यदि ज्ञात हो तो अंकगणितीय प्रगति का अंतर कैसे ज्ञात करें। अंकगणितीय प्रगति


उदाहरण के लिए, अनुक्रम \(2\); \(पांच\); \(8\); \(ग्यारह\); \(14\)… एक अंकगणितीय प्रगति है, क्योंकि प्रत्येक अगला तत्व पिछले एक से तीन से भिन्न होता है (पिछले एक से तीन जोड़कर प्राप्त किया जा सकता है):

इस प्रगति में, अंतर \(d\) धनात्मक (\(3\) के बराबर) है, और इसलिए प्रत्येक अगला पद पिछले एक से बड़ा है। ऐसी प्रगति कहलाती है की बढ़ती.

हालाँकि, \(d\) एक ऋणात्मक संख्या भी हो सकती है। उदाहरण के लिए, अंकगणितीय प्रगति में \(16\); \(10\); \(4\); \(-2\); \(-8\)… प्रगति अंतर \(d\) शून्य से छह के बराबर है।

और इस मामले में, प्रत्येक अगला तत्व पिछले वाले से छोटा होगा। इन प्रगतियों को कहा जाता है घटते.

अंकगणित प्रगति संकेतन

प्रगति को एक छोटे लैटिन अक्षर द्वारा निरूपित किया जाता है।

वे संख्याएँ जो एक प्रगति का निर्माण करती हैं, कहलाती हैं I सदस्यों(या तत्व)।

उन्हें अंकगणितीय प्रगति के समान अक्षर द्वारा निरूपित किया जाता है, लेकिन क्रम में तत्व संख्या के बराबर एक संख्यात्मक सूचकांक के साथ।

उदाहरण के लिए, अंकगणितीय प्रगति \(a_n = \left\( 2; 5; 8; 11; 14…\right\)\) में तत्व होते हैं \(a_1=2\); \(a_2=5\); \(a_3=8\) इत्यादि।

दूसरे शब्दों में, प्रगति के लिए \(a_n = \left\(2; 5; 8; 11; 14…\right\)\)

अंकगणितीय प्रगति पर समस्याओं को हल करना

सिद्धांत रूप में, उपरोक्त जानकारी पहले से ही एक अंकगणितीय प्रगति पर लगभग किसी भी समस्या को हल करने के लिए पर्याप्त है (ओजीई में प्रस्तावित सहित)।

उदाहरण (ओजीई)। अंकगणितीय प्रगति शर्तों \(b_1=7; d=4\) द्वारा दी गई है। \(b_5\) खोजें।
समाधान:

उत्तर: \(b_5=23\)

उदाहरण (ओजीई)। एक समांतर श्रेणी के पहले तीन पद दिए गए हैं: \(62; 49; 36…\) इस प्रगति के पहले ऋणात्मक पद का मान ज्ञात कीजिए।
समाधान:

हमें अनुक्रम के पहले तत्व दिए गए हैं और जानते हैं कि यह एक अंकगणितीय प्रगति है। अर्थात्, प्रत्येक तत्व पड़ोसी से समान संख्या में भिन्न होता है। अगले तत्व से पिछले वाले को घटाकर पता लगाएं: \(d=49-62=-13\)।

अब हम अपनी प्रगति को वांछित (पहले नकारात्मक) तत्व में पुनर्स्थापित कर सकते हैं।

तैयार। आप उत्तर लिख सकते हैं।

उत्तर: \(-3\)

उदाहरण (ओजीई)। अंकगणितीय प्रगति के कई क्रमिक तत्व दिए गए हैं: \(...5; x; 10; 12.5...\) अक्षर \(x\) द्वारा निरूपित तत्व का मान ज्ञात कीजिए।
समाधान:


\(x\) को खोजने के लिए, हमें यह जानना होगा कि अगला तत्व पिछले एक से कितना भिन्न है, दूसरे शब्दों में, प्रगति अंतर। आइए इसे दो ज्ञात पड़ोसी तत्वों से खोजें: \(d=12.5-10=2.5\)।

और अब हम बिना किसी समस्या के वह पाते हैं जो हम खोज रहे हैं: \(x=5+2.5=7.5\)।


तैयार। आप उत्तर लिख सकते हैं।

उत्तर: \(7,5\).

उदाहरण (ओजीई)। अंकगणितीय प्रगति निम्नलिखित शर्तों द्वारा दी गई है: \(a_1=-11\); \(a_(n+1)=a_n+5\) इस प्रगति के पहले छह पदों का योग ज्ञात कीजिए।
समाधान:

हमें प्रगति के पहले छह पदों का योग ज्ञात करना होगा। लेकिन हम उनका अर्थ नहीं जानते हैं, हमें केवल पहला तत्व दिया गया है। इसलिए, हम पहले हमें दिए गए मानों का उपयोग करके बदले में मूल्यों की गणना करते हैं:

\(n=1\); \(a_(1+1)=a_1+5=-11+5=-6\)
\(n=2\); \(a_(2+1)=a_2+5=-6+5=-1\)
\(n=3\); \(a_(3+1)=a_3+5=-1+5=4\)
और हमें आवश्यक छह तत्वों की गणना करने के बाद, हम उनका योग पाते हैं।

\(S_6=a_1+a_2+a_3+a_4+a_5+a_6=\)
\(=(-11)+(-6)+(-1)+4+9+14=9\)

मांगी गई राशि मिल गई है।

उत्तर: \(S_6=9\)।

उदाहरण (ओजीई)। समांतर श्रेणी में \(a_(12)=23\); \(a_(16)=51\)। इस प्रगति का अंतर ज्ञात कीजिए।
समाधान:

उत्तर: \(डी=7\)।

महत्वपूर्ण अंकगणितीय प्रगति सूत्र

जैसा कि आप देख सकते हैं, कई अंकगणितीय प्रगति समस्याओं को केवल मुख्य बात को समझकर हल किया जा सकता है - कि एक अंकगणितीय प्रगति संख्याओं की एक श्रृंखला है, और इस श्रृंखला में प्रत्येक अगला तत्व समान संख्या को पिछले एक में जोड़कर प्राप्त किया जाता है (अंतर प्रगति के)।

हालांकि, कभी-कभी ऐसी स्थितियां होती हैं जब "माथे पर" हल करना बहुत असुविधाजनक होता है। उदाहरण के लिए, कल्पना कीजिए कि पहले उदाहरण में, हमें पाँचवाँ तत्व \(b_5\) नहीं, बल्कि तीन सौ छियासी \(b_(386)\) खोजने की आवश्यकता है। यह क्या है, हम \ (385 \) बार चार जोड़ने के लिए? या कल्पना कीजिए कि अंतिम उदाहरण में, आपको पहले सत्तर-तीन तत्वों का योग ज्ञात करना होगा। काउंटिंग उलझी हुई है...

इसलिए, ऐसे मामलों में, वे "माथे पर" हल नहीं करते हैं, लेकिन अंकगणितीय प्रगति के लिए प्राप्त विशेष सूत्रों का उपयोग करते हैं। और मुख्य हैं प्रगति के nवें पद के लिए सूत्र और पहले पदों के योग \(n\) के लिए सूत्र।

\(n\)वें सदस्य के लिए सूत्र: \(a_n=a_1+(n-1)d\), जहां \(a_1\) प्रगति का पहला सदस्य है;
\(n\) - आवश्यक तत्व की संख्या;
\(a_n\) संख्या \(n\) के साथ प्रगति का सदस्य है।


यह सूत्र हमें केवल पहले और प्रगति अंतर को जानकर, कम से कम तीन सौवां, यहां तक ​​​​कि दसवां तत्व भी जल्दी से खोजने की अनुमति देता है।

उदाहरण। अंकगणितीय प्रगति शर्तों द्वारा दी गई है: \(b_1=-159\); \(डी=8,2\)। \(b_(246)\) खोजें।
समाधान:

उत्तर: \(b_(246)=1850\)।

पहले n पदों के योग का सूत्र है: \(S_n=\frac(a_1+a_n)(2) \cdot n\), जहां



\(a_n\) अंतिम योग शब्द है;


उदाहरण (ओजीई)। अंकगणितीय प्रगति शर्तों \(a_n=3.4n-0.6\) द्वारा दी गई है। इस प्रगति के पहले \(25\) पदों का योग ज्ञात कीजिए।
समाधान:

\(S_(25)=\)\(\frac(a_1+a_(25))(2 )\) \(\cdot 25\)

पहले पच्चीस तत्वों के योग की गणना करने के लिए, हमें पहले और पच्चीसवें पद का मान जानना होगा।
हमारी प्रगति इसकी संख्या के आधार पर nवें पद के सूत्र द्वारा दी गई है (विवरण देखें)। आइए \(n\) को एक के साथ बदलकर पहले तत्व की गणना करें।

\(n=1;\) \(a_1=3.4 1-0.6=2.8\)

अब \(n\) के स्थान पर पच्चीस को प्रतिस्थापित करके पच्चीसवाँ पद ज्ञात करते हैं।

\(n=25;\) \(a_(25)=3.4 25-0.6=84.4\)

खैर, अब हम बिना किसी समस्या के आवश्यक राशि की गणना करते हैं।

\(S_(25)=\)\(\frac(a_1+a_(25))(2)\) \(\cdot 25=\)
\(=\) \(\frac(2,8+84,4)(2)\) \(\cdot 25 =\)\(1090\)

जवाब तैयार है।

उत्तर: \(एस_(25)=1090\)।

पहली शर्तों के योग \(n\) के लिए, आप एक और सूत्र प्राप्त कर सकते हैं: आपको बस \(S_(25)=\)\(\frac(a_1+a_(25))(2)\) \ की आवश्यकता है। (\cdot 25\ ) के बजाय \(a_n\) इसके लिए सूत्र को प्रतिस्थापित करें \(a_n=a_1+(n-1)d\)। हमें मिला:

पहले n पदों के योग का सूत्र है: \(S_n=\)\(\frac(2a_1+(n-1)d)(2)\) \(\cdot n\), जहां

\(S_n\) - पहले तत्वों का आवश्यक योग \(n\);
\(a_1\) पहला पद है जिसका योग किया जाना है;
\(डी\) - प्रगति अंतर;
\(n\) - योग में तत्वों की संख्या।

उदाहरण। अंकगणितीय प्रगति के पहले \(33\)-पूर्व पदों का योग ज्ञात कीजिए: \(17\); \(15,5\); \(चौदह\)…
समाधान:

उत्तर: \(एस_(33)=-231\)।

अधिक जटिल अंकगणितीय प्रगति की समस्याएं

अब आपके पास लगभग किसी भी अंकगणितीय प्रगति समस्या को हल करने के लिए आवश्यक सभी जानकारी है। आइए उन समस्याओं पर विचार करके विषय को समाप्त करें जिनमें आपको न केवल सूत्र लागू करने की आवश्यकता है, बल्कि थोड़ा सोचना भी है (गणित में, यह उपयोगी हो सकता है ☺)

उदाहरण (ओजीई)। प्रगति के सभी ऋणात्मक पदों का योग ज्ञात कीजिए: \(-19.3\); \(-19\); \(-18.7\)…
समाधान:

\(S_n=\)\(\frac(2a_1+(n-1)d)(2)\) \(\cdot n\)

कार्य पिछले एक के समान ही है। हम उसी तरह हल करना शुरू करते हैं: पहले हम \(d\) पाते हैं।

\(d=a_2-a_1=-19-(-19.3)=0.3\)

अब हम योग के सूत्र में \(d\) को प्रतिस्थापित करेंगे ... और यहां एक छोटी सी बारीकियां सामने आती हैं - हम नहीं जानते \(n\)। दूसरे शब्दों में, हम नहीं जानते कि कितने शब्दों को जोड़ने की आवश्यकता होगी। कैसे पता करें? हमें सोचना चाहिए। जब हम पहले सकारात्मक तत्व पर पहुंचेंगे तो हम तत्वों को जोड़ना बंद कर देंगे। यही है, आपको इस तत्व की संख्या का पता लगाना होगा। कैसे? आइए अंकगणितीय प्रगति के किसी भी तत्व की गणना के लिए सूत्र लिखें: \(a_n=a_1+(n-1)d\) हमारे मामले के लिए।

\(a_n=a_1+(n-1)d\)

\(a_n=-19.3+(n-1) 0.3\)

शून्य से बड़ा होने के लिए हमें \(a_n\) की आवश्यकता है। आइए जानें कि यह किस लिए \(n\) होगा।

\(-19.3+(n-1) 0.3>0\)

\((n-1) 0.3>19.3\) \(|:0.3\)

हम असमानता के दोनों पक्षों को \(0,3\) से विभाजित करते हैं।

\(n-1>\)\(\frac(19,3)(0,3)\)

हम माइनस वन ट्रांसफर करते हैं, संकेत बदलना नहीं भूलते

\(n>\)\(\frac(19,3)(0,3)\) \(+1\)

कम्प्यूटिंग...

