясь на них, оно приобрело способность всюду продвигаться…". Метод рассуждений Платона об устройстве мира и человека построен на логическим исследовании, которое "должно идти таким образом, чтобы добиться наибольшей степени вероятности".

Великий древнегреческий философ Аристотель, сочинения которого охватывают практически все области науки того времени, составил первое подробное описание строения и функций отдельных органов и частей тела животных и заложил основы современной эмбриологии. В возрасте семнадцати лет Аристотель, сын врача из Стагиры, пришел в Афины учиться в Академии Платона (428-348 гг.до н.э.). Пробыв в Академии двадцать лет и став одним из самых близких учеников Платона, Аристотель оставил ее только после смерти учителя. Впоследствии он занялся анатомией и исследованием структуры животных, собирая разнообразные факты и проводя эксперименты и вскрытия. Многие уникальные наблюдения и открытия были им сделаны в этой области. Так, Аристотель впервые установил биение сердца куриного эмбриона на третий день развития, описал жевательный аппарат морских ежей ("Аристотелев фонарь") и многое другое. В поисках движущей силы кровотока, Аристотель предложил механизм движения крови, связанный с ее нагреванием в сердце и охлаждением в легких: "движение сердца похоже на движение жидкости, которую заставляет кипеть теплота". В своих трудах "О частях животных", "О движении животных" ("De Motu Animalium"), "О происхождении животных" Аристотель впервые рассмотрел строение тел более 500 видов живых организмов, организацию работы систем органов, ввел сравнительный метод исследования. При классификации животных он разделил их на две крупные группы - имеющих кровь и бескровных. Это деление сходно с существующим ныне делением на позвоночных и беспозвоночных животных. По способу перемещения Аристотель выделил также группы двуногих, четвероногих, многоногих и безногих животных. Он первый описал ходьбу как процесс, в котором вращательное движение конечностей преобразуется в поступательное движение тела, впервые отметил несимметричный характер движения (опора на левую ногу, перенос тяжестей на левом плече, свойственные правшам). Наблюдая за движениями человека, Аристотель заметил, что отбрасываемая фигурой тень не стене описывает не прямую, а зигзагообразную линию. Им выделены и описаны органы, различные по структуре, но одинаковые по функциям, например, чешуя у рыб, перья у птиц, волосяной покров у животных. Аристотель исследовал условия равновесия тела птиц (двуногая опора). Размышляя о движении животных, он выделил двигательные механизмы: "…движущее при помощи органа есть то, у чего начало совпадает с концом, как в сочленении. Ведь в сочленении имеется выпуклое и полое, одно из них - конец, другое - начало…одно покоится, другое движется … Все движется через толчок или натяжение" . Аристотель первым описал легочную артерию и ввел термин "аорта", отметил корреляции структуры отдельных частей тела, указал на взаимодействие органов в организме, заложил основы учения о биологической целесообразности и сформулирован "принцип экономии": "что природа отнимает в одном месте, то дает в другом". Он впервые описал различия в структуре кровеносной, дыхательной, опорно-двигательной систем разных животных и их жевательного аппарата. В отличие от своего учителя, Аристотель не рассматривал "мир идей" как нечто внешнее по отношению к материальному миру, а ввел "идеи" Платона в качестве составной части природы, ее основного начала, организующего материю. Впоследствии это начало трансформируется в понятия "жизненной энергии", "животных духов".

Великий древнегреческий ученый Архимед заложил основы современной гидростатики своими исследованиями гидростатических принципов, управляющих плавающим телом и исследованиями плавучести тел. Он первым применил математические методы к изучению задач механики, сформулировав и доказав ряд утверждений о равновесии тел и о центре тяжести в виде теорем. Принцип рычага, широко использовавшийся Архимедом для создания строительных конструкций и военных машин, станет одним из первых механических принципов, примененным в биомеханике опорно-двигательной системы. В трудах Архимеда содержатся идеи о сложении движений (прямолинейного и кругового при движении тела по спирали), о непрерывном равномерном приращении скорости при ускорении тела, которые впоследствии Галилей назовет как основу своих фундаментальных трудов по динамике.

В классическом труде "О частях человеческого тела" знаменитый древнеримский врач Гален дал первое в истории медицины целостное описание анатомии и физиологии человека. Эта книга прослужила учебником и настольной книгой по медицине в течение почти полутора тысяч лет. Гален положил начало физиологии, делая первые наблюдения и эксперименты на живых животных и изучая их скелеты. Он ввел в медицину вивисекцию - операции и исследования на живом животном с целью исследования функций организма и разработки методов лечения заболеваний. Он обнаружил, что в живом организме мозг контролирует рече- и звукообразование, что артерии заполнены кровью, а не воздухом и, как мог, исследовал пути перемещения крови в организме, описал структурные различия артерий и вен, обнаружил клапаны сердца. Гален не проводил вскрытий и, возможно, поэтому в его труды попали неверные представления, например, об образовании венозной крови в печени, а артериальной - в левом желудочке сердца. Он не знал также о существовании двух кругов кровообращения и значения предсердий. В своем труде "De motu musculorum" он описал различие между моторными и сенсорными нейронами, мышцами-агонистами и антагонистами, впервые описал тонус мышц. Причиной мышечного сокращения он считал "животные духи", поступающие из мозга в мышцу по нервным волокнам. Исследуя организм, Гален пришел к убеждению, что в природе ничто не излишне и сформулировал философский принцип о том, что, исследуя природу, можно прийти к пониманию замысла бога. В эпоху средневековья, даже при всевластии инквизиции, было сделано очень многое, особенно в анатомии, что впоследствии послужило основой дальнейшего развития биомеханики.

Свое особое место в истории науки занимают результаты исследований, осуществлявшихся в арабском мире и в странах Востока: свидетельством тому служат многие литературные произведения и медицинские трактаты. Арабский врач и философ Ибн Сина (Авиценна) заложил основы рациональной медицины, сформулировал рациональные основания для постановки диагноза на основании обследования пациента (в частности, анализа пульсовых колебаний артерий). Революционность его подхода станет понятной, если вспомнить, что в то время западная медицины, восходившая к Гиппократу и Галену, учитывала влияние звезд и планет на вид и ход течения болезни и выбор терапевтических средств.

Хотелось бы сказать, что в большинстве трудов античных ученых использовался метод определения пульса. Метод диагностики по пульсу возник за много веков до нашей эры. Среди дошедших до нас литературных источников, самыми древними являются труды древнекитайского и тибетского происхождения. К древнекитайским относятся, например, "Бинь-ху Мо-сюэ", "Сян-лэй-ши", "Чжу-бинь-ши", "Нан-цзин", а также разделы в трактатах "Цзя-и-цзин", "Хуан-ди Нэй-цзин Су-вэнь Линь-шу" и др.

История пульсовой диагностики неразрывно связана с именем древнего китайского врачевателя - Бянь Цяо (Цинь Юэ-Жэнь). Начало пути методики пульсовой диагностики, связывают с одной из легенд, согласно которой Бянь Цяо был приглашён на лечение дочери знатного мандарина (чиновника). Ситуация осложнялась тем, что видеть и дотрагиваться до особ знатного сана было строго запрещено даже врачам. Бянь Цяо попросил тонкую бечевку. Затем предложил привязать другой конец шнура на запястье принцессы, находящейся за ширмой, но придворные лекари пренебрежительно отнеслись к приглашенному врачу и решили над ним подшутить, привязав конец шнура не на запястье принцессы, а на лапку собачки, бегавшей рядом. Через несколько секунд, к удивлению присутствующих, Бянь Цяо невозмутимо заявил, что это импульсы не человека, а животного и это животное мается глистами. Искусность врача вызвала восхищение, а шнур с доверием был перенесен на запястье принцессы, после чего было определено заболевание и назначено лечение. В результате принцесса быстро выздоровела, а его методика получила широкую известность.

Хуа То - успешно использовал пульсовую диагностику в хирургической практике, сочетая с клиническим осмотром. В те времена производить операции запрещалось законом, операция производилась в крайнем случае, если уверенности на излечение консервативными методами не было, диагностических лапаротомий хирурги просто не знали. Диагноз ставился при внешнем исследовании. Свое искусство владения пульсовым диагнозом Хуа То передавал старательным ученикам. Существовало правило о том, что совершенному владению пульсовой диагностикой может научиться только мужчина, учась только у мужчины в течение тридцати лет. Хуа То был первым, кто применил особый прием для экзаменации учеников по умению использовать пульсы для диагноза: пациента усаживали за ширмой, а в разрезы в ней просовывали его руки так, что ученик мог видеть и изучать только кисти. Ежедневная, настойчивая практика быстро давала успешные результаты.

