Электромагнитное излучение — воздействие на человека, защита. Обобщающий урок "шкала электромагнитных излучений"









Хемилюминесценция При некоторых химических реакциях, идущих с выделением энергии, часть этой энергии непосредственно расходуется на излучение света,причем источник света остается холодным. Светлячок Кусок дерева, пронизанный светящейся грибницей Рыба,обитающая на большой глубине




Электромагнитные излучения Радио излучение Радио излучение Инфракрасное излучение Инфракрасное излучение Видимое излучение Видимое излучение Ультрафиолетовое излучение Ультрафиолетовое излучение Рентгеновское излучение Рентгеновское излучение Гамма излучение Гамма излучение


Шкала электромагнитных излучений Шкала электромагнитных волн простирается от длинных Радиоволн до гамма – лучей. Электромагнитные волны различной Длины условно делят на диапазоны по различным признакам (способу получения, способу регистрации, характеру взаимодействия с веществом).


Все виды излучений имеют, по существу, одну и ту же физическую природу Луи де Бройль Самостоятельная работа по заполнению таблицы Виды излученийДиапазон длин волн ИсточникСвойстваПрименение Радио излучение Инфракрасное излучение Видимое излучение Ультрафиолетовое излучение Рентгеновское излучение -излучение


Виды излучений Диапазон длин волн Источник СвойстваПрименение Радиоволны 10 км (310^4 – 310 ^12 Гц) Транзисторные цепиОтражение, Преломление Дифракция Поляризация Связь и навигация Инфракрас- ное излучение 0,1 м – 770 нм (310^ 12 – 4 10 ^14 Гц) Электрический камин Отражение, Преломление Дифракция Поляризация Приготовление пищи Нагревание, сушка, Тепловое фотокопирование Видимый свет 770 – 380 нм (410^ 14 – 810 ^14 Гц) Лампа накаливания, Молнии, Пламя Отражение, Преломление Дифракция Поляризация Наблюдение за видимым миром, Преимущественно путем отражения Ультрафио летовое излучение 380 – 5 нм (810^ 14 – 610 ^16 Гц) Разрядная трубка, углеродная Дуга ФотохимическиеЛечение заболеваний кожи, уничтожение бактерий, сторожевые устройства Рентгеновс- кое излучение 5 нм– 10^ –2 нм (610^ 16 – 310 ^19 Гц) Рентгеновская трубка Проникающая способность Дифракция Рентгенография, радиология, обнаружение подделок произведений искусства - излучение 510^ ^-15 м Циклотрон Кобальт - 60 Порождаются космически ми объектами Стерилизация, Медицина, лечение рака Проверьте свои ответы

Шкала электромагнитных излучений условно включает в себя семь диапазонов:

1. Низкочастотные колебания

2. Радиоволны

3. Инфракрасное излучение

4. Видимое излучение

5. Ультрафиолетовое излучение

6. Рентгеновское излучение

7. Гамма излучение

Принципиального различия между отдельными излучениями нет. Все они представляют собой электромагнитные волны, порождаемые заряженными частицами. Обнаруживаются электромагнитные волны, в конечном счете, по их действию на заряженные частицы. В вакууме излучение любой длины волны распространяется со скоростью 300 000 км/с. Границы между отдельными областями шкалы излучений весьма условны.

Излучения различной длины волны отличаются друг от друга по способу их получения (излучение антенны, тепловое излучение, излучение при торможении быстрых электронов и др.) и методам регистрации.

Все перечисленные виды электромагнитного излучения порождаются также космическими объектами и успешно исследуются с помощью ракет, искусственных спутников Земли и космических кораблей. В первую очередь это относится к рентгеновскому и g-излучениям, сильно поглощаемом атмосферой.

По мере уменьшения длины волны количественные различия в длинах волн приводят к существенным качественным различиям.

Излучения различной длины волны очень сильно отличаются друг от друга по поглощению их веществом. Коротковолновые излучения (рентгеновское и особенно g-лучи) поглощаются слабо. Непрозрачные для волн оптического диапазона вещества прозрачны для этих излучений. Коэффициент отражения электромагнитных волн также зависит от длины волны. Но главное различие между длинноволновым и коротковолновым излучениями в том, что коротковолновое излучение обнаруживает свойства частиц.

Инфракрасное излучение

Инфракра́сное излуче́ние - электромагнитное излучение, занимающее спектральную область между красным концом видимого света (с длиной волны λ = 0,74 мкм) и микроволновым излучением (λ ~ 1-2 мм). Это невидимое излучение с ярко выраженным тепловым действием.

Инфракрасное излучение было открыто в 1800 г. английским учёным У. Гершелем.