\(n>65,333…\)

...और यह पता चला है कि पहले सकारात्मक तत्व की संख्या \(66\) होगी। तदनुसार, अंतिम ऋणात्मक में \(n=65\) है। बस मामले में, आइए इसे देखें।

\(n=65;\) \(a_(65)=-19.3+(65-1) 0.3=-0.1\)
\(n=66;\) \(a_(66)=-19.3+(66-1) 0.3=0.2\)

इस प्रकार, हमें पहले \(65\) तत्वों को जोड़ने की जरूरत है।

\(एस_(65)=\) \(\frac(2 \cdot (-19,3)+(65-1)0,3)(2)\)\(\cdot 65\)
\(S_(65)=\)\((-38.6+19.2)(2)\)\(\cdot 65=-630.5\)

जवाब तैयार है।

उत्तर: \(एस_(65)=-630.5\)।

उदाहरण (ओजीई)। अंकगणितीय प्रगति शर्तों द्वारा दी गई है: \(a_1=-33\); \(a_(n+1)=a_n+4\)। \(26\)वें से \(42\) तक के योग का योग ज्ञात कीजिए।
समाधान:

\(a_1=-33;\) \(a_(n+1)=a_n+4\)

इस समस्या में, आपको तत्वों का योग भी खोजना होगा, लेकिन पहले से नहीं, बल्कि \(26\)वें से शुरू करना होगा। हमारे पास इसका कोई फॉर्मूला नहीं है। कैसे तय करें?
आसान - \(26\)th से \(42\)th तक का योग प्राप्त करने के लिए, आपको पहले \(1\)th से \(42\)th तक का योग निकालना होगा, और फिर उसमें से योग को घटाना होगा पहले से \ (25 \) वें (चित्र देखें)।


हमारी प्रगति \(a_1=-33\), और अंतर \(d=4\) के लिए (आखिरकार, हम अगले तत्व को खोजने के लिए पिछले तत्व में चार जोड़ते हैं)। यह जानने के बाद, हम पहले \(42\)-उह तत्वों का योग पाते हैं।

\(एस_(42)=\) \(\frac(2 \cdot (-33)+(42-1)4)(2)\)\(\cdot 42=\)
\(=\)\(\frac(-66+164)(2)\) \(\cdot 42=2058\)

अब पहले \(25\)-वें तत्वों का योग।

\(एस_(25)=\) \(\frac(2 \cdot (-33)+(25-1)4)(2)\)\(\cdot 25=\)
\(=\)\(\frac(-66+96)(2)\) \(\cdot 25=375\)

और अंत में, हम उत्तर की गणना करते हैं।

\(S=S_(42)-S_(25)=2058-375=1683\)

उत्तर: \(एस=1683\)।

अंकगणितीय प्रगति के लिए, कई और सूत्र हैं जिन पर हमने उनकी कम व्यावहारिक उपयोगिता के कारण इस लेख में विचार नहीं किया है। हालाँकि, आप उन्हें आसानी से पा सकते हैं।

ध्यान!
अतिरिक्त हैं
विशेष धारा 555 में सामग्री।
उन लोगों के लिए जो दृढ़ता से "बहुत नहीं ..."
और उन लोगों के लिए जो "बहुत ज्यादा...")

एक अंकगणितीय प्रगति संख्याओं की एक श्रृंखला है जिसमें प्रत्येक संख्या पिछले एक की तुलना में एक ही राशि से अधिक (या कम) होती है।

यह विषय अक्सर कठिन और समझ से बाहर होता है। पत्र अनुक्रमणिका, प्रगति का nवां सदस्य, प्रगति का अंतर - यह सब किसी तरह भ्रमित करने वाला है, हाँ ... आइए अंकगणितीय प्रगति का अर्थ समझें और सब कुछ तुरंत काम करेगा।)

अंकगणितीय प्रगति की अवधारणा।

अंकगणितीय प्रगति एक बहुत ही सरल और स्पष्ट अवधारणा है। शक? व्यर्थ।) अपने लिए देखें।

मैं संख्याओं की एक अधूरी श्रृंखला लिखूंगा:

1, 2, 3, 4, 5, ...

क्या आप इस लाइन को आगे बढ़ा सकते हैं? पाँच के बाद कौन-सी संख्याएँ आगे बढ़ेंगी? हर कोई ... उह ..., संक्षेप में, सभी को पता चल जाएगा कि संख्या 6, 7, 8, 9, आदि आगे बढ़ेगी।

आइए कार्य को जटिल करें। मैं संख्याओं की एक अधूरी श्रृंखला देता हूं:

2, 5, 8, 11, 14, ...

आप पैटर्न को पकड़ सकते हैं, श्रृंखला का विस्तार कर सकते हैं, और नाम कर सकते हैं सातवींपंक्ति नंबर?

यदि आपको पता चला कि यह संख्या 20 है - मैं आपको बधाई देता हूं! आपने न केवल महसूस किया अंकगणितीय प्रगति के प्रमुख बिंदु,लेकिन व्यापार में भी उनका सफलतापूर्वक उपयोग किया! यदि आप नहीं समझते हैं, तो पढ़ें।

आइए अब संवेदनाओं से गणित में प्रमुख बिंदुओं का अनुवाद करें।)

पहला मुख्य बिंदु।

अंकगणितीय प्रगति संख्याओं की श्रृंखला से संबंधित है।यह पहली बार में भ्रमित करने वाला है। हम समीकरणों को हल करने, रेखांकन बनाने और वह सब करने के आदी हैं ... और फिर श्रृंखला का विस्तार करें, श्रृंखला की संख्या ज्ञात करें ...

ठीक है। यह सिर्फ इतना है कि प्रगति गणित की एक नई शाखा के साथ पहला परिचय है। अनुभाग को "श्रृंखला" कहा जाता है और यह संख्याओं और भावों की श्रृंखला के साथ काम करता है। आदत डाल लो।)

दूसरा मुख्य बिंदु।

एक अंकगणितीय प्रगति में, कोई भी संख्या पिछली संख्या से भिन्न होती है उसी राशि से।

पहले उदाहरण में, यह अंतर एक है। आप जो भी संख्या लें, वह पिछले वाले से एक अधिक है। दूसरे में - तीन। कोई भी संख्या पिछली संख्या से तीन गुना अधिक होती है। दरअसल, यह वह क्षण है जो हमें पैटर्न को पकड़ने और बाद की संख्याओं की गणना करने का अवसर देता है।

तीसरा प्रमुख बिंदु।

यह क्षण हड़ताली नहीं है, हाँ ... लेकिन बहुत, बहुत महत्वपूर्ण। वह यहाँ है: प्रत्येक प्रगति संख्या अपने स्थान पर है।पहली संख्या है, सातवीं है, पैंतालीसवां है, और इसी तरह। यदि आप उन्हें बेतरतीब ढंग से भ्रमित करते हैं, तो पैटर्न गायब हो जाएगा। अंकगणितीय प्रगति भी गायब हो जाएगी। यह सिर्फ संख्याओं की एक श्रृंखला है।

यह पूरी बात है।

बेशक, नए विषय में नए शब्द और संकेतन दिखाई देते हैं। उन्हें जानने की जरूरत है। अन्यथा, आप कार्य को नहीं समझेंगे। उदाहरण के लिए, आपको कुछ ऐसा तय करना होगा:

समांतर श्रेणी (a n) के पहले छह पद लिखिए यदि a 2 = 5, d = -2.5 है।

क्या यह प्रेरित करता है?) पत्र, कुछ अनुक्रमित ... और कार्य, वैसे, आसान नहीं हो सकता। आपको बस शब्दों और संकेतन के अर्थ को समझने की जरूरत है। अब हम इस मामले में महारत हासिल करेंगे और काम पर लौटेंगे।

शर्तें और पदनाम।

अंकगणितीय प्रगतिसंख्याओं की एक श्रृंखला है जिसमें प्रत्येक संख्या पिछले एक से भिन्न होती है उसी राशि से।

इस मान को कहा जाता है . आइए इस अवधारणा से अधिक विस्तार से निपटें।

अंकगणितीय प्रगति अंतर।

अंकगणितीय प्रगति अंतरवह राशि है जिसके द्वारा कोई प्रगति संख्या अधिकपिछला वाला।

एक महत्वपूर्ण बिंदु। कृपया शब्द पर ध्यान दें "अधिक"।गणितीय रूप से, इसका अर्थ है कि प्रत्येक प्रगति संख्या प्राप्त होती है जोड़नेपिछली संख्या से अंकगणितीय प्रगति का अंतर।

गणना करने के लिए, मान लें दूसरापंक्ति की संख्या, यह आवश्यक है सबसे पहलेसंख्या जोड़ेंअंकगणितीय प्रगति का यह बहुत अंतर। गणना के लिए पांचवां- अंतर आवश्यक है जोड़ेंप्रति चौथीअच्छा, आदि

अंकगणितीय प्रगति अंतरशायद सकारात्मकतब श्रृंखला की प्रत्येक संख्या वास्तविक निकलेगी पिछले एक से अधिक।इस प्रगति को कहा जाता है की बढ़ती।उदाहरण के लिए:

8; 13; 18; 23; 28; .....

यहाँ प्रत्येक संख्या है जोड़नेसकारात्मक संख्या, पिछले एक के लिए +5।

अंतर हो सकता है नकारात्मकतो श्रृंखला में प्रत्येक संख्या होगी पिछले वाले से कम।इस प्रगति को कहा जाता है (आप इस पर विश्वास नहीं करेंगे!) घट रहा है।

उदाहरण के लिए:

8; 3; -2; -7; -12; .....

यहां हर नंबर भी मिलता है जोड़नेपिछले करने के लिए, लेकिन पहले से ही ऋणात्मक संख्या, -5।

वैसे, प्रगति के साथ काम करते समय, इसकी प्रकृति को तुरंत निर्धारित करना बहुत उपयोगी होता है - चाहे वह बढ़ रहा हो या घट रहा हो। यह निर्णय में आपके असर को खोजने, अपनी गलतियों का पता लगाने और बहुत देर होने से पहले उन्हें ठीक करने में बहुत मदद करता है।

अंकगणितीय प्रगति अंतरआमतौर पर पत्र द्वारा दर्शाया जाता है डी।

कैसे ढूंढें डी? बहुत आसान। श्रृंखला की किसी भी संख्या में से घटाना आवश्यक है पहले कासंख्या। घटाना। वैसे, घटाव के परिणाम को "अंतर" कहा जाता है।)

आइए परिभाषित करें, उदाहरण के लिए, डीबढ़ती हुई अंकगणितीय प्रगति के लिए:

2, 5, 8, 11, 14, ...

हम जितनी भी पंक्ति चाहते हैं, उसकी कोई भी संख्या लेते हैं, उदाहरण के लिए, 11. इसमें से घटाना पिछली संख्यावे। 8:

यह सही जवाब है। इस अंकगणितीय प्रगति के लिए, अंतर तीन है।

आप बस ले सकते हैं प्रगति की कोई भी संख्या,इसलिये एक विशिष्ट प्रगति के लिए डी-हमेशा एक ही।कम से कम कहीं पंक्ति की शुरुआत में, कम से कम बीच में, कम से कम कहीं भी। आप केवल पहला नंबर नहीं ले सकते। सिर्फ इसलिए कि सबसे पहले नंबर पिछला नहीं।)

वैसे, यह जानते हुए कि डी = 3, इस प्रगति की सातवीं संख्या ज्ञात करना बहुत सरल है। हम पांचवें नंबर में 3 जोड़ते हैं - हमें छठा मिलता है, यह 17 होगा। हम छठे नंबर में तीन जोड़ते हैं, हमें सातवां नंबर मिलता है - बीस।

आइए परिभाषित करें डीघटती हुई अंकगणितीय प्रगति के लिए:

8; 3; -2; -7; -12; .....

मैं आपको याद दिलाता हूं कि, संकेतों की परवाह किए बिना, निर्धारित करने के लिए डीकिसी भी नंबर से चाहिए पिछले एक को दूर ले जाओ।हम प्रगति की कोई भी संख्या चुनते हैं, उदाहरण के लिए -7। उनका पिछला अंक -2 है। फिर:

डी = -7 - (-2) = -7 + 2 = -5

अंकगणितीय प्रगति का अंतर कोई भी संख्या हो सकता है: पूर्णांक, भिन्नात्मक, अपरिमेय, कोई भी।

अन्य शर्तें और पदनाम।

श्रृंखला में प्रत्येक संख्या को कहा जाता है एक अंकगणितीय प्रगति के सदस्य।

प्रगति के प्रत्येक सदस्य उसका नंबर है।बिना किसी तरकीब के, संख्याएँ सख्ती से क्रम में हैं। पहला, दूसरा, तीसरा, चौथा, आदि। उदाहरण के लिए, प्रगति में 2, 5, 8, 11, 14, ... दो पहला सदस्य है, पांच दूसरा है, ग्यारह चौथा है, ठीक है, आप समझते हैं ...) कृपया स्पष्ट रूप से समझें - नंबर खुदबिल्कुल कोई भी हो सकता है, संपूर्ण, भिन्नात्मक, ऋणात्मक, जो भी हो, लेकिन नंबरिंग- कड़ाई से क्रम में!