2. Средние века и Новое время

1 Леонардо да Винчи

В Средние века и в эпоху Возрождения развитие основных разделов физики происходило в Европе. Известным физиком того времени, но не только физиком, был Леонардо да Винчи. Леонардо исследовал движения человека, полет птиц, работу сердечных клапанов, движение растительного сока. Он описал механику тела при положении стоя и подъеме из положения сидя, ходьбе в гору и под гору, технику прыжка, впервые описал разнообразие походок людей с разным телосложением, выполнил сравнительный анализ походки человека, обезьяны и ряда животных, способных к двуногой ходьбе (медведя). Во всех случаях особое внимание уделялось положению центров тяжести и сопротивления. В механике Леонардо да Винчи впервые ввел понятие сопротивления, которое оказывают жидкости и газы движущимся в них телам и первый понял важность нового понятия - момента силы относительно точки - для анализа движения тел. Анализируя силы, развиваемые мышцами и имея превосходные познания в анатомии, Леонардо вводил линии действия сил вдоль направления соответствующей мышцы и тем самым предвосхитил представление о векторном характере сил. При описании действия мышц и взаимодействия систем мышц при выполнении движения Леонардо рассматривал шнуры, натянутые между точками крепления мышц. Для обозначения отдельных мышц и нервов он использовал буквенные обозначения. В его работах можно найти основы будущего учения о рефлексах. Наблюдая сокращения мышц, он отметил, что сокращения могут происходить непроизвольно, автоматически, без сознательного контроля. Все наблюдения и идея Леонардо старался воплотить в технических приложениях, оставил многочисленные чертежи устройств, предназначенных для разного рода перемещений, от водных лыж и планеров до протезов и прообразов современных колясок для инвалидов (всего более 7 тысяч листов рукописей). Леонардо да Винчи проводил исследования звука, генерируемого при движении крыльев насекомых, описал возможность изменения высоты звука при надрезании крыла или смазывании его медом. Проводя анатомические исследования, он обратил внимание на особенности ветвления трахеи, артерий и вен в легких, а также указал, что эрекция является следствием притока крови к половым органам. Он выполнил пионерские исследования филлотаксиса, описав закономерности листорасположения ряда растений, изготовлял отпечатки сосудисто-волокнистых пучков листьев и исследовал особенности их строения.

2 Ятрофизика

В медицине XVI-XVIII веков существовало особое направление, называвшееся ятромеханикой или ятрофизикой (от греческого iatros - врач). В трудах известного швейцарского врача и химика Теофраста Парацельса и голландского натуралиста Яна Ван-Гельмонта, известного своими опытами по самозарождению мышей из пшеничной муки, пыли и грязных рубашек, содержалось утверждение о целостности организма, описанное в форме мистического начала. Представители рационального мировоззрения не могли принять этого и в поисках рациональных оснований биологических процессов положили в основу их изучения механику - наиболее развитую в то время область знания. Ятромеханика претендовала на объяснение всех физиологических и патологических явлений исходя из законов механики и физики. Известный немецкий врач, физиологи и химик Фридрих Гофман сформулировал своеобразное кредо ятрофизики, по которому жизнь - это движение, а механика - это причина и закон всех явлений. Гофман рассматривал жизнь как механический процесс, в ходе которого движения нервов, по которым перемещается находящийся в мозге "животный дух" (spiritum animalium) , управляют сокращениями мышц, циркуляцией крови и работой сердца. В результате этого организм - своеобразная машина - приводится в движение. Механика при этом рассматривалась как основа жизнедеятельности организмов.

Подобные претензии, как теперь понятно, были во многом несостоятельны, но ятромеханика противостояла схоластическим и мистическим представлениям, ввела в обиход многие важные доселе неизвестные фактические сведения и новые приборы для физиологических измерений. Например, согласно воззрениям одного из представителей ятромеханики Джорджио Бальиви рука уподоблялась рычагу, грудная клетка - кузнечным мехам, железы - ситам, а сердце - гидравлическому насосу. Эти аналогии вполне разумны и сегодня. В XVI веке в работах французского армейского врача А.Паре (Ambroise Pare) были заложены основы современной хирургии и предложены искусственные ортопедические приспособления - протезы ноги, руки, кисти, разработка которых основывалась скорее на научном фундаменте, чем на простой имитации утраченной формы. В 1555 г. в работах французского натуралиста Пьера Белона был описан гидравлический механизм движения актиний. Один из основателей ятрохимии Ван-Гельмонт, изучая процессы брожения пищи в организмах животных, заинтересовался газообразными продуктами и ввел в науку термин "газ" (от голландского gisten - бродить). К развитию идей ятромеханики были причастны А.Везалий, У.Гарвей, Дж.А.Борелли, Р.Декарт. Ятромеханика, сводящая все процессы в живых системах к механическим, равно как и восходящая к Парацельсу ятрохимия, представители которой полагали, что жизнь сводится к химическим превращениям химических веществ, составляющих тело, приводили к одностороннему и зачастую неверному представлению о процессах жизнедеятельности и способах лечения заболеваний. Тем не менее, эти подходы, в особенности их синтез, позволили сформулировать рациональный подход в медицине XVI-XVII веков. Даже учение о возможности самозарождения жизни сыграло свою позитивную роль, ставя под сомнение религиозные гипотезы о сотворении жизни. Парацельс создал "анатомию сущности человека", которой пытался показать, что в „теле человека соединились мистическим образом три вездесущих ингредиента: соли, сера и ртуть" .

В рамках философских концепций того времени формировалось новое ятромеханическое представление о сути патологических процессов. Так, немецкий врач Г.Шатль создал учение об анимизме (от лат.anima - душа), в соответствии с которым болезнь рассматривалась как движения, совершаемые душой для вывода из тела чужеродных вредных веществ. Представитель ятрофизики итальянский врач Санторио (1561-1636), профессор медицины в Падуе считал, что любая болезнь - это следствие нарушения закономерностей движения отдельных мельчайших частиц организма. Санторио одним из первых применил экспериментальный метод исследования и математическую обработку данных, создал ряд интересных приборов. В сконструированной им специальной камере Санторио изучал обмен веществ и впервые установил связанное с жизненными процессами непостоянство веса тела. Совместно с Галилеем он изобрел ртутный термометр для измерения температуры тел (1626 г.). В его труде "Статическая медицина" (1614) одновременно представлены положения ятрофизики и ятрохимии. Дальнейшие исследования привели к революционным изменениями в представлениях о строении и работе сердечно-сосудистой системы. Итальянский анатом Фабрицио д"Аквапенденте обнаружил венозные клапаны. Итальянский исследователь П.Азелли и датский анатом Т.Бартолин обнаружили лимфатические сосуды.

Английскому врачу Уильяму Гарвею принадлежит открытие замкнутости системы кровообращения. Обучаясь в Падуе (в 1598-1601), Гарвей слушал лекции Фабрицио д"Аквапенденте и, по-видимому посещал лекции Галилея. Во всяком случае, Гарвей находился в Падуе, в то время как там гремела слава о блестящих лекциях Галилея, которые посещались многими исследователями, приезжавшие специально издалека. Открытие Гарвеем замкнутости кровообращения явилось результатом систематического применения разработанного ранее Галилеем количественного метода измерений, а не простым наблюдением или догадкой. Гарвей выступил с демонстрацией, в ходе которой он показал, что кровь движется из левого желудочка сердца только в одном направлении. Измерив объем крови, выбрасываемой сердцем за одно сокращение (ударный объем), он умножил получившееся число на частоту сокращений сердца и показал, что за час оно прокачивает объем крови, намного превышающий объем тела. Таким образом был сделан вывод, что значительно меньший объем крови должен непрерывно циркулировать по замкнутому кругу, поступая в сердце и прокачиваясь им по системе сосудов. Результаты работы были опубликованы в труде "Анатомическое исследование о движении сердца и крови у животных" (1628 г.). Результаты работы были более чем революционными. Дело в том, что со времен Галена считалось, что кровь производится в кишечнике, откуда поступает в печень, затем в сердце, откуда распределяется по системе артерий и вен к остальным органам. Гарвей описал сердце разделенный на отдельные камеры как мышечный мешок, выполняющий роль насоса, нагнетающего кровь в сосуды. Кровь движется по кругу в одном направлении и попадает снова в сердце. Обратному же току крови в венах препятствуют венозные клапаны, обнаруженные Фабрицио д"Аквапенденте. Революционное учение Гарвея о кровообращении противоречило утверждениям Галена, в связи с чем его книги подвергались резкой критике и даже пациенты зачастую отказывались от его врачебных услуг. С 1623 г. Гарвей служил в качестве придворного врача Карла I и высочайшее покровительство спасало его от нападок противников и обеспечивало возможность дальнейшей научной работы. Гарвей выполнил обширные исследования по эмбриологии, описал отдельные стадии развития зародыша ("Исследования о рождении животных", 1651). XVII век можно назвать эпохой гидравлики и гидравлического мышления. Успехи техники способствовали появлению новых аналогий и лучшему пониманию процессов, происходящих в живых организмах. Вероятно, именно поэтому Гарвей описал сердце как гидравлический насос, прокачивающий кров по „трубопроводу" сосудистой системы. Для полного признания результатов работы Гарвея требовалось только найти недостающее связующее звено, замыкающее круг между артериями и венами, что будет сделано вскоре в работах Мальпиги. Механизм работы легких и причины прокачивания воздуха по ним остались для Гарвея непонятыми - небывалые успехи химии и открытие состава воздух были еще впереди. XVII век является важной вехой в истории биомеханики, поскольку он был ознаменован не только появлением первых печатных трудов по биомеханике, но и становлением нового взгляда на жизнь и природу биологической подвижности.