Сейчас весь диапазон инфракрасного излучения делят на три составляющих:

коротковолновая область: λ = 0,74-2,5 мкм;

средневолновая область: λ = 2,5-50 мкм;

длинноволновая область: λ = 50-2000 мкм;

Применение

ИК (инфракрасные) диоды и фотодиоды повсеместно применяются в пультах дистанционного управления, системах автоматики, охранных системах и т. п. Они не отвлекают внимание человека в силу своей невидимости. Инфракрасные излучатели применяют в промышленности для сушки лакокрасочных поверхностей.

Положительным побочным эффектом так же является стерилизация пищевых продуктов, увеличение стойкости к коррозии покрываемых красками поверхностей. Недостатком же является существенно большая неравномерность нагрева, что в ряде технологических процессов совершенно неприемлемо.

Электромагнитная волна определённого частотного диапазона оказывает не только термическое, но и биологическое воздействие на продукт, способствует ускорению биохимических превращений в биологических полимерах.

Кроме того, инфракрасное излучение повсеместно применяют для обогрева помещений и уличных пространств.

В приборах ночного видения: биноклях, очках, прицелах для стрелкового оружия, ночных фото- и видеокамерах. Здесь невидимое глазом инфракрасное изображение объекта преобразуется в видимое.

Тепловизоры используют в строительстве при оценке теплоизоляционных свойств конструкций. С их помощью можно определить области наибольших теплопотерь в строящемся доме и сделать вывод о качестве применяемых строительных материалов и утеплителей.

Сильное инфракрасное излучение в местах высокого нагрева может вызывать опасность для глаз. Наиболее опасно, когда излучение не сопровождается видимым светом. В таких местах необходимо надевать специальные защитные очки для глаз.

Ультрафиолетовое излучение

Ультрафиоле́товое излуче́ние (ультрафиолет, УФ, UV) - электромагнитное излучение, занимающее диапазон между фиолетовым концом видимого излучения и рентгеновским излучением (380 - 10 нм, 7,9×1014 - 3×1016 Гц). Диапазон условно делят на ближний (380-200 нм) и дальний, или вакуумный (200-10 нм) ультрафиолет, последний так назван, поскольку интенсивно поглощается атмосферой и исследуется только вакуумными приборами. Это невидимое излучение обладающее высокой биологической и химической активностью.

Понятие об ультрафиолетовых лучах впервые встречается у индийского философа 13-го века. Атмосфера описанной им местности содержала фиолетовые лучи, которые невозможно увидеть обычным глазом.

В 1801 году физик Иоганн Вильгельм Риттер обнаружил, что хлорид серебра, разлагающийся под действием света, быстрее разлагается под действием невидимого излучения за пределами фиолетовой области спектра.

Источники ультрафиолета
Природные источники

Основной источник ультрафиолетового излучения на Земле - Солнце.

Искусственные источники

УФ ОУ типа «Искусственный солярий», в которых используются УФ ЛЛ, вызывающие достаточно быстрое образование загара.

Ультрафиолетовые лампы используются для стерилизации (обеззараживания) воды, воздуха и различных поверхностей во всех сферах жизнедеятельности человека.

Бактерицидное УФ излучение на этих длинах волн вызывает димеризацию тимина в молекулах ДНК. Накопление таких изменений в ДНК микроорганизмов приводит к замедлению темпов их размножения и вымиранию.

Ультрафиолетовая обработка воды, воздуха и поверхности не обладает пролонгированным эффектом.

Биологическое воздействие

Разрушает сетчатку глаза, вызывает ожоги кожи и рак кожи.

Полезные свойства УФ излучения

Попадая на кожу вызывает образование защитного пигмента – загара.

Способствует образованию витаминов группы Д

Вызывает гибель болезнетворных бактерий

Применение УФ излучения

Использование невидимых УФ-красок для защиты банковских карт и денежных знаков от подделки. На карту наносят невидимые в обычном свете изображения, элементы дизайна или делают светящейся в УФ-лучах всю карту.

Длины электромагнитных волн, которые могут быть зарегистрированы приборами, лежат в очень широком диапазоне. Все эти волны обладают общими свойствами: поглощение, отражение, интерференция, дифракция, дисперсия. Свойства эти могут, однако, проявляться по-разному. Различными являются источники и приемники волн.

Радиоволны

ν =10 5 - 10 11 Гц, λ =10 -3 -10 3 м.

Получают с помощью коле­бательных контуров и макро­скопических вибраторов. Свойства. Радиоволны различных ча­стот и с различными длинами волн по-разному поглощаются и отражаются средами. Применение Радиосвязь, телевидение, радиолокация. В природе радиоволны излучаются различными внеземными источниками (ядра галактик, квазары).