सामान्य रूप में प्रगति कैसे लिखें? कोई दिक्कत नहीं है! श्रृंखला में प्रत्येक संख्या एक अक्षर के रूप में लिखी जाती है। एक अंकगणितीय प्रगति को निरूपित करने के लिए, एक नियम के रूप में, अक्षर का उपयोग किया जाता है . सदस्य संख्या नीचे दाईं ओर सूचकांक द्वारा इंगित की जाती है। सदस्यों को अल्पविराम (या अर्धविराम) से अलग करके लिखा जाता है, जैसे:

ए 1, ए 2, ए 3, ए 4, ए 5, .....

एक 1पहला नंबर है एक 3- तीसरा, आदि। कुछ भी पेचीदा नहीं। आप इस श्रंखला को संक्षेप में इस प्रकार लिख सकते हैं: (एक).

प्रगति हैं सीमित और अनंत।

परमप्रगति में सदस्यों की सीमित संख्या है। पाँच, अड़तीस, जो भी हो। लेकिन यह एक सीमित संख्या है।

अनंतप्रगति - में अनंत संख्या में सदस्य हैं, जैसा कि आप अनुमान लगा सकते हैं।)

आप इस तरह की श्रृंखला, सभी सदस्यों और अंत में एक बिंदु के माध्यम से अंतिम प्रगति लिख सकते हैं:

ए 1, ए 2, ए 3, ए 4, ए 5।

या इस तरह, यदि कई सदस्य हैं:

ए 1 , ए 2 , ... ए 14 , ए 15 ।

एक छोटी प्रविष्टि में, आपको सदस्यों की संख्या को अतिरिक्त रूप से इंगित करना होगा। उदाहरण के लिए (बीस सदस्यों के लिए), इस तरह:

(ए एन), एन = 20

पंक्ति के अंत में दीर्घवृत्त द्वारा एक अनंत प्रगति को पहचाना जा सकता है, जैसा कि इस पाठ के उदाहरणों में है।

अब आप पहले से ही कार्यों को हल कर सकते हैं। कार्य सरल हैं, विशुद्ध रूप से अंकगणितीय प्रगति के अर्थ को समझने के लिए।

अंकगणितीय प्रगति के कार्यों के उदाहरण।

आइए उपरोक्त कार्य पर करीब से नज़र डालें:

1. समांतर श्रेणी (a n) के पहले छह सदस्यों को लिखिए, यदि a 2 = 5, d = -2.5 है।

हम कार्य को समझने योग्य भाषा में अनुवाद करते हैं। एक अनंत अंकगणितीय प्रगति को देखते हुए। इस प्रगति की दूसरी संख्या ज्ञात है: ए 2 = 5.ज्ञात प्रगति अंतर: डी = -2.5।हमें इस प्रगति के पहले, तीसरे, चौथे, पांचवें और छठे सदस्यों को खोजने की जरूरत है।

स्पष्टता के लिए, मैं समस्या की स्थिति के अनुसार एक श्रृंखला लिखूंगा। पहले छह सदस्य, जहां दूसरा सदस्य पांच है:

एक 1 , 5 , ए 3 , ए 4 , ए 5 , ए 6 ,....

एक 3 = एक 2 + डी

हम व्यंजक में स्थानापन्न करते हैं ए 2 = 5और घ=-2.5. माइनस मत भूलना!

एक 3=5+(-2,5)=5 - 2,5 = 2,5

तीसरा पद दूसरे से छोटा है। सब कुछ तार्किक है। यदि संख्या पिछले एक से अधिक है नकारात्मकमान, इसलिए संख्या स्वयं पिछले वाले से कम होगी। प्रगति घट रही है। ठीक है, आइए इसे ध्यान में रखते हैं।) हम अपनी श्रृंखला के चौथे सदस्य पर विचार करते हैं:

एक 4 = एक 3 + डी

एक 4=2,5+(-2,5)=2,5 - 2,5 = 0

एक 5 = एक 4 + डी

एक 5=0+(-2,5)= - 2,5

एक 6 = एक 5 + डी

एक 6=-2,5+(-2,5)=-2,5 - 2,5 = -5

तो, तीसरे से छठे तक की शर्तों की गणना की गई है। इसके परिणामस्वरूप एक श्रृंखला हुई:

ए 1, 5, 2.5, 0, -2.5, -5, ....

यह पहला पद खोजने के लिए बनी हुई है एक 1प्रसिद्ध दूसरे के अनुसार। यह दूसरी दिशा में एक कदम है, बाईं ओर।) इसलिए, अंकगणितीय प्रगति का अंतर डीमें नहीं जोड़ा जाना चाहिए एक 2, लेकिन ले जाओ:

एक 1 = एक 2 - डी

एक 1=5-(-2,5)=5 + 2,5=7,5

यही सब है इसके लिए। कार्य प्रतिक्रिया:

7,5, 5, 2,5, 0, -2,5, -5, ...

गुजरते समय, मैं ध्यान देता हूं कि हमने इस कार्य को हल कर लिया है आवर्तकरास्ता। इस भयानक शब्द का अर्थ है, केवल, प्रगति के सदस्य की खोज पिछली (आसन्न) संख्या से।प्रगति के साथ काम करने के अन्य तरीकों पर बाद में चर्चा की जाएगी।

इस सरल कार्य से एक महत्वपूर्ण निष्कर्ष निकाला जा सकता है।

याद रखना:

यदि हम कम से कम एक सदस्य और एक अंकगणितीय प्रगति का अंतर जानते हैं, तो हम इस प्रगति के किसी भी सदस्य को ढूंढ सकते हैं।

याद रखना? यह सरल निष्कर्ष हमें इस विषय पर स्कूल पाठ्यक्रम की अधिकांश समस्याओं को हल करने की अनुमति देता है। सभी कार्य तीन मुख्य मापदंडों के इर्द-गिर्द घूमते हैं: एक अंकगणितीय प्रगति का सदस्य, एक प्रगति का अंतर, एक प्रगति के सदस्य की संख्या।हर चीज़।

बेशक, पिछले सभी बीजगणित रद्द नहीं किए गए हैं।) असमानताएं, समीकरण और अन्य चीजें प्रगति से जुड़ी हुई हैं। परंतु प्रगति के अनुसार- सब कुछ तीन मापदंडों के इर्द-गिर्द घूमता है।

उदाहरण के लिए, इस विषय पर कुछ लोकप्रिय कार्यों पर विचार करें।

2. एक श्रृंखला के रूप में अंतिम अंकगणितीय प्रगति लिखें यदि n=5, d=0.4, और a 1=3.6 है।

यहाँ सब कुछ सरल है। सब कुछ पहले ही दिया जा चुका है। आपको यह याद रखने की आवश्यकता है कि अंकगणितीय प्रगति के सदस्यों की गणना कैसे की जाती है, गिनें और लिखें। यह सलाह दी जाती है कि कार्य की स्थिति में शब्दों को न छोड़ें: "अंतिम" और " एन = 5"। जब तक आप पूरी तरह से नीले रंग के न हों, तब तक गिनती न करने के लिए।) इस प्रगति में केवल 5 (पांच) सदस्य हैं:

ए 2 \u003d ए 1 + डी \u003d 3.6 + 0.4 \u003d 4

ए 3 \u003d ए 2 + डी \u003d 4 + 0.4 \u003d 4.4

एक 4 = एक 3 + डी = 4.4 + 0.4 = 4.8

एक 5 = एक 4 + डी = 4.8 + 0.4 = 5.2

उत्तर लिखना बाकी है:

3,6; 4; 4,4; 4,8; 5,2.

एक अन्य कार्य:

3. निर्धारित करें कि क्या संख्या 7 अंकगणितीय प्रगति (a n) का सदस्य होगा यदि ए 1 \u003d 4.1; घ = 1.2.

हम्म... कौन जानता है? किसी चीज को कैसे परिभाषित करें?

कैसे-कैसे ... हाँ, एक श्रंखला के रूप में प्रगति लिखिए और देखिए कि सात होंगे या नहीं! हमें यकीन है:

ए 2 \u003d ए 1 + डी \u003d 4.1 + 1.2 \u003d 5.3

ए 3 \u003d ए 2 + डी \u003d 5.3 + 1.2 \u003d 6.5

एक 4 = एक 3 + डी = 6.5 + 1.2 = 7.7

4,1; 5,3; 6,5; 7,7; ...

अब साफ तौर पर देखा जा रहा है कि हम सिर्फ सात के हैं के माध्यम से फिसल 6.5 और 7.7 के बीच! सात हमारी संख्याओं की श्रृंखला में शामिल नहीं हुए, और इसलिए, सात दी गई प्रगति के सदस्य नहीं होंगे।

उत्तर: नहीं।

और यहाँ GIA के वास्तविक संस्करण पर आधारित एक कार्य है:

4. अंकगणितीय प्रगति के कई क्रमागत सदस्यों को लिखा जाता है:

...; 15; एक्स; नौ; 6; ...

यहाँ अंत और शुरुआत के बिना एक श्रृंखला है। कोई सदस्य संख्या नहीं, कोई अंतर नहीं डी. ठीक है। समस्या को हल करने के लिए, एक अंकगणितीय प्रगति के अर्थ को समझना पर्याप्त है। आइए देखें और देखें कि हम क्या कर सकते हैं डिस्कवरइस लाइन से? तीन मुख्य के पैरामीटर क्या हैं?

सदस्य संख्या? यहां एक भी नंबर नहीं है।

लेकिन तीन नंबर हैं और - ध्यान! - शब्द "लगातार"इस शर्त। इसका मतलब है कि संख्याएं बिना अंतराल के सख्ती से क्रम में हैं। क्या इस पंक्ति में दो हैं? पड़ोसीज्ञात संख्या? हो मेरे पास है! ये 9 और 6 हैं। अतः हम एक समान्तर श्रेणी के अंतर की गणना कर सकते हैं! हम छह . से घटाते हैं पहले कासंख्या, यानी नौ:

खाली जगह बाकी हैं। x के लिए पिछली संख्या कौन सी होगी? पंद्रह। तो x को सरल जोड़ द्वारा आसानी से पाया जा सकता है। अंकगणितीय प्रगति के अंतर को 15 में जोड़ें:

बस इतना ही। उत्तर: एक्स = 12

हम निम्नलिखित समस्याओं को स्वयं हल करते हैं। नोट: ये पहेलियाँ फॉर्मूले के लिए नहीं हैं। विशुद्ध रूप से एक अंकगणितीय प्रगति के अर्थ को समझने के लिए।) हम केवल संख्या-अक्षरों की एक श्रृंखला लिखते हैं, देखते हैं और सोचते हैं।

5. समांतर श्रेणी का पहला धनात्मक पद ज्ञात कीजिए यदि a 5 = -3; घ = 1.1.

6. यह ज्ञात है कि संख्या 5.5 अंकगणितीय प्रगति (ए एन) का सदस्य है, जहां 1 = 1.6; डी = 1.3। इस पद की संख्या n ज्ञात कीजिए।

7. यह ज्ञात है कि एक समांतर श्रेणी में 2 = 4; ए 5 \u003d 15.1। एक 3 खोजें।

8. अंकगणितीय प्रगति के कई क्रमागत सदस्यों को लिखा जाता है:

...; 15.6; एक्स; 3.4; ...

अक्षर x द्वारा निरूपित प्रगति का पद ज्ञात कीजिए।

9. ट्रेन ने स्टेशन से चलना शुरू किया, धीरे-धीरे अपनी गति 30 मीटर प्रति मिनट बढ़ा दी। पांच मिनट में ट्रेन की गति क्या होगी? अपना उत्तर किमी/घंटा में दें।

10. यह ज्ञात है कि एक समांतर श्रेणी में 2 = 5; एक 6 = -5। 1 . खोजें.

उत्तर (अव्यवस्था में): 7.7; 7.5; 9.5; नौ; 0.3; 4.

सब कुछ ठीक हो गया? अद्भुत! आप निम्न पाठों में उच्च स्तर पर अंकगणितीय प्रगति सीख सकते हैं।

क्या सब कुछ ठीक नहीं हुआ? कोई दिक्कत नहीं है। विशेष धारा 555 में, इन सभी पहेलियों को टुकड़े-टुकड़े कर दिया गया है।) और निश्चित रूप से, एक सरल व्यावहारिक तकनीक का वर्णन किया गया है जो ऐसे कार्यों के समाधान को तुरंत स्पष्ट, स्पष्ट रूप से उजागर करती है, जैसे कि आपके हाथ की हथेली में!

वैसे ट्रेन को लेकर पहेली में दो ऐसी समस्याएं हैं जिन पर अक्सर लोग ठोकर खा जाते हैं। एक - विशुद्ध रूप से प्रगति से, और दूसरा - गणित, और भौतिकी में भी किसी भी कार्य के लिए सामान्य। यह आयामों का एक से दूसरे में अनुवाद है। यह दिखाता है कि इन समस्याओं को कैसे हल किया जाना चाहिए।

इस पाठ में, हमने एक अंकगणितीय प्रगति के प्रारंभिक अर्थ और उसके मुख्य मापदंडों की जांच की। यह इस विषय पर लगभग सभी समस्याओं को हल करने के लिए पर्याप्त है। जोड़ें डीसंख्याओं के लिए, एक श्रृंखला लिखें, सब कुछ तय हो जाएगा।

श्रृंखला के बहुत छोटे टुकड़ों के लिए उंगली का समाधान अच्छी तरह से काम करता है, जैसा कि इस पाठ के उदाहरणों में है। यदि श्रृंखला लंबी है, तो गणना अधिक जटिल हो जाती है। उदाहरण के लिए, यदि प्रश्न में समस्या 9 में, प्रतिस्थापित करें "पाँच मिनट"पर "पैंतीस मिनट"समस्या और भी विकट हो जाएगी।)

और ऐसे कार्य भी हैं जो संक्षेप में सरल हैं, लेकिन गणना के संदर्भ में पूरी तरह से बेतुके हैं, उदाहरण के लिए:

एक अंकगणितीय प्रगति (ए एन) को देखते हुए। यदि a 1 =3 और d=1/6 हो तो 121 ज्ञात कीजिए।

और क्या, हम 1/6 कई, कई बार जोड़ेंगे ?! क्या खुद को मारना संभव है !?