Французский математик, физик, философ и физиолог Рене Декарт был первым, кто попытался построить механическую модель живого организма с учетом управления посредством нервной системы. Его трактовка физиологической теории на основе законов механики содержалась в опубликованном посмертно труде (1662-1664). В этой формулировке впервые была высказана кардинальная для наук о живом идея регуляции посредством обратной связи. Декарт рассматривал человека как телесный механизм, приводимый в движение "живыми духами", которые "постоянно восходят в большом количестве от сердца к мозгу, а оттуда - через нервы к мышцам и приводят все члены в движение". Не преувеличивая роль "духов", в трактате "Описание человеческого тела. Об образовании животного" (1648 г.) он пишет, что знание механики и анатомии позволяет увидеть в теле "значительное количество органов, или пружин" для организации передвижения организма. Работу организма Декарт уподобляет механизму часов, с отдельными пружинами, винтиками, шестеренками. Кроме этого, Декарт занимался исследованием координации движений различных частей тела. Проводя обширные эксперименты по исследованию работы сердца и движению крови в полостях сердца и крупных сосудах, Декарт не соглашается с концепцией Гарвея о сокращениях сердца как движущей силе кровообращения. Он отстаивает восходящую в Аристотелю гипотезу о нагревании и разжижении крови в сердце под действием присущей сердцу теплоте, продвижении расширяющейся крови в крупные сосуды, где она охлаждается, а "сердце и артерии немедленно опадают и сжимаются". Роль дыхательной системы Декарт видит в том, что дыхание "приносит в легкие достаточно свежего воздуха для того, чтобы кровь, поступающая туда из правой части сердца, где она разжижалась и как бы превращалась в пар, снова обратилась из пара в кровь". Он исследовал также движения глаз, использовал деление биологических тканей по механическим свойствам на жидкие и твердые. В области механики Декарт сформулировал закон сохранения количества движения и ввел понятие импульса силы.

3 Создание микроскопа

Изобретение микроскопа, столь важного для всей науки прибора обусловлено, прежде всего, влиянием развития оптики. Некоторые оптические свойства изогнутых поверхностей были известны еще Евклиду (300 лет до н.э.) и Птоломею (127-151 гг.), однако их увеличительная способность не нашла практического применения. В связи с этим первые очки были изобретены Сальвинио дели Арлеати в Италии только в 1285 г. В 16 веке Леонардо да Винчи и Мауролико показали, что малые объекты лучше изучать с помощью лупы.

Первый микроскоп был создан лишь в 1595 году Захариусом Йансеном (Z. Jansen). Изобретение заключалось в том, что Захариус Йансен смонтировал две выпуклые линзы внутри одной трубки, тем самым, заложив основы для создания сложных микроскопов. Фокусировка на исследуемом объекте достигалось за счет выдвижного тубуса. Увеличение микроскопа составляло от 3 до 10 крат. И это был настоящий прорыв в области микроскопии! Каждый свой следующий микроскоп он значительно совершенствовал.

В этот период (XVI в.) датские, английские и итальянские исследовательские приборы постепенно начали свое развитие, закладывая фундамент современной микроскопии.

Быстрое распространение и совершенствование микроскопов началось после того, как Галилей (G. Galilei), совершенствуя сконструированную им зрительную трубу, стал использовать ее как своеобразный микроскоп (1609-1610), изменяя расстояние между объективом и окуляром.

Позднее, в 1624 г., добившись изготовления более короткофокусных линз, Галилей значительно уменьшил габариты своего микроскопа.

В 1625 г. членом Римской "Академии зорких" ("Akudemia dei lincei") И. Фабером был предложен термин "микроскоп". Первые успехи, связанные с применением микроскопа в научных биологических исследованиях, были достигнуты Гуком (R. Hooke), который первым описал растительную клетку (около 1665 г.). В своей книге "Micrographia" Гук описал устройство микроскопа.

В 1681 г. Лондонское королевское общество в своем заседании подробно обсуждало своеобразное положение. Голландец Левенгук (A. van Leenwenhoek) описывал изумительные чудеса, которые открывал своим микроскопом в капле воды, в настое перца, в иле реки, в дупле собственного зуба. Левенгук с помощью микроскопа обнаружил и зарисовал сперматозоиды различных простейших, детали строения костной ткани (1673-1677).

"С величайшим изумлением я увидел в капле великое множество зверюшек, оживленно двигающихся во всех направлениях, как щука в воде. Самое мелкое из этих крошечных животных в тысячу раз меньше глаза взрослой вши."

3. История использования электричества в медицине

3.1 Небольшая предыстория

С давних времен человек пытался понять явления в природе. Много гениальных гипотез, объясняющих происходящее вокруг человека, появилось в разное время и в разных странах. Мысли греческих и римских ученых и философов, живших еще до нашей эры: Архимеда, Евклида, Лукреция, Аристотеля, Демокрита и других - и сейчас помогают развитию научных исследований.

После первых наблюдений электрических и магнитных явлений Фалесом Милетским периодически возникал интерес к ним, определяемый задачами врачевания.

Рис. 1. Опыт с электрическим скатом

Следует отметить, что электрические свойства некоторых рыб, известные еще в далекие времена, до сих пор являются нераскрытой тайной природы. Так, например, в 1960 г. на выставке, организованной английским Научным королевским обществом в честь 300-летия со дня его основания, среди загадок природы, которые человеку предстоит раскрыть, демонстрировался обычный стеклянный аквариум с находящейся в нем рыбой -электрическим скатом (рис.1). К аквариуму через металлические электроды был подключен вольтметр. Когда рыба была в покое, стрелка вольтметра стояла на нуле. При движении рыбы вольтметр показывал напряжение, достигавшее при активных движениях 400 В. Надпись гласила: "Природу этого электрического явления, наблюдавшегося задолго до организации английского королевского общества, человек разгадать до сих пор не может".

2 Чем мы обязаны Джильберту?

Лечебное действие электрических явлений на человека по существовавшим в далекие времена наблюдениям можно рассматривать как своеобразное стимулирующее и психогенное средство. Этим средством или пользовались, или о нем забывали. Долгое время серьезных исследований самих электрических и магнитных явлений, и особенно их действия в качестве лечебного средства, не проводилось.

Первое обстоятельное экспериментальное исследование электрических и магнитных явлений принадлежит английскому врачу-физику, впоследствии придворному лейб-медику Вильяму Джильберту (Гильберту) (1544-1603 тт.). Джильберта заслуженно считали врачом-новатором. Успех его в значительной степени определялся добросовестным изучением, а затем и применением древних медицинских средств, в том числе электричества и магнетизма. Джильберт понимал, что без обстоятельного изучения электрического и магнитного излучения трудно использовать "флюиды" при лечении.

Пренебрегая фантастическими, непроверенными домыслами и бездоказательными утверждениями, Джильберт провел разносторонние экспериментальные исследования электрических и магнитных явлений. Результаты этого первого в истории изучения электричества и магнетизма грандиозны.

Прежде всего Джильберт высказал впервые мысль, что магнитная стрелка компаса перемещается под влиянием магнетизма Земли, а не под действием одной из звезд, как полагали до него. Он впервые осуществил искусственное намагничивание, установил факт неотделимости магнитных полюсов. Изучая одновременно с магнитными явлениями и электрические, Джильберт на основе многочисленных наблюдений показал, что электроизлучение возникает не только при трении янтаря, но и при трении иных материалов. Отдавая должное янтарю - первому материалу, на котором наблюдалась электризация, он называет их электрическими, положив в основу греческое название янтаря - электрон. Следовательно, слово "электричество" введено в жизнь по предложению врача на основе ставшего историческим его исследования, которое положило начало развитию и электротехники и электротерапии. В то же время Джильберт удачно сформулировал принципиальное различие электрических и магнитных явлений: "Магнетизм, так же как и тяжесть, есть некоторая изначальная сила, исходящая из тел, в то время как электризация обусловлена выжиманием из пор тела особых истечений в результате трения".