Инфракрасное излучение (тепловое)

ν =3-10 11 - 4 . 10 14 Гц, λ =8 . 10 -7 - 2 . 10 -3 м.

Излучается атомами и мо­лекулами вещества.

Инфракрасное излучение дают все тела при любой тем­пературе.

Человек излучает электро­магнитные волны λ≈9 . 10 -6 м.

Свойства

  1. Проходит через некото­рые непрозрачные тела, а так­же сквозь дождь, дымку, снег.
  2. Производит химическое действие на фотопластинки.
  3. Поглощаясь веществом, нагревает его.
  4. Вызывает внутренний фотоэффект у германия.
  5. Невидимо.

Регистрируют тепловыми методами, фотоэлектрическими и фотографическими.

Применение . Получают изображения предметов в темноте, приборах ночного видения (ночные бинокли), тумане. Используют в криминалистике, в физиотерапии, в промышленности для сушки окрашенных изделий, стен зданий, древесины, фруктов.

Часть электромагнитного излучения, воспринимаемая глазом (от красного до фиолетового):

Свойства . В оздействует на глаз.

(меньше, чем у фиолетового света)

Источники: газоразрядные лампы с трубками из кварца (кварцевые лампы).

Излучается всеми твердыми телами, у которых T>1000°С, а также светящимися парами ртути.

Свойства . Высокая химическая активность (разложение хлорида сереб­ра, свечение кристаллов сульфида цинка), невидимо, большая проникающая способность, убивает микроорганизмы, в неболь­ших дозах благотворно влияет на организм человека (загар), но в больших дозах оказывает отрицательное биологическое воздей­ствие: изменения в развитии клеток и обмене веществ, действие на глаза.

Рентгеновские лучи

Излучаются при большом ускорении электронов, например их торможение в металлах. Получают при помощи рентгеновской трубки: электроны в вакуумной трубке (р= 10 -3 -10 -5 Па) ускоряются электриче­ским полем при высоком напряжении, достигая анода, при со­ударении резко тормозятся. При торможении электроны движут­ся с ускорением и излучают электромагнитные волны с малой длиной (от 100 до 0,01 им). Свойства Интерференция, дифракция рентгеновских лучей на кристаллической решетке, большая проникающая способность. Облуче­ние в больших дозах вызывает лучевую болезнь. Применение . В медицине (диагностика заболеваний внутренних органов), в промышленности (контроль внутренней структуры различных изделий, сварных швов).

γ-излучение

Источники : атомное ядро (ядерные реакции). Свойства . Имеет огромную проникающую способность, оказывает силь­ное биологическое воздействие. Применение . В медицине, производстве (γ -дефектоскопия). Применение . В медицине, в промышленности.

Общим свойством электромагнитных волн является также то, что все излучения обладают одновременно квантовыми и волновыми свойствами. Квантовые и волновые свойства в этом случае не исключают, а дополняют друг друга. Волновые свой­ства ярче проявляются при малых частотах и менее ярко - при больших. И наоборот, квантовые свойства ярче проявляются при больших частотах и менее ярко - при малых. Чем меньше длина волны, тем ярче проявляются квантовые свойства, а чем больше длина волны, тем ярче проявляются волновые свойства.

Земцова Екатерина.

Исследовательская работа.

Скачать:

Предварительный просмотр:

Чтобы пользоваться предварительным просмотром презентаций создайте себе аккаунт (учетную запись) Google и войдите в него: https://accounts.google.com


Подписи к слайдам:

« Шкала электромагнитных излучений.» Работу выполнила ученица 11 класса: Земцова Екатерина Руководитель: Фирсова Наталья Евгеньевна Волгоград 2016

Содержание Введение Электромагнитное излучение Шкала электромагнитных излучений Радиоволны Влияние радиоволн на организм человека Как можно защититься от радиоволн? Инфракрасное излучение Влияние инфракрасного излучения организм Ультрафиолетовое излучение Рентгеновское излучение Влияние рентгена на человека Воздействие ультрафиолетового излучения Гамма-излучение Воздействие радиационного излучения на живой организм Выводы

Введение Электромагнитные волны – неизбежные спутники бытового комфорта. Они пронизывают пространство вокруг нас и наши тела: источники ЭМ-излучения согревают и освещают дома, служат для приготовления пищи, обеспечивают мгновенную связь с любым уголком мира.