आप कर सकते हैं।) यदि आप एक सरल सूत्र नहीं जानते हैं जिसके द्वारा आप ऐसे कार्यों को एक मिनट में हल कर सकते हैं। यह सूत्र अगले पाठ में होगा। और वह समस्या वहीं हल हो जाती है। एक मिनट में।)

अगर आपको यह साइट पसंद है...

वैसे, मेरे पास आपके लिए कुछ और दिलचस्प साइटें हैं।)

आप उदाहरणों को हल करने का अभ्यास कर सकते हैं और अपने स्तर का पता लगा सकते हैं। तत्काल सत्यापन के साथ परीक्षण। सीखना - रुचि के साथ!)

आप कार्यों और डेरिवेटिव से परिचित हो सकते हैं।


हाँ, हाँ: अंकगणितीय प्रगति आपके लिए कोई खिलौना नहीं है :)

ठीक है, दोस्तों, अगर आप इस पाठ को पढ़ रहे हैं, तो आंतरिक कैप सबूत मुझे बताता है कि आप अभी भी नहीं जानते कि अंकगणितीय प्रगति क्या है, लेकिन आप वास्तव में (नहीं, इस तरह: SOOOOO!) जानना चाहते हैं। इसलिए, मैं आपको लंबे परिचय के साथ पीड़ा नहीं दूंगा और तुरंत व्यापार में उतर जाऊंगा।

शुरू करने के लिए, कुछ उदाहरण। संख्याओं के कई सेटों पर विचार करें:

  • 1; 2; 3; 4; ...
  • 15; 20; 25; 30; ...
  • $\sqrt(2);\ 2\sqrt(2);\ 3\sqrt(2);...$

इन सभी सेटों में क्या समानता है? पहली नज़र में, कुछ भी नहीं। लेकिन वास्तव में कुछ है। अर्थात्: प्रत्येक अगला तत्व पिछले एक से समान संख्या से भिन्न होता है.

अपने लिए न्यायाधीश। पहला सेट केवल क्रमागत संख्या है, प्रत्येक पिछले एक से अधिक है। दूसरे मामले में, आसन्न संख्याओं के बीच का अंतर पहले से ही पांच के बराबर है, लेकिन यह अंतर अभी भी स्थिर है। तीसरे मामले में, सामान्य रूप से जड़ें होती हैं। हालांकि, $2\sqrt(2)=\sqrt(2)+\sqrt(2)$, जबकि $3\sqrt(2)=2\sqrt(2)+\sqrt(2)$, यानी। इस मामले में प्रत्येक अगला तत्व केवल $\sqrt(2)$ से बढ़ता है (और डरो मत कि यह संख्या तर्कहीन है)।

तो: ऐसे सभी अनुक्रमों को केवल अंकगणितीय प्रगति कहा जाता है। आइए एक सख्त परिभाषा दें:

परिभाषा। संख्याओं का वह क्रम जिसमें प्रत्येक अगली पिछली संख्या से बिल्कुल समान मात्रा में भिन्न हो, अंकगणितीय प्रगति कहलाती है। जिस राशि से संख्याएँ भिन्न होती हैं उसे प्रगति अंतर कहा जाता है और इसे अक्सर $d$ अक्षर से दर्शाया जाता है।

नोटेशन: $\left(((a)_(n)) \right)$ ही प्रगति है, $d$ इसका अंतर है।

और बस कुछ महत्वपूर्ण टिप्पणियाँ। सबसे पहले, प्रगति को ही माना जाता है व्यवस्थितसंख्याओं का क्रम: उन्हें उस क्रम में सख्ती से पढ़ने की अनुमति है जिसमें वे लिखे गए हैं - और कुछ नहीं। आप नंबरों को पुनर्व्यवस्थित या स्वैप नहीं कर सकते।

दूसरे, अनुक्रम स्वयं या तो परिमित या अनंत हो सकता है। उदाहरण के लिए, समुच्चय (1; 2; 3) स्पष्ट रूप से एक परिमित अंकगणितीय प्रगति है। लेकिन अगर आप कुछ ऐसा लिखते हैं (1; 2; 3; 4; ...) - यह पहले से ही एक अनंत प्रगति है। चार के बाद का दीर्घवृत्त, जैसा कि यह था, संकेत देता है कि काफी संख्याएँ आगे बढ़ती हैं। उदाहरण के लिए, असीम रूप से कई। :)

मैं यह भी नोट करना चाहूंगा कि प्रगति बढ़ रही है और घट रही है। हम पहले ही बढ़ते हुए देख चुके हैं - वही सेट (1; 2; 3; 4; ...)। घटती प्रगति के उदाहरण यहां दिए गए हैं:

  • 49; 41; 33; 25; 17; ...
  • 17,5; 12; 6,5; 1; −4,5; −10; ...
  • $\sqrt(5);\ \sqrt(5)-1;\ \sqrt(5)-2;\ \sqrt(5)-3;...$

ठीक है, ठीक है: अंतिम उदाहरण अत्यधिक जटिल लग सकता है। लेकिन बाकी, मुझे लगता है, आप समझते हैं। इसलिए, हम नई परिभाषाएँ पेश करते हैं:

परिभाषा। एक अंकगणितीय प्रगति को कहा जाता है:

  1. बढ़ रहा है अगर प्रत्येक अगला तत्व पिछले एक से बड़ा है;
  2. घट रहा है, यदि, इसके विपरीत, प्रत्येक बाद वाला तत्व पिछले एक से कम है।

इसके अलावा, तथाकथित "स्थिर" अनुक्रम हैं - उनमें एक ही दोहराई जाने वाली संख्या होती है। उदाहरण के लिए, (3; 3; 3; ...)

केवल एक ही प्रश्न शेष है: बढ़ती हुई प्रगति को घटती हुई प्रगति से कैसे अलग किया जाए? सौभाग्य से, यहाँ सब कुछ केवल $d$ संख्या के संकेत पर निर्भर करता है, अर्थात। प्रगति अंतर:

  1. यदि $d \gt 0$, तो प्रगति बढ़ रही है;
  2. यदि $d \lt 0$, तो प्रगति स्पष्ट रूप से घट रही है;
  3. अंत में, मामला $d=0$ है - इस मामले में पूरी प्रगति समान संख्याओं के एक स्थिर अनुक्रम में कम हो जाती है: (1; 1; 1; 1; ...), आदि।

आइए उपरोक्त तीन घटती प्रगति के लिए अंतर $d$ की गणना करने का प्रयास करें। ऐसा करने के लिए, यह किन्हीं दो आसन्न तत्वों (उदाहरण के लिए, पहला और दूसरा) को लेने के लिए पर्याप्त है और बाईं ओर की संख्या को दाईं ओर की संख्या से घटाएं। यह इस तरह दिखेगा:

  • 41−49=−8;
  • 12−17,5=−5,5;
  • $\sqrt(5)-1-\sqrt(5)=-1$।

जैसा कि आप देख सकते हैं, तीनों मामलों में अंतर वास्तव में नकारात्मक निकला। और अब जब हमने कमोबेश परिभाषाओं का पता लगा लिया है, तो यह पता लगाने का समय आ गया है कि प्रगति का वर्णन कैसे किया जाता है और उनके पास क्या गुण हैं।

प्रगति के सदस्य और आवर्तक सूत्र

चूंकि हमारे अनुक्रमों के तत्वों को आपस में बदला नहीं जा सकता है, उन्हें क्रमांकित किया जा सकता है:

\[\बाएं(((ए)_(एन)) \दाएं)=\बाएं\( ((ए)_(1)),\ ((ए)_(2)),((ए)_(3 )),... \सही\)\]

इस सेट के अलग-अलग तत्वों को प्रगति के सदस्य कहा जाता है। उन्हें एक संख्या की सहायता से इस प्रकार इंगित किया जाता है: पहला सदस्य, दूसरा सदस्य, इत्यादि।

इसके अलावा, जैसा कि हम पहले से ही जानते हैं, प्रगति के पड़ोसी सदस्य सूत्र द्वारा संबंधित हैं:

\[((a)_(n))-((a)_(n-1))=d\Rightarrow ((a)_(n))=((a)_(n-1))+d \]

संक्षेप में, प्रगति के $n$वें पद को खोजने के लिए, आपको $n-1$वें पद और अंतर $d$ को जानना होगा। इस तरह के एक सूत्र को आवर्तक कहा जाता है, क्योंकि इसकी मदद से आप किसी भी संख्या को पा सकते हैं, केवल पिछले एक (और वास्तव में, सभी पिछले वाले) को जानकर। यह बहुत असुविधाजनक है, इसलिए एक अधिक कठिन सूत्र है जो किसी भी गणना को पहले पद और अंतर तक कम कर देता है:

\[((a)_(n))=((a)_(1))+\left(n-1 \right)d\]

आप शायद पहले भी इस सूत्र के बारे में जान चुके हैं। वे इसे सभी प्रकार की संदर्भ पुस्तकों और रेशेबनिकों में देना पसंद करते हैं। और गणित पर किसी भी समझदार पाठ्यपुस्तक में, यह पहली में से एक है।

हालाँकि, मेरा सुझाव है कि आप थोड़ा अभ्यास करें।

टास्क नंबर 1. अंकगणितीय प्रगति के पहले तीन पदों को लिखें $\left(((a)_(n)) \right)$ अगर $((a)_(1))=8,d=-5$।

समाधान। तो, हम पहले पद $((a)_(1))=8$ और प्रगति अंतर $d=-5$ जानते हैं। आइए अभी दिए गए सूत्र का उपयोग करें और $n=1$, $n=2$ और $n=3$ को प्रतिस्थापित करें:

\[\begin(align) & ((a)_(n))=((a)_(1))+\left(n-1 \right)d; \\ & ((a)_(1))=((a)_(1))+\left(1-1 \right)d=((a)_(1))=8; \\ & ((a)_(2))=((a)_(1))+\left(2-1 \right)d=((a)_(1))+d=8-5= 3; \\ & ((a)_(3))=((a)_(1))+\left(3-1 \right)d=((a)_(1))+2d=8-10= -2। \\ \अंत (संरेखित करें)\]

उत्तर: (8; 3; -2)

बस इतना ही! ध्यान दें कि हमारी प्रगति घट रही है।

बेशक, $n=1$ को प्रतिस्थापित नहीं किया जा सकता था - हम पहले शब्द को पहले से ही जानते हैं। हालाँकि, इकाई को प्रतिस्थापित करके, हमने सुनिश्चित किया कि पहले कार्यकाल के लिए भी हमारा सूत्र काम करता है। अन्य मामलों में, सब कुछ केले के अंकगणित में आ गया।

टास्क नंबर 2. एक समांतर श्रेणी के प्रथम तीन पद लिखिए यदि इसका सातवाँ पद −40 है और इसका सत्रहवाँ पद −50 है।

समाधान। हम समस्या की स्थिति को सामान्य शब्दों में लिखते हैं:

\[((a)_(7))=-40;\quad ((a)_(17))=-50.\]

\[\बाएं\( \शुरू (संरेखित) और ((ए)_(7))=((ए)_(1))+6डी \\ और ((ए)_(17))=((ए) _(1))+16d \\ \end(align) \right.\]

\[\बाएं\( \शुरू (संरेखित) और ((ए)_(1))+6d=-40 \\ और ((ए)_(1))+16d=-50 \\ \end(संरेखित करें) \सही।\]

मैंने सिस्टम का संकेत दिया है क्योंकि इन आवश्यकताओं को एक साथ पूरा किया जाना चाहिए। और अब हम ध्यान दें कि यदि हम पहले समीकरण को दूसरे समीकरण से घटाते हैं (हमें ऐसा करने का अधिकार है, क्योंकि हमारे पास एक प्रणाली है), तो हमें यह मिलता है:

\[\begin(align) & ((a)_(1))+16d-\left(((a)_(1))+6d \right)=-50-\left(-40 \right); \\ & ((a)_(1))+16d-((a)_(1))-6d=-50+40; \\ और 10d=-10; \\&d=-1. \\ \अंत (संरेखित करें)\]

ठीक उसी तरह, हमने प्रगति अंतर पाया! यह सिस्टम के किसी भी समीकरण में मिली संख्या को प्रतिस्थापित करने के लिए बनी हुई है। उदाहरण के लिए, पहले में:

\[\begin(matrix) ((a)_(1))+6d=-40;\quad d=-1 \\ \Downarrow \\ ((a)_(1))-6=-40; \\ ((ए)_(1))=-40+6=-34. \\ \अंत (मैट्रिक्स)\]