По существу, до работ Ампера и Фарадея, т. е. на протяжении двухсот с лишним лет после смерти Джильберта (результаты его исследований были опубликованы в книге "О магните, магнитных телах и о большом магните - Земле", 1600 г.), электризация и магнетизм рассматривались изолированно.

П. С. Кудрявцев в "Истории физики" приводит слова великого представителя эпохи Возрождения Галилея: "Воздаю хвалу, дивлюсь, завидуя Гильберту (Джильберту). Он развил достойные удивления идеи о предмете, о котором трактовало столько гениальных людей, но который ни одним из них не был изучен внимательно... Я не сомневаюсь, что со временем эта отрасль науки (речь идет об электричестве и магнетизме - В. М.) сделает успехи как вследствие новых наблюдений, так, особенно, вследствие строгой меры доказательств".

Джильберт умер 30 ноября 1603 г., завещав все созданные им приборы и труды Лондонскому обществу медиков, активным председателем которого он был до самой смерти.

3 Премия, присужденная Марату

Канун французской буржуазной революции. Подытожим исследования в области электротехники этого периода. Установлено наличие положительного и отрицательного электричества, построены и усовершенствованы первые электростатические машины, созданы лейденские банки (своеобразные накопители зарядов - конденсаторы), электроскопы, сформулированы качественные гипотезы электрических явлений, проведены смелые попытки исследовать электрическую природу молнии.

Электрическая природа молнии и действие ее на человека еще больше укрепляли мнение, что электричество может не только поражать, но и лечить людей. Приведем некоторые примеры. 8 апреля 1730 г. англичане Грей и Уилер провели ставший ныне классическим опыт с электризацией человека.

Во дворе дома, где жил Грей, были врыты в землю два сухих деревянных столба, на которых была укреплена деревянная балка- Через деревянную балку были перекинуты два волосяных каната. Нижние концы их были связаны. Канаты легко выдерживали вес мальчика, согласившегося принять участие в опыте. Расположившись, как на качелях, мальчик одной рукой держал наэлектризованный трением стержень или металлический прут, на который передавался электрический заряд от наэлектризованного тела. Другой рукой мальчик бросал одну за другой монеты в металлическую тарелку, находившуюся на сухой деревянной доске под ним (рис. 2). Монеты приобретали заряд через тело мальчика; падая, они заряжали металлическую тарелку, которая начинала притягивать кусочки сухой соломы, расположенные вблизи. Опыты проводились многократно и вызвали значительный интерес не только у ученых. Английский поэт Георг Бозе писал:

Безумный Грей, что знал ты в самом деле О свойствах силы той, неведомой доселе? Разрешено ль тебе, безумец, рисковать И человека с электричеством связать?

Рис. 2. Опыт с электризацией человека

Французы Дюфе, Нолле и наш соотечественник Георг Рихман почти одновременно, независимо друг от друга сконструировали прибор для измерения степени электризации, что значительно расширило применение электрического разряда для лечения, появилась возможность его дозировки. Парижская академия наук посвятила несколько заседаний обсуждению действия разряда лейденских банок на человека. Заинтересовался этим и Людовик XV. По просьбе короля физик Нолле совместно с врачом Луи Лемонье провел в одной из больших зал Версальского дворца опыт, демонстрирующий укалывающее действие статического электричества. Польза от "придворных забав" была: многих они заинтересовали, многие начали заниматься изучением явлений электризации.

В 1787 г. английский врач и физик Адаме впервые создал специальную электростатическую машину для лечебных целей. Ею он широко пользовался в своей медицинской практике (рис. 3) и получал положительные результаты, которые можно объяснить и стимулирующим действием тока, и психотерапевтическим эффектом, и специфическим действием разряда на человека.

Эпоха электростатики и магнитостатики, к которой относится все, о чем говорилось выше, завершается разработкой математических основ этих наук, выполненной Пуассоном, Остроградским, Гауссом.

Рис. 3. Сеанс электролечения (со старинной гравюры)

Использование электрических разрядов в медицине и биологии получило полное признание. Сокращение мышц, вызванное касанием электрических скатов, угрей, сомов, свидетельствовало о действии электрического удара. Опыты англичанина Джона Уорлиша доказали электрическую природу удара ската, а анатом Гунтер дал точное описание электрического органа этой рыбы.

В 1752 г. немецкий врач Зульцер опубликовал сообщение о новом, обнаруженном им явлении. Касание языком одновременно двух разнородных металлов вызывает своеобразное кислое вкусовое ощущение. Зульцер не предполагал, что это наблюдение представляет собой начало важнейших научных направлений - электрохимии и электрофизиологии.

Интерес к использованию электричества в медицине возрастал. Руанская академия объявила конкурс на лучшую работу по теме: "Определить степень и условия, при которых можно рассчитывать на электричество в лечении болезней". Первая премия была присуждена Марату - врачу по профессии, чье имя вошло в историю французской революции. Появление работы Марата было своевременным, так как применение электричества для лечения не обошлось без мистики и шарлатанства. Некий Месмер, используя модные научные теории об искрящих электрических машинах, начал утверждать, что им в 1771 г. найдено универсальное медицинское средство - "животный" магнетизм, действующий на больного на расстоянии. Им были открыты специальные врачебные кабинеты, где находились электростатические машины достаточно высокого напряжения. Больной должен был касаться токоведущих частей машины, при этом он ощущал удар электрического тока. По-видимому, случаи положительного эффекта пребывания во "врачебных" кабинетах Месмера можно объяснить не только раздражающим действием электрического удара, но и действием озона, появляющегося в помещениях, где работали электростатические машины, и явлениями, о которых упоминалось ранее. Могло положительно влиять на некоторых больных и изменение содержания бактерий в воздухе под действием ионизации воздуха. Но об этом Месмер и не подозревал. После сопровождавшихся тяжелым исходом неудач, о которых своевременно предупреждал в своей работе Марат, Месмер исчез из Франции. Созданная с участием крупнейшего французского физика Лавуазье правительственная комиссия для расследования "врачебной" деятельности Месмера не сумела объяснить положительного действия электричества на человека. Лечение электричеством во Франции временно прекратилось.

4 Спор Гальвани и Вольта

А теперь речь пойдет об исследованиях, проведенных почти через двести лет после публикации работы Джильберта. Они связаны с именами итальянского профессора анатомии и медицины Луиджи Гальвани и итальянского профессора физики Алессандро Вольта.

В лаборатории анатомии Булонского университета Луиджи Гальвани провел опыт, описание которого потрясло ученых всего мира. На лабораторном столе препарировались лягушки. Задача опыта заключалась в демонстрации и наблюдении обнаженных, нервов их конечностей. На этом столе находилась электростатическая машина, с помощью которой создавалась и изучалась искра. Приведем высказывания самого Луиджи Гальвани из его работы "О силах электрических при мышечных движениях": "... Один из моих помощников острием случайно очень легко коснулся внутренних бедренных нервов лягушки. Лапка лягушки резко дернулась". И далее: ". .. Это удается тогда, когда из конденсатора машины извлекается искра".

Это явление можно объяснить следующим образом. На атомы и молекулы воздуха в зоне возникновения искры действует меняющееся электрическое поле, в результате они приобретают электрический заряд, переставая быть нейтральными. Возникшие ионы и электрически заряженные молекулы распространяются на некоторое, относительно небольшое расстояние от электростатической машины, так как при движении, сталкиваясь с молекулами воздуха, теряют свой заряд. В то же время они могут накапливаться на металлических предметах, хорошо изолированных от поверхности земли, и разряжаются в случае, если возникнет проводящая электрическая цепь на землю. Пол в лаборатории был сухой, деревянный. Он хорошо изолировал помещение, где работал Гальвани, от земли. Предметом, на котором накапливались заряды, был металлический скальпель. Даже легкое касание скальпелем нерва лягушки приводило к "разряду" накопившегося на скальпеле статического электричества, вызывая отдергивание лапки без какого-либо механического разрушения. Само по себе явление вторичного разряда, вызванное электростатической индукцией, уже в то время было известно.