Актуальность Влияние электромагнитных волн на организм человека сегодня – предмет частых споров. Однако, опасны не сами электромагнитные волны, без которых действительно ни один аппарат не смог бы работать, а их информационная составляющая, которую нельзя обнаружить обычными осциллографами.* Осциллограф - прибор, предназначенный для исследования амплитудных параметров электрического сигнала *

Задачи: Рассмотреть каждый вид электромагнитного излучения подробно Выявить, какое влияние он оказывает на здоровье человека

Электромагнитное излучение - это распространяющееся в пространстве возмущение (изменение состояния) электромагнитного поля. Электромагнитное излучение подразделяется на: радиоволны (начиная со сверхдлинных), инфракрасное излучение, ультрафиолетовое излучение, рентгеновское излучение гамма излучение (жёсткое)

Шкала электромагнитных излучений - совокупность всех диапазонов частот электромагнитного излучения. В качестве спектральной характеристики электромагнитного излучения используют следующие величины: Длину волны Частоту колебаний Энергию фотона (кванта электромагнитного поля)

Радиоволны - электромагнитное излучение с длинами волн в электромагнитном спектре длиннее инфракрасного света. Радиоволны имеют частоту от 3 кГц до 300 ГГц, и соответствующую длину волны от 1 миллиметра до 100 километров. Как и все другие электромагнитные волны, радиоволны распространяются со скоростью света. Естественными источниками радиоволн являются молнии и астрономические объекты. Искусственно созданные радиоволны используются для стационарной и мобильной радиосвязи, радиовещания, радиолокации и других навигационных систем, спутников связи, компьютерных сетей и других бесчисленных приложений.

Радиоволны делятся на частотные диапазоны это: длинные волны, средние волны, короткие волны, и ультракороткие волны. Волны этого диапазона называются длинными, поскольку их низкой частоте соответствует большая длина волны. Они могут распространяться на тысячи километров, так как способны огибать земную поверхность. Поэтому многие международные радиостанции вещают на длинных волнах. Длинные волны.

Распространяются не на очень большие расстояния, поскольку могут отражаться только от ионосферы (одного из слоев атмосферы Земли). Передачи на средних волнах лучше принимают ночью, когда повышается отражательная способность ионосферного слоя. Средние волны

Короткие волны -многократно отражаются от поверхности Земли и от ионосферы, благодаря чему распространяются на очень большие расстояния. Передачи радиостанции, работающей на коротких волнах, можно принимать на другой стороне земного шара. -могут отражаться только, от поверхности Земли и потому пригодны для вещания лишь на очень малые расстояния. На волнах УКВ-диапазона часто передают стереозвук, так как на них слабее помехи. Ультракороткие волны (УКВ)

Влияние радиоволн на организм человека По каким параметрам различается воздействие радиоволн на организм? Термическое действие можно объяснить на примере человеческого тела: встречая на пути препятствие – тело человека, волны проникают в него. У человека они поглощаются верхним слоем кожи. При этом, образуется тепловая энергия, которая выводится системой кровообращения. 2. Нетермическое действие радиоволн. Типичный пример – волны, исходящие от антенны мобильного телефона. Здесь можно обратить внимание на опыты, проводимые учеными с грызунами. Они смогли доказать воздействие на них нетермических радиоволн. Однако, не сумели доказать их вред на организм человека. Чем успешно и пользуются и сторонники, и противники мобильной связи, манипулируя сознанием людей.

Кожный покров человека, точнее, его внешние слои, абсорбирует (поглощает) радиоволны, вследствие чего выделяется тепло, которое абсолютно точно можно зафиксировать экспериментально. Максимально допустимое повышение температуры для человеческого организма составляет 4 градуса. Из этого следует, что для серьёзных последствий человек должен подвергаться продолжительному воздействию довольно мощных радиоволн, что маловероятно в повседневных бытовых условиях. Широко известно, что электромагнитное излучение препятствует качественному приёму телесигнала. Смертельно опасны радиоволны для владельцев электрических кардиостимуляторов – последние имеют чёткий пороговый уровень, выше которого электромагнитное излучение, окружающее человека, подниматься не должно.

Приборы, с которыми человек сталкивается в процессе своей жизнедеятельности мобильные телефоны; радиопередающие антенны; радиотелефоны системы DECT; сетевые беспроводные устройства; Bluetooth -устройства; сканеры тела; бебифоны; бытовые электроприборы; высоковольтные линии электропередач.

Как можно защититься от радиоволн? Единственный действенный метод – находиться от них дальше. Доза излучения снижается пропорционально расстоянию: тем меньше, чем дальше от излучателя находится человек. Бытовые приборы (дрели, пылесосы) образуют эл.магнитные поля вокруг шнура питания при условии неграмотно установленной электропроводки. Чем больше мощность прибора, тем больше его воздействие. Защититься можно их расположением как можно более дальше от людей. Неиспользуемые приборы должны отключаться от сети.