अब, पहले पद और अंतर को जानने के बाद, दूसरे और तीसरे पदों को खोजना बाकी है:

\[\begin(align) & ((a)_(2))=((a)_(1))+d=-34-1=-35; \\ & ((a)_(3))=((a)_(1))+2d=-34-2=-36. \\ \अंत (संरेखित करें)\]

तैयार! समस्या हल हो गई।

उत्तर: (-34; -35; -36)

प्रगति की एक जिज्ञासु संपत्ति पर ध्यान दें जो हमने खोजा था: यदि हम $n$th और $m$th शब्द लेते हैं और उन्हें एक दूसरे से घटाते हैं, तो हमें प्रगति का अंतर $n-m$ संख्या से गुणा किया जाता है:

\[((a)_(n))-((a)_(m))=d\cdot \left(n-m \right)\]

एक सरल लेकिन बहुत उपयोगी संपत्ति जिसे आपको निश्चित रूप से जानना चाहिए - इसकी मदद से आप प्रगति के साथ कई समस्याओं के समाधान में काफी तेजी ला सकते हैं। यहाँ इसका एक प्रमुख उदाहरण है:

टास्क नंबर 3. समांतर श्रेणी का पाँचवाँ पद 8.4 है, और इसका दसवाँ पद 14.4 है। इस प्रगति का पंद्रहवाँ पद ज्ञात कीजिए।

समाधान। चूंकि $((a)_(5))=8.4$, $((a)_(10))=14.4$, और हमें $((a)_(15))$ खोजने की जरूरत है, हम निम्नलिखित नोट करते हैं:

\[\शुरू (संरेखित करें) और ((ए)_(15))-((ए)_(10))=5डी; \\ और ((ए)_(10))-((ए)_(5))=5डी। \\ \अंत (संरेखित करें)\]

लेकिन शर्त से $((a)_(10))-((a)_(5))=14.4-8.4=6$, इसलिए $5d=6$, जहां से हमारे पास है:

\[\शुरू (संरेखित करें) और ((ए)_(15))-14,4=6; \\ और ((ए)_(15))=6+14.4=20.4। \\ \अंत (संरेखित करें)\]

उत्तर: 20.4

बस इतना ही! हमें समीकरणों की कोई प्रणाली बनाने और पहले पद और अंतर की गणना करने की आवश्यकता नहीं थी - सब कुछ सिर्फ एक-दो पंक्तियों में तय किया गया था।

अब आइए एक अन्य प्रकार की समस्या पर विचार करें - प्रगति के नकारात्मक और सकारात्मक सदस्यों की खोज। यह कोई रहस्य नहीं है कि यदि प्रगति बढ़ती है, जबकि इसका पहला कार्यकाल नकारात्मक है, तो देर-सबेर इसमें सकारात्मक शब्द दिखाई देंगे। और इसके विपरीत: घटती प्रगति की शर्तें जल्द या बाद में नकारात्मक हो जाएंगी।

उसी समय, इस क्षण को "माथे पर" खोजना हमेशा संभव नहीं होता है, क्रमिक रूप से तत्वों के माध्यम से छांटना। अक्सर, समस्याओं को इस तरह से डिज़ाइन किया जाता है कि सूत्रों को जाने बिना, गणना में कई शीट लग जाती हैं - हम तब तक सो जाते हैं जब तक हमें जवाब नहीं मिल जाता। इसलिए, हम इन समस्याओं को तेजी से हल करने का प्रयास करेंगे।

टास्क नंबर 4. समांतर श्रेणी में कितने ऋणात्मक पद हैं -38.5; -35.8; ...?

समाधान। तो, $((a)_(1))=-38.5$, $((a)_(2))=-35.8$, जिससे हम तुरंत अंतर पाते हैं:

ध्यान दें कि अंतर सकारात्मक है, इसलिए प्रगति बढ़ रही है। पहला पद ऋणात्मक है, इसलिए वास्तव में किसी बिंदु पर हम सकारात्मक संख्याओं पर ठोकर खाएंगे। एकमात्र सवाल यह है कि ऐसा कब होगा।

आइए पता लगाने की कोशिश करें: कब तक (यानी, किस प्राकृतिक संख्या $n$ तक) शर्तों की नकारात्मकता संरक्षित है:

\[\begin(align) & ((a)_(n)) \lt 0\Rightarrow ((a)_(1))+\left(n-1 \right)d \lt 0; \\ & -38.5+\बाएं(n-1 \दाएं)\cdot 2.7 \lt 0;\quad \left| \cdot 10\दाएं। \\ & -385+27\cdot \left(n-1 \right) \lt 0; \\ & -385+27n-27 \lt 0; \\ और 27n \lt 412; \\ & n \lt 15\frac(7)(27)\Rightarrow ((n)_(\max ))=15. \\ \अंत (संरेखित करें)\]

अंतिम पंक्ति को स्पष्टीकरण की आवश्यकता है। तो हम जानते हैं कि $n \lt 15\frac(7)(27)$। दूसरी ओर, संख्या का केवल पूर्णांक मान हमें सूट करेगा (इसके अलावा: $n\in \mathbb(N)$), इसलिए सबसे बड़ी स्वीकार्य संख्या ठीक $n=15$ है, और किसी भी स्थिति में 16.

टास्क नंबर 5. अंकगणितीय प्रगति में $(()_(5))=-150,(()_(6))=-147$। इस प्रगति के पहले धनात्मक पद की संख्या ज्ञात कीजिए।

यह ठीक वैसी ही समस्या होगी जैसी पिछली समस्या थी, लेकिन हम $((a)_(1))$ नहीं जानते हैं। लेकिन पड़ोसी शब्द ज्ञात हैं: $((a)_(5))$ और $((a)_(6))$, इसलिए हम आसानी से प्रगति अंतर पा सकते हैं:

इसके अलावा, आइए मानक सूत्र का उपयोग करके पांचवें पद को पहले और अंतर के रूप में व्यक्त करने का प्रयास करें:

\[\begin(align) & ((a)_(n))=((a)_(1))+\left(n-1 \right)\cdot d; \\ और ((ए)_(5))=((ए)_(1))+4डी; \\ & -150=((a)_(1))+4\cdot 3; \\ और ((ए)_(1))=-150-12=-162। \\ \अंत (संरेखित करें)\]

अब हम पिछली समस्या के अनुरूप आगे बढ़ते हैं। हमें पता चलता है कि हमारे अनुक्रम में किस बिंदु पर सकारात्मक संख्याएँ दिखाई देंगी:

\[\begin(align) & ((a)_(n))=-162+\left(n-1 \right)\cdot 3 \gt 0; \\ और -162+3n-3 \gt 0; \\ और 3n \gt 165; \\ & n \gt 55\दायां तीर ((n)_(\min ))=56. \\ \अंत (संरेखित करें)\]

इस असमानता का न्यूनतम पूर्णांक हल संख्या 56 है।

कृपया ध्यान दें कि पिछले कार्य में सब कुछ सख्त असमानता में कम हो गया था, इसलिए विकल्प $n=55$ हमें शोभा नहीं देगा।

अब जब हमने सीख लिया है कि सरल समस्याओं को कैसे हल किया जाए, तो आइए अधिक जटिल समस्याओं पर चलते हैं। लेकिन पहले, आइए अंकगणितीय प्रगति की एक और बहुत उपयोगी संपत्ति सीखें, जो हमें भविष्य में बहुत समय और असमान कोशिकाओं को बचाएगा। :)

अंकगणित माध्य और समान इंडेंट

बढ़ती अंकगणितीय प्रगति $\left(((a)_(n)) \right)$ की लगातार कई शर्तों पर विचार करें। आइए उन्हें एक संख्या रेखा पर चिह्नित करने का प्रयास करें:

संख्या रेखा पर अंकगणितीय प्रगति सदस्य

मैंने विशेष रूप से मनमाने सदस्यों को नोट किया $((a)_(n-3)),...,((a)_(n+3))$, और कोई $((a)_(1)) नहीं, \ ((ए)_(2)),\ ((ए)_(3))$ आदि। क्योंकि नियम, जो अब मैं आपको बताऊंगा, किसी भी "सेगमेंट" के लिए समान कार्य करता है।

और नियम बहुत सरल है। आइए पुनरावर्ती सूत्र को याद करें और इसे सभी चिह्नित सदस्यों के लिए लिखें:

\[\शुरू (संरेखित करें) और ((ए)_(एन-2))=((ए)_(एन-3))+डी; \\ और ((ए)_(एन-1))=((ए)_(एन-2))+डी; \\ और ((ए)_(एन))=((ए)_(एन-1))+डी; \\ और ((ए)_(एन+1))=((ए)_(एन))+डी; \\ और ((ए)_(एन+2))=((ए)_(एन+1))+डी; \\ \अंत (संरेखित करें)\]

हालाँकि, इन समानताओं को अलग तरीके से फिर से लिखा जा सकता है:

\[\शुरू (संरेखित) और ((ए)_(एन-1))=((ए)_(एन))-डी; \\ और ((ए)_(एन-2))=((ए)_(एन))-2डी; \\ और ((ए)_(एन-3))=((ए)_(एन)) -3 डी; \\ और ((ए)_(एन+1))=((ए)_(एन))+डी; \\ और ((ए)_(एन+2))=((ए)_(एन))+2डी; \\ और ((ए)_(एन+3))=((ए)_(एन))+3डी; \\ \अंत (संरेखित करें)\]

अच्छा, तो क्या? लेकिन तथ्य यह है कि शब्द $((a)_(n-1))$ और $((a)_(n+1))$ $((a)_(n)) $ से समान दूरी पर स्थित हैं . और यह दूरी $d$ के बराबर है। $((a)_(n-2))$ और $((a)_(n+2))$ शब्दों के बारे में भी यही कहा जा सकता है - उन्हें $((a)_(n) से भी हटा दिया जाता है। )$ समान दूरी से $2d$ के बराबर। आप अनिश्चित काल तक जारी रख सकते हैं, लेकिन चित्र अर्थ को अच्छी तरह से दिखाता है


प्रगति के सदस्य केंद्र से समान दूरी पर स्थित हैं

हमारे लिए इसका क्या मतलब है? इसका मतलब है कि यदि आप पड़ोसी संख्याएं ज्ञात हैं तो आप $((a)_(n))$ पा सकते हैं:

\[((a)_(n))=\frac(((a)_(n-1))+((a)_(n+1)))(2)\]

हमने एक शानदार बयान निकाला है: अंकगणितीय प्रगति का प्रत्येक सदस्य पड़ोसी सदस्यों के अंकगणितीय माध्य के बराबर है! इसके अलावा, हम अपने $((a)_(n))$ से बाईं ओर और दाईं ओर एक कदम से नहीं, बल्कि $k$ चरणों से विचलित हो सकते हैं - और फिर भी सूत्र सही होगा:

\[((a)_(n))=\frac(((a)_(n-k))+((a)_(n+k)))(2)\]

वे। अगर हम $((a)_(100))$ और $((a)_(200))$ जानते हैं तो हम आसानी से कुछ $((a)_(150))$ पा सकते हैं, क्योंकि $(( a)_ (150))=\frac(((a)_(100))+((a)_(200)))(2)$। पहली नज़र में ऐसा लग सकता है कि यह तथ्य हमें कुछ भी उपयोगी नहीं देता है। हालांकि, व्यवहार में, अंकगणित माध्य के उपयोग के लिए कई कार्यों को विशेष रूप से "तेज" किया जाता है। जरा देखो तो:

टास्क नंबर 6. $x$ के सभी मान ज्ञात कीजिए कि संख्या $-6((x)^(2))$, $x+1$ और $14+4((x)^(2))$ लगातार सदस्य हैं एक अंकगणितीय प्रगति (निर्दिष्ट क्रम में)।

समाधान। चूंकि ये संख्याएं एक प्रगति के सदस्य हैं, उनके लिए अंकगणितीय माध्य स्थिति संतुष्ट है: केंद्रीय तत्व $x+1$ को पड़ोसी तत्वों के संदर्भ में व्यक्त किया जा सकता है:

\[\begin(align) & x+1=\frac(-6((x)^(2))+14+4((x)^(2)))(2); \\ & x+1=\frac(14-2((x)^(2)))(2); \\ और x+1=7-((x)^(2)); \\ और ((x)^(2))+x-6=0. \\ \अंत (संरेखित करें)\]

परिणाम एक क्लासिक द्विघात समीकरण है। इसकी जड़ें: $x=2$ और $x=-3$ उत्तर हैं।

उत्तर: -3; 2.

टास्क नंबर 7. $$ का मान इस प्रकार ज्ञात कीजिए कि संख्या $-1;4-3;(()^(2))+1$ एक अंकगणितीय प्रगति (उस क्रम में) बनाती है।

समाधान। फिर से, हम मध्य पद को पड़ोसी पदों के अंकगणितीय माध्य के रूप में व्यक्त करते हैं:

\[\begin(align) & 4x-3=\frac(x-1+((x)^(2))+1)(2); \\ और 4x-3=\frac(((x)^(2))+x)(2);\quad \left| \cdot 2\दाएं।; \\ और 8x-6=((x)^(2))+x; \\ और ((x)^(2))-7x+6=0. \\ \अंत (संरेखित करें)\]

एक और द्विघात समीकरण। और फिर से दो जड़ें: $x=6$ और $x=1$।

उत्तर 1; 6.