Блестящий талант экспериментатора и проведение большого числа разносторонних исследований позволили Гальвани обнаружить другое важное для дальнейшего развития электротехники явление. Идет опыт по изучению атмосферного электричества. Процитируем самого Гальвани: ". ...Утомленный... тщетным ожиданием.. . начал. .. прижимать медные крючки, воткнутые в спинной мозг, к железной решетке - лапки лягушки сократились". Результаты эксперимента, проведенного уже не на открытом воздухе, а в помещении при отсутствии каких-либо работающих электростатических машин, подтвердили, что сокращение мышцы лягушки, подобное сокращению, вызванному искрой электростатической машины, возникает при касании тела лягушки одновременно двумя различными металлическими предметами - проволокой и пластиной из меди, серебра или железа. Такого явления никто до Гальвани не наблюдал. На основе результатов наблюдений он делает смелый однозначный вывод. Существует иной источник электричества, им является "животное" электричество (термин равнозначен термину "электрическая активность живой ткани"). Живая мышца, утверждал Гальвани, представляет собой конденсатор вроде лейденской банки, внутри нее накапливается положительное электричество. Нерв лягушки служит внутренним "проводником". Присоединение к мышце двух металлических проводников вызывает появление электрического тока, что приводит, подобно искре от электростатической машины, к сокращению мышцы.

Гальвани экспериментировал в целях получения однозначного результата только на мышцах лягушки. Возможно именно это позволило ему предложить использовать "физиологический препарат" лапки лягушки в качестве измерителя количества электричества. Мерой количества электричества, для оценки которого служил подобный физиологический индикатор, являлись активность подъема и падения лапки при соприкосновении ее с металлической пластинкой, которой одновременно касается крючок, проходящий через спинной мозг лягушки, и частота подъемов лапки в единицу времени. Некоторое время подобный физиологический индикатор использовался даже крупными физиками, и в частности Георгом Омом.

Электрофизиологический эксперимент Гальвани позволил Алессандро Вольта создать первый электрохимический источник электрической энергии, что, в свою очередь, открыло новую эпоху в развитии электротехники.

Алессандро Вольта одним из первых по достоинству оценил открытие Гальвани. Он повторяет с большой тщательностью опыты Гальвани, получает много данных, подтверждающих его результаты. Но уже в первых своих статьях "О животном электричестве" и в письме к доктору Боронио от 3 апреля 1792 г. Вольта в отличие от Гальвани, трактующего наблюдаемые явления с позиций "животного" электричества, выдвигает на первый план химико-физические явления. Вольта устанавливает важность использования для этих опытов разнородных металлов (цинк, медь, свинец, серебро, железо), между которыми проложена смоченная кислотой ткань.

Вот что пишет Вольта: "В.опытах Гальвани источником электричества является лягушка. Однако, что собой представляет лягушка или вообще любое животное? Прежде всего, это нервы и мышцы, а в них различные химические соединения. Если нервы и мышцы препарированной лягушки соединить с двумя разнородными металлами, то при замыкании такой цепи проявляется электрическое действие. В моем последнем опыте тоже участвовали два разнородных металла - это станиоль (свинец) и серебро, а роль жидкости играла слюна языка. Замыкая цепь соединительной пластинкой, я создавал условия для непрерывного передвижения электрической жидкости с одного места на другое. Но я ведь мог опустить эти же металлические предметы просто в воду или в жидкость, подобную слюне? Причем здесь "животное" электричество?"

Опыты, проведенные Вольта, позволяют сформулировать вывод о том, что источником электрического действия является цепь из разнородных металлов при их соприкосновении с влажной или смоченной в растворе кислоты тканью.

В одном из писем своему другу врачу Вазаги (опять пример проявления интереса врача к электричеству) Вольта писал: "Я уже давно убедился, что все действие исходит от металлов, от соприкосновения которых электрическая жидкость входит во влажное или водянистое тело. На этом основании я считаю себя вправе приписать все новые электрические явления металлам и заменить название "животное электричество" выражением "металлическое электричество".

По мнению Вольта, лапки лягушки - чувствительный электроскоп. Возник исторический спор между Гальвани и Вольта, а также между их последователями - спор о "животном" или ""металлическом" электричестве.

Гальвани не сдавался. Он полностью исключил из эксперимента металл и даже лягушек препарировал стеклянными ножами. Оказалось, что и при таком опыте соприкосновение бедренного нерва лягушки с ее мышцей приводило к хорошо заметному, хотя и значительно меньшему, чем при участии металлов, сокращению. Это была первая фиксация биоэлектрических явлений, на которых построена современная электродиагностика сердечно-сосудистой и ряда других систем человека.

Вольта пытается разгадать природу обнаруженных необычных явлений. Перед собой он четко формулирует следующую задачу: "Что же является причиной возникновения электричества? - спросил я себя так же, как и каждый из вас сделал бы это. Размышления привели меня к одному решению: от соприкосновения двух разнородных металлов, например серебра и цинка, нарушается равновесие электричества, находящегося в обоих металлах. В точке соприкосновения металлов положительное электричество направляется от серебра к цинку и накапливается на последнем, в то самое время как отрицательное электричество сгущается на серебре. Это значит, что электрическая материя перемещается в определенном направлении. Когда я накладывал друг на друга пластинки из серебра и цинка без промежуточных прокладок, то есть цинковые пластинки находились в соприкосновении с серебряными, то общее их действие сводилось к нулю. Чтобы усилить электрическое действие или суммировать его, следует каждую цинковую пластинку привести в соприкосновение только с одной серебряной и последовательно сложить наибольшее число пар. Это и достигается как раз тем, что на каждую цинковую пластинку я кладу мокрый кусок ткани, отделяя ее тем самым от серебряной пластинки следующей пары". Многое из сказанного Вольта не теряет значения и сейчас, в свете современных научных представлений.

К сожалению, этот спор был трагически прерван. Армия Наполеона оккупировала Италию. За отказ присягнуть новому правительству Гальвани потерял кафедру, был уволен и вскоре скончался. Второй участник спора Вольта дожил до дня полного признания открытий обоих ученых. В историческом споре оба оказались правы. Биолог Гальвани вошел в историю науки как основоположник биоэлектричества, физик Вольта - как основоположник электрохимических источников тока.

4. Опыты В. В. Петрова. Начало электродинамики

Работами профессора физики Медико-хирургической академии (ныне Военно-медицинская академия имени С. М. Кирова в Ленинграде), академика В. В. Петрова заканчивается первый этап науки о "животном" и "металлическом" электричестве.

Деятельность В.В.Петрова оказала огромное влияние на развитие науки по использованию электричества в медицине и биологии в нашей стране. В Медико-хирургической академии им был создан физический кабинет, оснащенный великолепным оборудованием. Работая в нем, Петров построил впервые в мире электрохимический источник электрической энергии высокого напряжения. Оценивая напряжение этого источника по числу входящих в него элементов, можно полагать, что напряжение достигало 1800-2000 В при мощности около 27-30 Вт. Этот универсальный источник позволил В. В. Петрову в течение короткого срока провести десятки исследований, открывших разнообразные пути применения электричества в различных областях. Имя В. В. Петрова обычно связывают с появлением нового источника освещения, а именно электрического, на базе использования обнаруженной им эффективно действующей электрической дуги. В 1803 г. в книге "Известие о гальвани-вольтовских опытах" В. В. Петров изложил результаты своих исследований. Это - первая книга об электричестве, вышедшая в нашей стране. Она была переиздана у нас в 1936 г.

В этой книге важны не только электротехнические исследования, но и результаты изучения взаимосвязи и взаимодействия электрического тока с живым организмом. Петров показал, что тело человека способно к электризации и что гальвани-вольтовская батарея, состоящая из большого числа элементов, опасна для человека; по существу, он предсказал возможность применения электричества для физиотерапевтического лечения.

Влияние исследований В. В. Петрова на развитие электротехники и медицины велико. Его работа "Известие о гальвани-вольтовских опытах", переведенная на латинский язык, украшает наряду с русским изданием национальные библиотеки многих европейских стран. Созданная В.В.Петровым электрофизическая лаборатория, позволила ученым академии в середине XIX века широко развернуть исследования в области использования электричества для лечения. Военно-медицинская академия в этом направлении заняла ведущее положение не только среди институтов нашей страны, но и европейских институтов. Достаточно назвать имена профессоров В. П. Егорова, В, В. Лебединского, А. В. Лебединского, Н. П. Хлопина, С. А. Лебедева.

Что принес XIX век в изучении электричества? Прежде всего, окончилась монополия медицины и биологии на электричество. Начало этому положили Гальвани, Вольта, Петров. Первая половина и середина XIX века отмечены крупными открытиями в электротехнике. Эти открытия связаны с именами датчанина Ганса Эрстеда, французов Доминика Араго и Андре Ампера, немца Георга Ома, англичанина Майкла Фарадея, наших соотечественников Бориса Якоби, Эмиля Ленца и Павла Шиллинга и многих других ученых.

Кратко опишем важнейшие из этих открытий, имеющие непосредственное отношение к нашей теме. Эрстед первый установил полную взаимосвязь электрических и магнитных явлений. Экспериментируя с гальваническим электричеством (так в то время называли электрические явления, возникающие от электрохимических источников тока, в отличие от явлений, вызываемых электростатической машиной), Эрстед обнаружил отклонения стрелки магнитною компаса, находящегося вблизи, электрического источника тока (гальванической батареи), в момент замыкания и размыкания электрической цепи. Он установил, что это отклонение зависит от места расположения магнитного компаса. Огромная заслуга Эрстеда в том, что он сам оценил важность открытого им явления. Рушились, казалось бы, незыблемые в течение более двухсот лет представления, основанные на работах Джильберта, о независимости магнитных и электрических явлений. Эрстед получил достоверный экспериментальный материал, на основе которого он пишет, а затем издает книгу "Опыты, относящиеся к действию электрического конфликта на магнитную стрелку". Кратко свое достижение он формулирует так: "Гальваническое электричество, идущее с севера на юг над свободно подвешенной магнитной иглой, отклоняет ее северный конец к востоку, а, проходя в том же направлении под иглой, отклоняет ее на запад".

Ясно и глубоко раскрыл смысл опыта Эрстеда, являющегося первым достоверным доказательством взаимосвязи магнетизма и электричества, французский физик Андре Ампер. Ампер был очень разносторонним ученым, прекрасно владевшим математикой, увлекавшимся химией, ботаникой и древней литературой. Он был великолепным популяризатором научных открытий. Заслуги Ампера в области физики можно сформулировать так: он создал новый раздел в учении об электричестве - электродинамику, охватывающую все проявления движущегося электричества. Источником движущихся электрических зарядов у Ампера была гальваническая батарея. Замыкая цепь, он получал движение электрических зарядов. Ампер показал, что покоящиеся электрические заряды (статическое электричество) не действуют на магнитную стрелку - не отклоняют ее. Говоря современным языком, Амперу удалось выявить значение переходных процессов (включение электрической цепи).

Майкл Фарадей завершает открытия Эрстеда и Ампера - создает стройное логическое учение об электродинамике. В то же время ему принадлежит ряд самостоятельных крупнейших открытий, несомненно, оказавших важное влияние на применение электричества и магнетизма в медицине и биологии. Майкл Фарадей не был математиком подобно Амперу, в своих многочисленных публикациях он не использовал ни одного аналитического выражения. Талант экспериментатора, добросовестного и трудолюбивого, позволил Фарадею компенсировать отсутствие математического анализа. Фарадей открывает закон индукции. Как он сам говорил: "Я нашел способ превращения электричества в магнетизм и наоборот". Он обнаруживает самоиндукцию.

Завершением крупнейших исследований Фарадея является открытие законов прохождения электрического тока через проводящие жидкости и химического разложения последних, наступающего под воздействием электрического тока (явление электролиза). Фарадей так формулирует основной закон: "Количество вещества, находящегося на токопроводящих пластинках (электродах), погруженных в жидкость, зависит от силы тока и от времени его прохождения: чем больше сила тока и чем дольше он проходит, тем больше количества вещества выделится в раствор".

Россия оказалась одной из стран, где открытия Эрстеда, Араго, Ампера, а главное, Фарадея нашли непосредственное развитие и практическое применение. Борис Якоби, используя открытия электродинамики, создает первое судно с электродвигателем. Эмилю Ленцу принадлежит ряд работ, представляющих огромный практический интерес в разных областях электротехники и физики. Его имя связывают обычно с открытием закона теплового эквивалента электрической энергии, называемого законом Джоуля - Ленца. Кроме того, Ленц установил закон, названный его именем. На этом заканчивается период создания основ электродинамики.

1 Применение электричества в медицине и биологии в XIX веке

П. Н. Яблочков, расположив параллельно два угля, разделенных расплавляющейся смазкой, создает электрическую свечу - простой источник электрического света, способный освещать в течение нескольких часов помещение. Свеча Яблочкова просуществовала три-четыре года, найдя применение почти во всех странах мира. Ее заменила более долговечная лампа накаливания. Повсеместно создаются электрические генераторы, получают распространение и аккумуляторы. Области применения электричества все увеличиваются.

Становится популярным применение электричества и в химии, начало которому положил М. Фарадей. Перемещение вещества - движение зарядоносителей - нашло одно из первых своих применений в медицине для ввода соответствующих лекарственных соединений в тело человека. Суть метода состоит в следующем: нужным лекарственным соединением пропитывается марля или другая любая ткань, которая служит прокладкой между электродами и телом человека; она располагается на участках тела, подлежащих лечению. Электроды подключаются к источнику постоянного тока. Метод подобного ввода лекарственных соединений, впервые примененный во второй половине XIX века, широко распространен и сейчас. Он носит название электрофореза или ионофореза. О практическом применении электрофореза читатель может узнать в главе пятой.

Последовало еще одно, имеющее огромную важность для практической медицины открытие в области электротехники. 22 августа 1879 г. английский ученый Крукс сообщил о своих исследованиях катодных лучей, о которых в то время стало известно следующее:

При пропускании тока высокого напряжения через трубку с очень сильно разреженным газом из катода вырывается поток частичек, несущихся с громадной скоростью. 2. Эти частички движутся строго прямолинейно. 3. Эта лучистая энергия может производить механическое действие. Например, вращать маленькую вертушку, поставленную на ее пути. 4. Лучистая энергия отклоняется магнитом. 5. В местах, на которые падает лучистая материя, развивается тепло. Если катоду придать форму вогнутого зеркала, то в фокусе этого зеркала могут быть расплавлены даже такие тугоплавкие сплавы, как, например, сплав иридия и платины. 6. Катодные лучи - поток материальных телец меньше атома, а именно частиц отрицательного электричества.

Таковы первые шаги в преддверии нового крупного открытия, сделанного Вильгельмом Конрадом Рентгеном. Рентген обнаружил принципиально иной источник излучения, названный им Х-лучами (X-Ray). Позже эти лучи получили название рентгеновских. Сообщение Рентгена вызвало сенсацию. Во всех странах множество лабораторий начали воспроизводить установку Рентгена, повторять и развивать его исследования. Особенный интерес вызвало это открытие у врачей.

Физические лаборатории, где создавалась аппаратура, используемая Рентгеном для получения Х-лучей, атаковались врачами, их пациентами, подозревавшими, что в их теле находятся проглоченные иголки, металлические пуговицы и т. д. История медицины не знала до этого столь быстрой практической реализации открытий в области электричества, как это случилось с новым диагностическим средством - рентгеновскими лучами.

Заинтересовались рентгеновскими лучами сразу и в России. Еще не было официальных научных публикаций, отзывов на них, точных данных об аппаратуре, лишь появилось краткое сообщение о докладе Рентгена, а под Петербургом, в Кронштадте, изобретатель радио Александр Степанович Попов уже приступает к созданию первого отечественного рентгеновского аппарата. Об этом мало известно. О роли А. С. Попова в разработке первых отечественных рентгеновских аппаратов, их внедрении, пожалуй, впервые стало известно из книги Ф. Вейткова. Очень удачно дополнена она дочерью изобретателя Екатериной Александровной Кьяндской-Поповой, опубликовавшей совместно с В. Томат в журнале "Наука и жизнь" (1971, № 8) статью "Изобретатель радио и Х-луча".

Новые достижения электротехники соответственно расширили возможности исследования "животного" электричества. Маттеучи, применив созданный к тому времени гальванометр, доказал, что при жизнедеятельности мышцы возникает электрический потенциал. Разрезав мышцу поперек волокон, он соединил ее с одним из полюсов гальванометра, а продольную поверхность мышцы соединил с другим полюсом и получил потенциал в пределах 10-80 мВ. Значение потенциала обусловлено видом мышц. По утверждению Маттеучи, "биоток течет" от продольной поверхности к поперечному разрезу и поперечный разрез является электроотрицательным. Этот любопытный факт был подтвержден опытами на разных животных - черепахе, кролике, крысе и птицах, проведенными рядом исследователей, из которых следует выделить немецких физиологов Дюбуа-Реймона, Германа и нашего соотечественника В. Ю. Чаговца. Пельтье в 1834 г, опубликовал работу, в которой, излагались результаты исследования взаимодействия биопотенциалов с протекающим по живой ткани постоянным током. Оказалось, что полярность биопотенциалов при этом меняется. Изменяются и амплитуды.