यदि किसी समस्या को हल करने की प्रक्रिया में आपको कुछ क्रूर संख्याएँ मिलती हैं, या आप पाए गए उत्तरों की शुद्धता के बारे में पूरी तरह से सुनिश्चित नहीं हैं, तो एक अद्भुत तरकीब है जो आपको जाँचने की अनुमति देती है: क्या हमने समस्या को सही ढंग से हल किया?

मान लें कि समस्या 6 में हमें उत्तर -3 और 2 मिले हैं। हम कैसे जांच सकते हैं कि ये उत्तर सही हैं? आइए बस उन्हें मूल स्थिति में प्लग करें और देखें कि क्या होता है। मैं आपको याद दिला दूं कि हमारे पास तीन नंबर हैं ($-6(()^(2))$, $+1$ और $14+4(()^(2))$), जो एक अंकगणितीय प्रगति का निर्माण करना चाहिए। स्थानापन्न $x=-3$:

\[\शुरू (संरेखित करें) और x=-3\दायां तीर \\ & -6((x)^(2))=-54; \\ &x+1=-2; \\ और 14+4((x)^(2))=50. \end(संरेखित करें)\]

हमें संख्या -54 मिली; -2; 50 जो 52 से भिन्न है, निस्संदेह एक अंकगणितीय प्रगति है। $x=2$ के लिए भी यही बात होती है:

\[\शुरू (संरेखित करें) और x=2\दायां तीर \\ & -6((x)^(2))=-24; \\ &x+1=3; \\ और 14+4((x)^(2))=30. \end(संरेखित करें)\]

फिर से एक प्रगति, लेकिन 27 के अंतर के साथ। इस प्रकार, समस्या सही ढंग से हल हो गई है। जो चाहते हैं वे स्वयं दूसरे कार्य की जांच कर सकते हैं, लेकिन मैं तुरंत कहूंगा: वहां भी सब कुछ सही है।

सामान्य तौर पर, पिछली समस्याओं को हल करते समय, हमें एक और दिलचस्प तथ्य मिला, जिसे याद रखने की भी आवश्यकता है:

यदि तीन संख्याएँ ऐसी हैं कि दूसरी पहली और अंतिम का औसत है, तो ये संख्याएँ एक समान्तर श्रेणी बनाती हैं।

भविष्य में, इस कथन को समझने से हम समस्या की स्थिति के आधार पर आवश्यक प्रगति का शाब्दिक रूप से "निर्माण" कर सकेंगे। लेकिन इससे पहले कि हम इस तरह के "निर्माण" में शामिल हों, हमें एक और तथ्य पर ध्यान देना चाहिए, जो सीधे पहले से ही माना गया है।

तत्वों का समूहन और योग

चलिए फिर से संख्या रेखा पर चलते हैं। हम वहाँ प्रगति के कई सदस्यों को नोट करते हैं, जिनके बीच, शायद। कई अन्य सदस्यों के लायक:

संख्या रेखा पर 6 तत्व अंकित हैं

आइए $((a)_(n))$ और $d$ के संदर्भ में "बाएं पूंछ" को व्यक्त करने का प्रयास करें, और "दाएं पूंछ" को $((a)_(k))$ और $ के संदर्भ में व्यक्त करने का प्रयास करें घ $। यह बहुत सरल है:

\[\शुरू (संरेखित) और ((ए)_(एन+1))=((ए)_(एन))+डी; \\ और ((ए)_(एन+2))=((ए)_(एन))+2डी; \\ और ((ए)_(के-1))=((ए)_(के))-डी; \\ और ((ए)_(के-2))=((ए)_(के))-2डी। \\ \अंत (संरेखित करें)\]

अब ध्यान दें कि निम्नलिखित योग बराबर हैं:

\[\शुरू (संरेखित करें) और ((ए)_(एन))+((ए)_(के))=एस; \\ & ((a)_(n+1))+((a)_(k-1))=((a)_(n))+d+((a)_(k))-d= एस; \\ & ((a)_(n+2))+((a)_(k-2))=((a)_(n))+2d+((a)_(k))-2d= एस। \end(संरेखित करें)\]

सीधे शब्दों में कहें, अगर हम प्रगति के दो तत्वों को एक शुरुआत के रूप में मानते हैं, जो कुल मिलाकर कुछ संख्या $S$ के बराबर हैं, और फिर हम इन तत्वों से विपरीत दिशाओं में कदम रखना शुरू करते हैं (एक दूसरे की ओर या इसके विपरीत दूर जाने के लिए), फिर जिन तत्वों पर हम ठोकर खाएंगे उनका योग भी बराबर होगा$ एस $। इसे ग्राफिक रूप से सबसे अच्छा दर्शाया जा सकता है:


वही इंडेंट बराबर रकम देते हैं

इस तथ्य को समझना हमें उन समस्याओं की तुलना में मौलिक रूप से उच्च स्तर की जटिलता की समस्याओं को हल करने की अनुमति देगा जिन्हें हमने ऊपर माना था। उदाहरण के लिए, ये:

टास्क नंबर 8. एक समांतर श्रेणी का अंतर ज्ञात कीजिए जिसमें पहला पद 66 है, और दूसरे और बारहवें पदों का गुणनफल सबसे छोटा संभव है।

समाधान। आइए वह सब कुछ लिखें जो हम जानते हैं:

\[\शुरू (संरेखित) और ((ए)_(1))=66; \\&d=? \\ & ((a)_(2))\cdot ((a)_(12))=\min । \end(संरेखित करें)\]

इसलिए, हम प्रगति $d$ के अंतर को नहीं जानते हैं। वास्तव में, पूरा समाधान अंतर के आसपास बनाया जाएगा, क्योंकि उत्पाद $((a)_(2))\cdot ((a)_(12))$ को निम्नानुसार फिर से लिखा जा सकता है:

\[\begin(align) & ((a)_(2))=((a)_(1))+d=66+d; \\ & ((a)_(12))=((a)_(1))+11d=66+11d; \\ & ((a)_(2))\cdot ((a)_(12))=\left(66+d \right)\cdot \left(66+11d \right)= \\ & =11 \cdot \left(d+66 \right)\cdot \left(d+6 \right)। \end(संरेखित करें)\]

टैंक में उन लोगों के लिए: मैंने दूसरे ब्रैकेट से सामान्य कारक 11 लिया है। इस प्रकार, वांछित उत्पाद चर $d$ के संबंध में एक द्विघात फलन है। इसलिए, फ़ंक्शन पर विचार करें $f\left(d \right)=11\left(d+66 \right)\left(d+6 \right)$ - इसका ग्राफ शाखाओं के साथ एक परवलय होगा, क्योंकि यदि हम कोष्ठक खोलते हैं, तो हमें प्राप्त होता है:

\[\प्रारंभ (संरेखण) और f\बाएं(डी \दाएं)=11\बाएं(((डी)^(2))+66d+6d+66\cdot 6 \right)= \\ और =11(( d)^(2))+11\cdot 72d+11\cdot 66\cdot 6 \end(align)\]

जैसा कि आप देख सकते हैं, उच्चतम पद के साथ गुणांक 11 है - यह एक सकारात्मक संख्या है, इसलिए हम वास्तव में शाखाओं के साथ एक परवलय के साथ काम कर रहे हैं:


द्विघात फलन का आलेख - परवलय

कृपया ध्यान दें: यह परवलय अपने शीर्ष पर भुज $((d)_(0))$ के साथ अपना न्यूनतम मान लेता है। बेशक, हम मानक योजना के अनुसार इस एब्सिस्सा की गणना कर सकते हैं (एक सूत्र है $((d)_(0))=(-b)/(2a)\;$), लेकिन यह बहुत अधिक उचित होगा ध्यान दें कि वांछित शीर्ष परवलय के अक्ष समरूपता पर स्थित है, इसलिए बिंदु $((d)_(0))$ समीकरण की जड़ों से समान दूरी पर है $f\left(d \right)=0$:

\[\शुरू(संरेखित करें) और f\बाएं(डी\दाएं)=0; \\ और 11\cdot \left(d+66 \right)\cdot \left(d+6 \right)=0; \\ & ((d)_(1))=-66;\quad ((d)_(2))=-6. \\ \अंत (संरेखित करें)\]

इसलिए मुझे कोष्ठक खोलने की कोई जल्दी नहीं थी: मूल रूप में, जड़ें बहुत, बहुत आसान थीं। इसलिए, भुज -66 और -6 संख्याओं के अंकगणितीय माध्य के बराबर है:

\[((डी)_(0))=\frac(-66-6)(2)=-36\]

हमें खोजा गया नंबर क्या देता है? इसके साथ, आवश्यक उत्पाद सबसे छोटा मूल्य लेता है (वैसे, हमने $((y)_(\min ))$ की गणना नहीं की - यह हमारे लिए आवश्यक नहीं है)। इसी समय, यह संख्या प्रारंभिक प्रगति का अंतर है, अर्थात। हमें जवाब मिल गया। :)

उत्तर:-36

टास्क नंबर 9. संख्याओं $-\frac(1)(2)$ और $-\frac(1)(6)$ के बीच तीन संख्याएं डालें ताकि दी गई संख्याओं के साथ मिलकर वे एक अंकगणितीय प्रगति करें।

समाधान। वास्तव में, हमें पहली और आखिरी संख्या के साथ पहले से ज्ञात पांच संख्याओं का अनुक्रम बनाने की आवश्यकता है। लापता संख्याओं को चर $x$, $y$ और $z$ द्वारा निरूपित करें:

\[\बाएं(((ए)_(एन)) \दाएं)=\बाएं\(-\frac(1)(2));x;y;z;-\frac(1)(6) \right\ )\]

ध्यान दें कि संख्या $y$ हमारे अनुक्रम का "मध्य" है - यह संख्याओं $x$ और $z$ से समान दूरी पर है, और संख्याओं $-\frac(1)(2)$ और $-\frac से समान दूरी पर है। (1)(6)$। और अगर इस समय हम $x$ और $z$ संख्याओं से $y$ प्राप्त नहीं कर सकते हैं, तो प्रगति के अंत के साथ स्थिति अलग है। अंकगणित माध्य याद रखें:

अब, $y$ जानने के बाद, हम शेष संख्याएँ ज्ञात करेंगे। ध्यान दें कि $x$ $-\frac(1)(2)$ और $y=-\frac(1)(3)$ के बीच स्थित है। इसीलिए

इसी तरह तर्क करने पर, हम शेष संख्या पाते हैं:

तैयार! हमें तीनों नंबर मिले। आइए उन्हें उत्तर में उस क्रम में लिखें जिसमें उन्हें मूल संख्याओं के बीच डाला जाना चाहिए।

उत्तर: $-\frac(5)(12);\ -\frac(1)(3);\ -\frac(1)(4)$

टास्क नंबर 10. संख्या 2 और 42 के बीच, कई संख्याएँ डालें, जो दी गई संख्याओं के साथ, एक अंकगणितीय प्रगति बनाती हैं, यदि यह ज्ञात है कि सम्मिलित संख्याओं में से पहली, दूसरी और अंतिम संख्या का योग 56 है।

समाधान। एक और भी कठिन कार्य, जो, हालांकि, पिछले वाले की तरह ही हल किया जाता है - अंकगणितीय माध्य के माध्यम से। समस्या यह है कि हमें ठीक-ठीक पता नहीं है कि कितनी संख्याएँ सम्मिलित करनी हैं। इसलिए, निश्चितता के लिए, हम मानते हैं कि डालने के बाद बिल्कुल $n$ संख्याएं होंगी, और उनमें से पहला 2 है, और अंतिम 42 है। इस मामले में, वांछित अंकगणितीय प्रगति को इस प्रकार दर्शाया जा सकता है:

\[\बाएं(((ए)_(एन)) \दाएं)=\बाएं\( 2;((ए)_(2));((ए)_(3));...;(( a)_(n-1));42 \right\)\]

\[((a)_(2))+((a)_(3))+((a)_(n-1))=56\]

हालाँकि, ध्यान दें कि संख्या $((a)_(2))$ और $((a)_(n-1))$ एक दूसरे की ओर एक कदम से किनारों पर खड़ी संख्या 2 और 42 से प्राप्त की जाती हैं। , यानी। अनुक्रम के केंद्र में। और इसका मतलब है कि

\[((a)_(2))+((a)_(n-1))=2+42=44\]

लेकिन फिर उपरोक्त अभिव्यक्ति को इस तरह फिर से लिखा जा सकता है:

\[\शुरू (संरेखित करें) और ((ए)_(2))+((ए)_(3))+((ए)_(एन-1))=56; \\ और \बाएं(((ए)_(2))+((ए)_(एन-1)) \दाएं)+((ए)_(3))=56; \\ और 44+((ए)_(3))=56; \\ और ((ए)_(3))=56-44=12। \\ \अंत (संरेखित करें)\]

$((a)_(3))$ और $((a)_(1))$ जानने के बाद, हम आसानी से प्रगति अंतर पा सकते हैं:

\[\शुरू (संरेखित) और ((ए)_(3))-((ए)_(1))=12-2=10; \\ & ((a)_(3))-((a)_(1))=\left(3-1 \right)\cdot d=2d; \\ और 2d=10\दायां तीर d=5. \\ \अंत (संरेखित करें)\]

यह केवल शेष सदस्यों को खोजने के लिए बनी हुई है:

\[\शुरू (संरेखित) और ((ए)_(1))=2; \\ और ((ए)_(2))=2+5=7; \\ और ((ए)_(3))=12; \\ और ((ए)_(4))=2+3\cdot 5=17; \\ और ((ए)_(5))=2+4\cdot 5=22; \\ और ((ए)_(6))=2+5\cdot 5=27; \\ और ((ए)_(7))=2+6\cdot 5=32; \\ और ((ए)_(8))=2+7\cdot 5=37; \\ और ((ए)_(9))=2+8\cdot 5=42; \\ \अंत (संरेखित करें)\]

इस प्रकार, पहले से ही 9 वें चरण में हम अनुक्रम के बाएं छोर पर आएंगे - संख्या 42। कुल मिलाकर, केवल 7 संख्याओं को सम्मिलित करना था: 7; 12; 17; 22; 27; 32; 37.