Одновременно наблюдались изменения и физиологических функций. В лабораториях физиологов, биологов, медиков появляются электроизмерительные приборы, обладающие достаточной чувствительностью и соответствующими пределами измерений. Накапливается большой и разносторонний экспериментальный материал. На этом заканчивается предыстория использования электричества в медицине и изучения "животного" электричества.

Появление физических методов, дающих первичную биоинформацию, современное развитие электроизмерительной техники, теории информации, автометрии и телеметрии, комплексирование измерений - вот что знаменует собой новый исторический этап в научно-техническом и медико-биологическом направлениях использования электричества.

2 История лучевой терапии и диагностики

В конце девятнадцатого века были сделаны весьма важные открытия. Впервые человек своим глазом мог увидеть что-то скрывающееся за непрозрачной для видимого света преградой. Конрадом Рентгеном были открыты так называемые Х-лучи, которые могли проникать через оптически непрозрачные преграды и создавать теневые изображения объектов, скрытых за ними. Было открыто и явление радиоактивности. Уже в 20 веке, в 1905 году Эйндховен доказал электрическую активность сердца. С этого момента стала развиваться электрокардиография.

Медики стали получать все больше сведений о состоянии внутренних органов пациента, за которыми они не могли наблюдать без соответствующих приборов, созданных инженерами на основе открытий физиков. Наконец медики получили возможность наблюдать и за функционированием внутренних органов.

К началу второй мировой войны ведущие физики планеты, еще до появления сведений о делении тяжелых атомов и колоссальном выделении энергии при этом, пришли к выводу о том, что возможно создание искусственных радиоактивных изотопов. Количество радиоактивных изотопов не ограничивается только известными естественно радиоактивными элементами. Они известны у всех химических элементов таблицы Менделеева. Ученые получили возможность проследить за их химической историей, не нарушая течения исследуемого процесса.

Еще в двадцатые годы были предприняты попытки использования естественно радиоактивных изотопов из радиевого семейства для определения скорости кровотока у человека. Но такого рода исследования не имели широкого применения даже в научных целях. Более широкое использование в медицинских исследованиях, в том числе и диагностических, радиоактивные изотопы получили в пятидесятые годы после создания ядерных реакторов, в которых достаточно просто можно было получать большие активности искусственно радиоактивных изотопов.

Наиболее известный пример одного из первых применений искусственно радиоактивных изотопов - это использование изотопов йода для исследований щитовидной железы. Метод позволил понять причину заболеваний щитовидной железы (зоб) для определенных областей проживания. Была показана связь между содержанием йода в рационе питания и заболеваниями щитовидной железы. В результате этих исследований мы с Вами потребляем поваренную соль, в которую сознательно введены добавки неактивного йода.

В начале для исследования распределения радионуклидов в органе применялись одиночные сцинтилляционные детекторы, которые точка за точкой просматривали исследуемый орган, т.е. сканировали его, перемещаясь по линии меандра над всем исследуемым органом. Такое исследование называли сканированием, а приборы используемые для этого носили название сканеров (скеннеров). С разработкой позиционно чувствительных детекторов, которые кроме факта регистрации попавшего гамма кванта, определяли и координату его попадания в детектор, появилась возможность просматривать сразу весь исследуемый орган без движения детектора над ним. В настоящее время получение изображения распределения радионуклидов в исследуемом органе носит название сцинтиграфии. Хотя, вообще говоря, термин сцинтиграфия введен в 1955 году (Andrews с соавторами) и вначале относился к сканированию. Среди систем со стационарными детекторами наибольшее распространение получила так называемая гамма- камера, впервые предложенная Anger в 1958 году.

Гамма-камера позволила существенно снизить время получения изображения и в связи с этим применять более короткоживущие радионуклиды. Использование короткоживущих радионуклидов существенно уменьшает дозу радиационного воздействия на организм обследуемого, что позволило увеличить активности РФП, вводимые пациентам. В настоящее время при использовании Тс-99т время получения одного изображения составляет доли секунды. Такие короткие времена получения отдельного кадра привели к появлению динамической сцинтиграфии, когда за время исследования получается ряд последовательных изображений исследуемого органа. Анализ такой последовательности позволяет определить динамику изменения активности как в органе в целом, так и его отдельных частях, т. е. происходит сочетание динамических и сцинтиграфических исследований.

По мере развития техники получения изображений распределения радионуклидов в исследуемом органе встал вопрос и о методиках оценки распределений РФП в пределах обследуемой области, особенно в динамической сцинтиграфии. Сканограммы обрабатывались в основном визуально, что стало неприемлемо при развитии динамической сцинтиграфии. Основной неприятностью была невозможность построения кривых отражающих изменение активности РФП в исследуемом органе или в его отдельных частях. Можно конечно отметить еще целый ряд недостатков получаемых сцинтиграмм - наличие статистического шума, невозможность вычитания фона окружающих органов и тканей, невозможность получения в динамической сцинтиграфии на основе ряда последовательных кадров суммарного изображения.

Все это привело к появлению систем цифровой обработки сцин- тиграмм на основе ЭВМ. В 1969 году Jinuma с соавторами применил возможности ЭВМ для обработки сцинтиграмм, что позволило получить более достоверную диагностическую информацию и в существенно большем объеме. В связи с этим в практику работы отделений радионуклидной диагностики стали весьма интенсивно внедряться системы сбора и обработки сцинтиграфической информации на основе ЭВМ. Такие отделения стали первыми практическими медицинскими подразделениями, в которых широко внедрялись ЭВМ.

Разработка цифровых систем сбора и обработки сцинтиграфической информации на основе ЭВМ заложила основы принципов и методов обработки медицинских диагностических изображений, которые были использованы и при обработке изображений полученных с использованием других медико-физических принципов. Это относится к рентгеновским изображениям, изображениям, получаемым в УЗИ-диагностике и, конечно же, к компьютерной томографии. С другой стороны развитие методик компьютерной томографии привело в свою очередь к созданию эмиссионных томографов как однофотон- ных, так и позитронных. Развитие высоких технологий по использованию радиоактивных изотопов в медицинских диагностических исследованиях и все большее их использование в клинической практике привело к появлению самостоятельной медицинской дисциплины радиоизотопной диагностики, которая в дальнейшем по международной стандартизации получила название радионуклидной диагностики. Чуть позднее появилось понятие ядерная медицина, объединившее, методы использования радионуклидов, как для диагностики, так и для терапии. С развитием радионуклидной диагностики в кардиологии, (в развитых странах до 30 % от общего числа радионуклидных исследований стали кардиологическими), появился термин ядерная кардиология.

Еще одна исключительно важная группа исследований с использованием радионуклидов - это in vitro исследования. Этот тип исследований не предполагает введения радионуклидов в организм пациента, а использует радионуклидные методы для определения концентрации гормонов, антител, лекарств и других клинически важных веществ в пробах крови или тканей. Кроме того, современные биохимия, физиология и молекулярная биология не могут существовать без методов радиоактивных индикаторов и радиометрии.

В нашей стране массовое внедрение методов ядерной медицины в клиническую практику началось с конца 50-х годов после выхода в свет приказа Министра Здравоохранения СССР (№248 от 15 мая 1959г.) о создании в крупных онкологических учреждениях отделений радиоизотопной диагностики и строительстве типовых радиологических корпусов, некоторые из них функционируют до настоящего времени. Большую роль сыграло и постановление ЦК КПСС и Совета Министров СССР от 14 января 1960 года №58 "О мерах по дальнейшему улучшению медицинского обслуживания и охраны здоровья населения СССР", где предусматривалось широкое внедрение методов радиологии в медицинскую практику.

Быстрое развитие ядерной медицины за последние годы привело к возникновению дефицита врачей-радиологов и инженеров, являющихся специалистами в области радионуклидной диагностики. Результат применения всех радионуклидных методик зависит от двух важнейших моментов: от детектирующей системы с достаточной чувствительностью и разрешающей способностью с одной стороны, и от радиофармацевтического препарата, который обеспечивает получение приемлемого уровня накопления в желаемом органе или ткани с другой стороны. Поэтому каждый специалист в области ядерной медицины должен обладать глубоким пониманием физических основ радиоактивности и детектирующих систем так же, как знанием химии радиофармацевтических препаратов и процессов, определяющих их локализацию в определенных органах и тканях. Данная монография не является простым обзором достижений в области радионуклидной диагностики. В ней представлено много оригинального материала, являющегося результатом исследований ее авторов. Многолетний опыт совместной работы коллектива разработчиков отдела радиологической аппаратуры ЗАО "ВНИИМП-ВИТА", Онкологического центра РАМН, Кардиологического НПК МЗ РФ, НИИ кардиологии Томского научного центра РАМН, Ассоциации медицинских физиков России позволил рассмотреть теоретические вопросы формирования радионуклидных изображений, практическую реализацию подобных методик и получение максимально информативных результатов диагностики для клинической практики.