उत्तर: 7; 12; 17; 22; 27; 32; 37

प्रगति के साथ पाठ कार्य

अंत में, मैं कुछ अपेक्षाकृत सरल समस्याओं पर विचार करना चाहूंगा। ठीक है, साधारण लोगों के रूप में: अधिकांश छात्रों के लिए जो स्कूल में गणित पढ़ते हैं और जो ऊपर लिखा है उसे नहीं पढ़ा है, ये कार्य एक इशारे की तरह लग सकते हैं। फिर भी, यह ठीक ऐसे कार्य हैं जो गणित में OGE और USE में आते हैं, इसलिए मेरा सुझाव है कि आप उनसे खुद को परिचित करें।

टास्क नंबर 11. टीम ने जनवरी में 62 भागों का उत्पादन किया, और प्रत्येक बाद के महीने में उन्होंने पिछले एक की तुलना में 14 अधिक भागों का उत्पादन किया। नवंबर में ब्रिगेड ने कितने पुर्जे तैयार किए?

समाधान। जाहिर है, महीने के हिसाब से चित्रित भागों की संख्या एक बढ़ती हुई अंकगणितीय प्रगति होगी। और:

\[\begin(align) & ((a)_(1))=62;\quad d=14; \\ और ((ए)_(एन))=62+\बाएं(एन-1 \दाएं)\cdot 14. \\ \end(align)\]

नवंबर साल का 11वां महीना है, इसलिए हमें $((a)_(11))$ खोजने की जरूरत है:

\[((a)_(11))=62+10\cdot 14=202\]

इसलिए नवंबर में 202 पार्ट्स का निर्माण किया जाएगा।

टास्क नंबर 12. बुकबाइंडिंग वर्कशॉप ने जनवरी में 216 पुस्तकों को बाध्य किया, और हर महीने इसने पिछले महीने की तुलना में 4 अधिक पुस्तकों को बाध्य किया। वर्कशॉप ने दिसंबर में कितनी किताबें बांधीं?

समाधान। सब एक जैसे:

$\begin(align) & ((a)_(1))=216;\quad d=4; \\ और ((ए)_(एन))=216+\बाएं(एन-1 \दाएं)\cdot 4. \\ \end(align)$

दिसंबर साल का आखिरी, 12वां महीना है, इसलिए हम $((a)_(12))$ की तलाश कर रहे हैं:

\[((a)_(12))=216+11\cdot 4=260\]

ये है जवाब- 260 किताबें दिसंबर में बंधी होंगी।

ठीक है, अगर आपने इसे अब तक पढ़ा है, तो मैं आपको बधाई देने के लिए जल्दबाजी करता हूं: आपने अंकगणितीय प्रगति में "युवा लड़ाकू पाठ्यक्रम" को सफलतापूर्वक पूरा कर लिया है। हम सुरक्षित रूप से अगले पाठ पर आगे बढ़ सकते हैं, जहां हम प्रगति योग सूत्र का अध्ययन करेंगे, साथ ही इसके महत्वपूर्ण और बहुत उपयोगी परिणामों का भी अध्ययन करेंगे।

कई लोगों ने अंकगणितीय प्रगति के बारे में सुना है, लेकिन हर कोई इस बात से अच्छी तरह वाकिफ नहीं है कि यह क्या है। इस लेख में, हम एक उपयुक्त परिभाषा देंगे, और इस सवाल पर भी विचार करेंगे कि एक अंकगणितीय प्रगति का अंतर कैसे खोजा जाए, और कई उदाहरण दिए जाएं।

गणितीय परिभाषा

इसलिए, अगर हम एक अंकगणितीय या बीजीय प्रगति के बारे में बात कर रहे हैं (ये अवधारणाएं एक ही चीज़ को परिभाषित करती हैं), तो इसका मतलब है कि कुछ संख्या श्रृंखला है जो निम्नलिखित कानून को संतुष्ट करती है: श्रृंखला में प्रत्येक दो आसन्न संख्याएं समान मान से भिन्न होती हैं। गणितीय रूप से, यह इस प्रकार लिखा गया है:

यहाँ n का अर्थ है अनुक्रम में तत्व की संख्या n, और संख्या d प्रगति का अंतर है (इसका नाम प्रस्तुत सूत्र से मिलता है)।

अंतर जानने का क्या मतलब है? आसन्न संख्याएँ कितनी दूर हैं। हालाँकि, संपूर्ण प्रगति को निर्धारित (पुनर्स्थापित) करने के लिए d का ज्ञान एक आवश्यक लेकिन पर्याप्त शर्त नहीं है। आपको एक और संख्या जानने की जरूरत है, जो कि विचाराधीन श्रृंखला का कोई भी तत्व हो सकता है, उदाहरण के लिए, 4, a10, लेकिन, एक नियम के रूप में, पहली संख्या का उपयोग किया जाता है, अर्थात, 1.

प्रगति के तत्वों को निर्धारित करने के सूत्र

सामान्य तौर पर, विशिष्ट समस्याओं को हल करने के लिए आगे बढ़ने के लिए उपरोक्त जानकारी पहले से ही पर्याप्त है। फिर भी, एक अंकगणितीय प्रगति दिए जाने से पहले, और इसके अंतर को खोजना आवश्यक होगा, हम कुछ उपयोगी सूत्र प्रस्तुत करते हैं, जिससे समस्याओं को हल करने की बाद की प्रक्रिया को सुविधाजनक बनाया जा सकता है।

यह दिखाना आसान है कि संख्या n वाले अनुक्रम का कोई भी तत्व निम्नानुसार पाया जा सकता है:

ए एन \u003d ए 1 + (एन - 1) * डी

वास्तव में, हर कोई इस सूत्र को एक साधारण गणना के साथ देख सकता है: यदि आप n = 1 को प्रतिस्थापित करते हैं, तो आपको पहला तत्व मिलता है, यदि आप n = 2 को प्रतिस्थापित करते हैं, तो व्यंजक पहली संख्या और अंतर का योग देता है, और इसी तरह आगे भी .

कई समस्याओं की स्थितियों को इस तरह से संकलित किया जाता है कि संख्याओं की एक ज्ञात जोड़ी के लिए, जिनकी संख्याएं भी क्रम में दी गई हैं, पूरी संख्या श्रृंखला को पुनर्स्थापित करना आवश्यक है (अंतर और पहला तत्व खोजें)। अब हम इस समस्या को सामान्य तरीके से हल करेंगे।

तो, मान लीजिए कि हमें संख्या n और m वाले दो तत्व दिए गए हैं। ऊपर प्राप्त सूत्र का उपयोग करके, हम दो समीकरणों की एक प्रणाली बना सकते हैं:

ए एन \u003d ए 1 + (एन - 1) * डी;

ए एम = ए 1 + (एम -1) * डी

अज्ञात मात्राओं को खोजने के लिए, हम ऐसी प्रणाली को हल करने के लिए एक प्रसिद्ध सरल विधि का उपयोग करते हैं: हम बाएं और दाएं भागों को जोड़े में घटाते हैं, जबकि समानता वैध रहती है। हमारे पास है:

ए एन \u003d ए 1 + (एन - 1) * डी;

ए एन - ए एम = (एन -1) * डी - (एम -1) * डी = डी * (एन - एम)

इस प्रकार, हमने एक अज्ञात (a 1) को हटा दिया है। अब हम d के निर्धारण के लिए अंतिम व्यंजक लिख सकते हैं:

डी = (ए एन - ए एम) / (एन - एम), जहां एन> एम

हमने एक बहुत ही सरल सूत्र प्राप्त किया है: समस्या की स्थितियों के अनुसार अंतर डी की गणना करने के लिए, केवल तत्वों और उनके सीरियल नंबरों के बीच अंतर का अनुपात लेना आवश्यक है। एक महत्वपूर्ण बिंदु पर ध्यान दिया जाना चाहिए: "सीनियर" और "जूनियर" सदस्यों के बीच अंतर लिया जाता है, अर्थात, n> m ("सीनियर" - जिसका अर्थ है अनुक्रम की शुरुआत से आगे खड़े होना, इसका निरपेक्ष मूल्य हो सकता है या तो कम या ज्यादा "युवा" तत्व)।

पहले पद का मान प्राप्त करने के लिए समस्या के समाधान की शुरुआत में प्रगति के अंतर d के लिए अभिव्यक्ति को किसी भी समीकरण में प्रतिस्थापित किया जाना चाहिए।

कंप्यूटर प्रौद्योगिकी विकास के हमारे युग में, कई स्कूली बच्चे इंटरनेट पर अपने कार्यों के समाधान खोजने की कोशिश करते हैं, इसलिए इस प्रकार के प्रश्न अक्सर उठते हैं: ऑनलाइन अंकगणितीय प्रगति का अंतर खोजें। इस तरह के अनुरोध पर, खोज इंजन कई वेब पेज प्रदर्शित करेगा, जिस पर जाकर, आपको स्थिति से ज्ञात डेटा दर्ज करना होगा (यह या तो प्रगति के दो सदस्य हो सकते हैं या उनमें से कुछ का योग हो सकता है) और तुरंत उत्तर प्राप्त करें। फिर भी, समस्या को हल करने के लिए ऐसा दृष्टिकोण छात्र के विकास और उसे सौंपे गए कार्य के सार को समझने के मामले में अनुत्पादक है।

सूत्रों का उपयोग किए बिना समाधान

आइए पहली समस्या को हल करें, जबकि हम उपरोक्त किसी भी सूत्र का उपयोग नहीं करेंगे। मान लीजिए कि श्रृंखला के तत्व दिए गए हैं: a6 = 3, a9 = 18. समांतर श्रेणी का अंतर ज्ञात कीजिए।

ज्ञात तत्व एक दूसरे के निकट एक पंक्ति में हैं। सबसे बड़ा प्राप्त करने के लिए अंतर d को छोटी से कितनी बार जोड़ा जाना चाहिए? तीन बार (पहली बार d जोड़ने पर, हमें 7 वां तत्व मिलता है, दूसरी बार - आठवां, अंत में, तीसरी बार - नौवां)। 18 प्राप्त करने के लिए तीन तीन बार किस संख्या को जोड़ा जाना चाहिए? यह पांचवां नंबर है। सच में:

इस प्रकार, अज्ञात अंतर d = 5 है।

बेशक, उपयुक्त सूत्र का उपयोग करके समाधान किया जा सकता है, लेकिन यह जानबूझकर नहीं किया गया था। समस्या के समाधान की विस्तृत व्याख्या अंकगणितीय प्रगति क्या है, इसका एक स्पष्ट और विशद उदाहरण बनना चाहिए।

पिछले एक के समान कार्य

अब इसी तरह की समस्या को हल करते हैं, लेकिन इनपुट डेटा को बदलें। तो, आपको पता लगाना चाहिए कि क्या a3 = 2, a9 = 19 है।

बेशक, आप फिर से "माथे पर" हल करने की विधि का सहारा ले सकते हैं। लेकिन चूंकि श्रृंखला के तत्व दिए गए हैं, जो अपेक्षाकृत दूर हैं, इसलिए ऐसी विधि बहुत सुविधाजनक नहीं हो जाती है। लेकिन परिणामी सूत्र का उपयोग करने से हमें शीघ्र ही उत्तर मिल जाएगा:

डी \u003d (ए 9 - ए 3) / (9 - 3) \u003d (19 - 2) / (6) \u003d 17 / 6 2.83

यहां हमने अंतिम संख्या को गोल किया है। इस राउंडिंग के कारण कितनी त्रुटि हुई, इसका अंदाजा परिणाम की जाँच से लगाया जा सकता है:

ए 9 \u003d ए 3 + 2.83 + 2.83 + 2.83 + 2.83 + 2.83 + 2.83 \u003d 18.98

यह परिणाम शर्त में दिए गए मान से केवल 0.1% भिन्न होता है। इसलिए, इस्तेमाल किए गए सौवें हिस्से को गोल करना एक अच्छा विकल्प माना जा सकता है।

सदस्य के लिए सूत्र लागू करने के कार्य

आइए अज्ञात d को निर्धारित करने की समस्या के एक उत्कृष्ट उदाहरण पर विचार करें: अंकगणितीय प्रगति का अंतर ज्ञात करें यदि a1 = 12, a5 = 40।

जब एक अज्ञात बीजगणितीय अनुक्रम की दो संख्याएँ दी जाती हैं, और उनमें से एक तत्व a 1 है, तो आपको लंबे समय तक सोचने की आवश्यकता नहीं है, लेकिन आपको तुरंत n सदस्य के लिए सूत्र लागू करना चाहिए। इस मामले में हमारे पास है:

a 5 = a 1 + d * (5 - 1) => d = (a 5 - a 1) / 4 = (40 - 12) / 4 = 7

विभाजित करते समय हमें सटीक संख्या मिली, इसलिए गणना किए गए परिणाम की सटीकता की जांच करने का कोई मतलब नहीं है, जैसा कि पिछले पैराग्राफ में किया गया था।

आइए इसी तरह की एक और समस्या को हल करें: हमें अंकगणितीय प्रगति का अंतर ज्ञात करना चाहिए यदि a1 = 16, a8 = 37.