Развитие медицинской техники в области радионуклидной диагностики неразрывно связано с именем Сергея Дмитриевича Калашникова, который много лет работал в этом направлении во Всесоюзном научно-исследовательском институте медицинского приборостроения и руководил созданием первой российской томографической гамма-камеры ГКС-301.

5. Краткая история ультразвуковой терапии

Ультразвуковая техника начала развиваться во время Первой мировой войны. Именно тогда, в 1914 г., испытывая в большом лабораторном аквариуме новый ультразвуковой излучатель, выдающийся французский физик- экспериментатор Поль Ланжевен обнаружил, что рыбы при воздействии ультразвука забеспокоились, заметались, потом успокоились, но через некоторое время стали гибнуть. Так случайно был проведен первый опыт, с которого началось исследование биологического действия ультразвука. В конце 20-х годов ХХ в. были сделаны первые попытки использовать ультразвук в медицине. А в 1928 г. немецкие врачи уже применили ультразвук для лечения заболеваний уха у людей. В 1934 г. coветский отоларинголог Е.И. Анохриенко ввел ультразвуковой метод в терапевтическую практику и первым в мире осуществил комбинированное лечение ультразвуком и электрическим током. Вскоре ультразвук стал широко применяться в физиотерапии, быстро завоевав славу весьма эффективного средства. Прежде чем применить ультразвук для лечения болезней человека, действие его тщательно проверяли на животных, но новые методы в практическую ветеринарию пришли уже после того, как нашли широкое применение в медицине. Первые ультразвуковые аппараты были весьма дороги. Цена, конечно, не имеет значения, когда речь идет о здоровье людей, но в сельскохозяйственном производстве с этим приходится считаться, поскольку оно не должно быть убыточным. Первые ультразвуковые лечебные методы основывались на чисто эмпирических наблюдениях, однако параллельно с развитием ультразвуковой физиотерапии разворачивались исследования механизмов биологического действия ультразвука. Их результаты позволяли вносить коррективы в практику применения ультразвука. В 1940-1950 годах, например, полагали, что в лечебных целях эффективен ультразвук интенсивностью до 5...6 Вт/кв.см или даже до 10 Вт/кв.см. Однако вскоре применяемые в медицине и ветеринарии интенсивности ультразвука стали уменьшаться. Так в 60-е годы ХХ в. максимальная интенсивность ультразвука, генерируемого физиотерапевтическими аппаратами, уменьшилась до 2...3 Вт/кв.см, а выпускаемые в настоящее время аппараты излучают ультразвук с интенсивностью, не превышающей 1 Вт/кв.см. Но сегодня в медицинской и ветеринарной физиотерапии чаще всего используют ультразвук с интенсивностью 0,05-0,5 Вт/кв.см.

Заключение

Конечно же, мне не удалось охватить историю развития медицинской физики в полном объеме, ибо в противном случае мне бы пришлось рассказывать о каждом физическом открытии подробно. Но все же, я указал основные этапы развития мед. физики: ее истоки берут начало не в 20 веке, как считают многие, а гораздо раньше, еще в глубокой древности. На сегодняшний день открытия того времени покажутся для нас мелочами, однако на самом деле для того периода это был несомненный прорыв в развитии.

Трудно переоценить вклад физиков в развитие медицины. Взять хотя бы Леонардо да Винчи, который описал механику движений суставов. Если объективно взглянуть на его исследования, то можно понять, что современная наука о суставах включает подавляющую часть его трудов. Или Гарвей, впервые доказавший замкнутость кровообращения. Поэтому мне кажется, что мы должны ценить вклад физиков в развитие медицины.

Список использованной литературы

1. "Основы взаимодействия ультразвука с биологическими объектами." Ультразвук в медицине, ветеринарии и экспериментальной биологии. (Авторы: Акопян В.Б., Ершов Ю.А., под ред. Щукина С.И., 2005 г.)

Аппаратура и методики радионуклидной диагностики в медицине. Калантаров К.Д., Калашников С.Д., Костылев В.А. и др., под ред. Викторова В.А.

Харламов И.Ф. Педагогика. -- М.: Гардарики, 1999. - 520 с; стр. 391

Электричество и человек; Манойлов В.Е. ; Энергоатомиздат 1998, стр. 75-92

Чередниченко Т.В. Музыка в истории культуры. - Долгопрудный: Аллегро-пресс, 1994. стр. 200

Повседневная жизнь Древнего Рима через призму наслаждений, Жан-Ноэль Роббер, Молодая гвардия, 2006, стр. 61

Платон. Диалоги; Мысль, 1986, стр. 693

Декарт Р. Сочинения: В 2 т. - Т. 1. - М.: Мысль, 1989. Стр. 280, 278

Платон. Диалоги - Тимей; Мысль, 1986, стр. 1085

Леонардо да Винчи. Избранные произведения. В 2 т. Т.1./ Репринт с изд. 1935 г. - М.: Ладомир, 1995.

Аристотель. Сочинения в четырех томах. Т.1.Ред.В. Ф. Асмус. М., <Мысль>, 1976, стр. 444, 441

Список интернет-ресурсов:

Терапия звуком - Наг-Чо http://tanadug.ru/tibetan-medicine/healing/sound-healing

(дата обращения 18.09.12)

История светолечения - http://www.argo-shop.com.ua/article-172.html (дата обращения 21.09.12)

Лечение огнем - http://newagejournal.info/lechenie-ognem-ili-moksaterapia/ (дата обращения 21.09.12)

Восточная медицина - (дата обращения 22.09.12)://arenda-ceragem.narod2.ru/eto_nuzhno_znat/vostochnaya_meditsina_vse_luchshee_lyudyam

Изменили наш мир и существенно повлияли на жизнь многих поколений.

Великие ученые физики и их открытия

(1856-1943) — изобретатель в области электротехники и радиотехники сербского происхождения. Николу называют отцом современного электричества. Он сделал множество открытий, и изобретений получив более 300 патентов на свои творения во всех странах, где работал. Никола Тесла был не только физиком теоретиком, но и блестящим инженером, создававшим и испытывавшим свои изобретения.
Тесла открыл переменный ток, беспроводную передачу энергии, электричества, его работы привели к открытию рентгена, создал машину, которая вызывала колебания поверхности земли. Никола предсказывал наступление эры роботов, способных выполнять любую работу.

(1643-1727) — один из отцов классической физики. Обосновал движение планет Солнечной системы вокруг Солнца, а также наступление приливов и отливов. Ньютон создал фундамент для современной физической оптики. Верхом его работ является известный закон всемирного тяготения.

Джон Дальтон — английский физико-химик. Открыл закон равномерного расширения газов при нагревании, закон кратных отношений, явление полимерии (на примере этилена и бутилена).Создатель атомной теории строения вещества.

Майкл Фарадей (1791 - 1867) - английский физик и химик, основоположник учения об электромагнитном поле. Сделал за свою жизнь столько научных открытий, что их хватило бы десятку ученых, чтобы обессмертить свое имя.

(1867 - 1934) - физик и химик польского происхождения. Совместно с мужем открыла элементы радий и полоний. Занималась проблемами радиоактивности.

Роберт Бойль (1627 - 1691) - английский физик, химик и богослов. Совместно с Р. Тоунлеем установил зависимость объёма одной и той же массы воздуха от давления при неизменной температуре (Бойля - Мариотта закон).

Эрнест Резерфорд — английский физик, разгадал природу индуцированной радиоактивности, открыл эманацию тория, радиоактивный распад и его закон. Резерфорда нередко справедливо называют одним из титанов физики ХХ века.

— немецкий физик, создатель общей теории относительности. Предположил, что все тела не притягивают друг друга, как считалось со времен Ньютона, а искривляют окружающее пространство и время. Эйнштейн написал больше 350 работ по физике. Является создателем специальной (1905) и общей теории относительности (1916), принципа эквивалентности массы и энергии (1905). Разработал множество научных теорий: квантового фотоэффекта и квантовой теплоемкости. Вместе с Планком, разработал основы квантовой теории, представляющие основой современной физике.

Александр Столетов — русский физик, нашел, что величина фототока насыщения пропорциональна световому потоку, падающему на катод. Вплотную подошел к установлению законов электрических разрядов в газах.

(1858-1947) - немецкий физик, создатель квантовой теории, совершившей подлинную революцию в физике. Классическая физика в противоположность современной физике ныне означает «физика до Планка».

Поль Дирак — английский физик, открыл статистическое распределение энергии в системе электронов. Получил Нобелевскую премию по физике «за открытие новых продуктивных форм атомной теории».

Loading...Loading...