हम पिछले एक के समान दृष्टिकोण का उपयोग करते हैं और प्राप्त करते हैं:

ए 8 = ए 1 + डी * (8 - 1) => डी = (ए 8 - ए 1) / 7 = (37 - 16) / 7 = 3

अंकगणितीय प्रगति के बारे में आपको और क्या पता होना चाहिए

अज्ञात अंतर या व्यक्तिगत तत्वों को खोजने की समस्याओं के अलावा, अनुक्रम की पहली शर्तों के योग की समस्याओं को हल करना अक्सर आवश्यक होता है। इन समस्याओं पर विचार लेख के विषय के दायरे से बाहर है, हालांकि, जानकारी की पूर्णता के लिए, हम श्रृंखला की n संख्याओं के योग के लिए एक सामान्य सूत्र प्रस्तुत करते हैं:

n मैं = 1 (ए i) = n * (ए 1 + ए एन) / 2

9वीं कक्षा में स्कूलों में बीजगणित के सामान्य पाठ्यक्रम में "अंकगणितीय प्रगति" विषय का अध्ययन किया जाता है। संख्या श्रृंखला के गणित के आगे गहन अध्ययन के लिए यह विषय महत्वपूर्ण है। इस लेख में, हम अंकगणितीय प्रगति, इसके अंतर के साथ-साथ स्कूली बच्चों के सामने आने वाले विशिष्ट कार्यों से परिचित होंगे।

बीजगणितीय प्रगति की अवधारणा

एक संख्यात्मक प्रगति संख्याओं का एक क्रम है जिसमें प्रत्येक बाद के तत्व को पिछले एक से प्राप्त किया जा सकता है यदि कुछ गणितीय कानून लागू किया जाता है। प्रगति के दो सरल प्रकार हैं: ज्यामितीय और अंकगणित, जिसे बीजगणितीय भी कहा जाता है। आइए इस पर अधिक विस्तार से ध्यान दें।

कुछ परिमेय संख्या की कल्पना करें, इसे प्रतीक a 1 द्वारा निरूपित करें, जहां सूचकांक विचाराधीन श्रृंखला में इसकी क्रमिक संख्या को इंगित करता है। आइए 1 में कोई अन्य संख्या जोड़ें, आइए इसे d से निरूपित करें। तब श्रृंखला का दूसरा तत्व निम्नानुसार परिलक्षित हो सकता है: a 2 = a 1 + d। अब d को फिर से जोड़ें, हमें प्राप्त होता है: a 3 = a 2 + d। इस गणितीय संक्रिया को जारी रखते हुए, आप संख्याओं की एक पूरी श्रृंखला प्राप्त कर सकते हैं, जिसे अंकगणितीय प्रगति कहा जाएगा।

जैसा कि ऊपर से समझा जा सकता है, इस क्रम के n-वें तत्व को खोजने के लिए, आपको सूत्र का उपयोग करना चाहिए: a n = a 1 + (n-1) * d। वास्तव में, व्यंजक में n=1 को प्रतिस्थापित करने पर, हमें 1 = a 1 मिलता है, यदि n = 2, तो सूत्र का अर्थ है: a 2 = a 1 + 1*d, और इसी तरह।

उदाहरण के लिए, यदि समांतर श्रेणी का अंतर 5 है, और 1 = 1 है, तो इसका मतलब है कि प्रश्न में प्रकार की संख्या श्रृंखला का रूप है: 1, 6, 11, 16, 21, ... जैसा कि आप देख सकते हैं, इसका प्रत्येक सदस्य पिछले वाले से 5 अधिक है।

अंकगणितीय प्रगति अंतर सूत्र

विचाराधीन संख्याओं की श्रृंखला की उपरोक्त परिभाषा से, यह इस प्रकार है कि इसे निर्धारित करने के लिए, आपको दो संख्याओं को जानने की आवश्यकता है: ए 1 और डी। उत्तरार्द्ध को इस प्रगति का अंतर कहा जाता है। यह पूरी श्रृंखला के व्यवहार को विशिष्ट रूप से निर्धारित करता है। वास्तव में, यदि d धनात्मक है, तो संख्या श्रृंखला लगातार बढ़ेगी, इसके विपरीत, ऋणात्मक d के मामले में, श्रृंखला में संख्या केवल मॉड्यूलो में वृद्धि करेगी, जबकि उनका निरपेक्ष मान बढ़ती संख्या n के साथ घट जाएगा।

अंकगणितीय प्रगति के बीच अंतर क्या है? इस मान की गणना के लिए उपयोग किए जाने वाले दो मुख्य सूत्रों पर विचार करें:

  1. d = a n+1 -a n , यह सूत्र संख्याओं की मानी गई श्रृंखला की परिभाषा से सीधे अनुसरण करता है।
  2. डी \u003d (-ए 1 + ए एन) / (एन -1), यह अभिव्यक्ति लेख के पिछले पैराग्राफ में दिए गए सूत्र से डी व्यक्त करके प्राप्त की जाती है। ध्यान दें कि यदि n=1 है तो यह व्यंजक अनिश्चित (0/0) हो जाता है। यह इस तथ्य के कारण है कि इसके अंतर को निर्धारित करने के लिए श्रृंखला के कम से कम 2 तत्वों को जानना आवश्यक है।

इन दो बुनियादी सूत्रों का उपयोग प्रगति अंतर खोजने की किसी भी समस्या को हल करने के लिए किया जाता है। हालाँकि, एक और सूत्र है जिसके बारे में आपको भी जानना आवश्यक है।

पहले तत्वों का योग

ऐतिहासिक साक्ष्यों के अनुसार, सूत्र, जिसका उपयोग बीजगणितीय प्रगति के सदस्यों की किसी भी संख्या के योग को निर्धारित करने के लिए किया जा सकता है, पहली बार 18 वीं शताब्दी के गणित के "राजकुमार" कार्ल गॉस द्वारा प्राप्त किया गया था। एक जर्मन वैज्ञानिक, जबकि अभी भी एक गांव के स्कूल के प्राथमिक ग्रेड में एक लड़का है, ने देखा कि श्रृंखला में प्राकृतिक संख्याओं को 1 से 100 तक जोड़ने के लिए, आपको पहले पहले तत्व और अंतिम को जोड़ना होगा (परिणामस्वरूप मान बराबर होगा अंतिम और दूसरे, अंतिम और तीसरे तत्वों के योग के लिए, और इसी तरह), और फिर इस संख्या को इन राशियों की संख्या से गुणा किया जाना चाहिए, अर्थात 50।

किसी विशेष उदाहरण पर बताए गए परिणाम को दर्शाने वाले सूत्र को एक मनमाना मामले के लिए सामान्यीकृत किया जा सकता है। यह इस तरह दिखेगा: एस एन = एन/2*(ए एन + ए 1)। ध्यान दें कि निर्दिष्ट मान को खोजने के लिए, अंतर d के ज्ञान की आवश्यकता नहीं है यदि प्रगति के दो सदस्य (ए एन और ए 1) ज्ञात हैं।

उदाहरण 1। श्रृंखला a1 और an . के दो पदों को जानकर, अंतर निर्धारित करें

हम बताएंगे कि लेख में ऊपर बताए गए सूत्रों को कैसे लागू किया जाए। आइए एक सरल उदाहरण दें: अंकगणितीय प्रगति का अंतर अज्ञात है, यह निर्धारित करना आवश्यक है कि यह 13 \u003d -5.6 और 1 \u003d -12.1 के बराबर क्या होगा।

चूंकि हम संख्यात्मक अनुक्रम के दो तत्वों के मूल्यों को जानते हैं, और उनमें से एक पहली संख्या है, हम अंतर d को निर्धारित करने के लिए सूत्र संख्या 2 का उपयोग कर सकते हैं। हमारे पास है: d \u003d (-1 * (-12.1) + (-5.6)) / 12 \u003d 0.54167। व्यंजक में, हमने n=13 मान का उपयोग किया, क्योंकि इस क्रमांक वाले सदस्य को जाना जाता है।

परिणामी अंतर इंगित करता है कि प्रगति बढ़ रही है, इस तथ्य के बावजूद कि समस्या की स्थिति में दिए गए तत्वों का नकारात्मक मूल्य है। यह देखा जा सकता है कि a 13 >a 1 , हालांकि |a 13 |<|a 1 |.

उदाहरण # 2। उदाहरण #1 . में सकारात्मक प्रगति की शर्तें

आइए एक नई समस्या को हल करने के लिए पिछले उदाहरण में प्राप्त परिणाम का उपयोग करें। इसे निम्नानुसार तैयार किया गया है: उदाहरण संख्या 1 में प्रगति के तत्व किस क्रम संख्या से सकारात्मक मूल्य लेना शुरू करते हैं?

जैसा कि दिखाया गया था, जिस प्रगति में 1 = -12.1 और डी = 0.54167 बढ़ रहा है, इसलिए एक निश्चित संख्या से संख्याएं केवल सकारात्मक मान लेती हैं। इस संख्या n को निर्धारित करने के लिए, एक साधारण असमानता को हल करना आवश्यक है, जिसे गणितीय रूप से इस प्रकार लिखा गया है: a n>0 या, उपयुक्त सूत्र का उपयोग करके, हम असमानता को फिर से लिखते हैं: a 1 + (n-1)*d>0। अज्ञात n को खोजना आवश्यक है, आइए इसे व्यक्त करें: n>-1*a 1 /d + 1. अब यह अंतर के ज्ञात मूल्यों और अनुक्रम के पहले सदस्य को प्रतिस्थापित करने के लिए बनी हुई है। हमें मिलता है: n>-1*(-12.1) /0.54167 + 1= 23.338 या n>23.338। चूंकि n केवल पूर्णांक मान ले सकता है, इसलिए प्राप्त असमानता से यह निष्कर्ष निकलता है कि श्रृंखला के किसी भी पद की संख्या 23 से अधिक है, सकारात्मक होगा।

आइए इस अंकगणितीय प्रगति के 23वें और 24वें तत्वों की गणना के लिए उपरोक्त सूत्र का उपयोग करके अपने उत्तर की जाँच करें। हमारे पास है: एक 23 \u003d -12.1 + 22 * ​​0.54167 \u003d -0.18326 (ऋणात्मक संख्या); ए 24 \u003d -12.1 + 23 * 0.54167 \u003d 0.3584 (सकारात्मक मूल्य)। इस प्रकार, प्राप्त परिणाम सही है: n=24 से शुरू होकर, संख्या श्रृंखला के सभी सदस्य शून्य से बड़े होंगे।

उदाहरण #3। कितने लॉग फिट होंगे?

यहाँ एक दिलचस्प समस्या है: लॉगिंग के दौरान, आरा लॉग को एक दूसरे के ऊपर ढेर करने का निर्णय लिया गया जैसा कि नीचे दिए गए चित्र में दिखाया गया है। इस तरह से कितने लॉग ढेर किए जा सकते हैं, यह जानते हुए कि कुल 10 पंक्तियाँ फिट होंगी?

लॉग को फोल्ड करने के इस तरीके में, एक दिलचस्प बात देखी जा सकती है: प्रत्येक बाद की पंक्ति में पिछले एक की तुलना में एक लॉग कम होगा, यानी एक बीजगणितीय प्रगति है, जिसका अंतर डी = 1 है। यह मानते हुए कि प्रत्येक पंक्ति में लॉग की संख्या इस प्रगति का सदस्य है, और यह भी ध्यान में रखते हुए कि 1 = 1 (केवल एक लॉग सबसे ऊपर फिट होगा), हम संख्या को 10 पाते हैं। हमारे पास है: एक 10 \u003d 1 + 1 * (10-1) \u003d 10। यानी 10 वीं पंक्ति में, जो जमीन पर स्थित है, 10 लॉग होंगे।

इस "पिरामिडल" निर्माण की कुल राशि गॉस सूत्र का उपयोग करके प्राप्त की जा सकती है। हमें मिलता है: एस 10 \u003d 10/2 * (10 + 1) \u003d 55 लॉग।

लोड हो रहा है...लोड हो रहा है...