Инфракрасное излучение также называют «тепловым» излучением, так как инфракрасное излучение от нагретых предметов воспринимается кожей человека как ощущение тепла. При этом длины волн, излучаемые телом, зависят от температуры нагревания: чем выше температура, тем короче длина волны и выше интенсивность излучения. Спектр излучения абсолютно чёрного тела при относительно невысоких (до нескольких тысяч Кельвинов) температурах лежит в основном именно в этом диапазоне. Инфракрасное излучение испускают возбуждённые атомы или ионы. Инфракрасное излучение

Глубина проникновения и соответственно прогрева организма инфракрасным излучением зависит от длины волны. Коротковолновое излучение способно проникать в организм на глубину нескольких сантиметров и нагревает внутренние органы, в то время как длинноволновое излучение задерживается влагой, содержащейся в тканях, и повышает температуру покровов тела. Особенно опасно воздействие интенсивного инфракрасного излучения на мозг - оно может вызвать тепловой удар. В отличие от других видов излучений, например рентгеновского, СВЧ и ультрафиолета, инфракрасное излучение нормальной интенсивности не оказывает негативного влияния на организм. Влияние инфракрасного излучения организм

Ультрафиолетовое излучение – это невидимое глазом электромагнитное излучение, располагающееся на спектре между видимым и рентгеновским излучениями. Ультрафиолетовое излучение Диапазон ультрафиолетового излучения, доходящий до поверхности Земли, составляет 400 – 280 нм, а более короткие волны, исходящие от Солнца поглощаются ещё в стратосфере при помощи озонового слоя.

Свойства УФ излучения химическая активность (ускоряет протекание химических реакций и биологических процессов) проникающая способность уничтожение микроорганизмов, благотворное влияние на организм человека (в небольших дозах) способностью вызывать люминесценцию веществ (их свечение с различной окраской испускаемого света)

Воздействие ультрафиолетового излучения Воздействие ультрафиолетового излучения на кожу, превышающее естественную защитную способность кожи к загару, приводит к ожогам разной степени. Ультрафиолетовое излучение может приводить к образованию мутаций (ультрафиолетовый мутагенез). Образование мутаций, в свою очередь, может вызывать рак кожи, меланому кожи и её преждевременное старение. Эффективным средством защиты от ультрафиолетового излучения служит одежда и специальные кремы от загара c числом «SPF» больше 10. Ультрафиолетовое излучение средневолнового диапазона (280-315 нм) практически неощутимо для глаз человека и в основном поглощается эпителием роговицы, что при интенсивном облучении вызывает радиационное поражение - ожог роговицы (электроофтальмия). Это проявляется усиленным слезотечением, светобоязнью, отёком эпителия роговицы Для защиты глаз используются специальные защитные очки, задерживающие до 100 % ультрафиолетового излучения и прозрачные в видимом спектре. Для еще более коротких волн нет подходящего по прозрачности материала для линз объектива, и приходится применять отражательную оптику - вогнутые зеркала.

Рентгеновское излучение - электромагнитные волны, энергия фотонов которых лежит на шкале электромагнитных волн между ультрафиолетовым излучением и гамма-излучением Применение рентгеновского излучения в медицине Причиной применения рентгеновского излучения в диагностике послужила их высокая проникающая способность. В первое время после открытия, рентгеновское излучение использовалось по большей части, для исследования переломов костей и определения местоположения инородных тел (например, пуль) в теле человека. В настоящее время применяют несколько методов диагностики с помощью рентгеновских лучей.

Рентгеноскопия После прохождения рентгеновских лучей через тело пациента врач наблюдает теневое его изображение. Между экраном и глазами врача должно быть установлено свинцовое окно для того, чтобы защитить врача от вредного действия рентгеновских лучей. Этот метод дает возможность изучить функциональное состояние некоторых органов. Недостатки этого метода – недостаточно контрастные изображения и сравнительно большие дозы излучения, получаемые пациентом во время процедуры. Флюорография Используют, как правило, для предварительного исследования состояния внутренних органов пациентов с помощью малых доз рентгеновского излучения. Рентгенография Это метод исследования с помощью рентгеновских лучей, в ходе которого изображение записывается на фотографическую пленку. Рентгеновские фотографии содержат больше деталей и потому они являются более информативными. Могут быть сохранены для дальнейшего анализа. Общая доза излучения меньше, чем применяемая в рентгеноскопии.

Рентгеновское излучение является ионизирующим. Оно воздействует на ткани живых организмов и может быть причиной лучевой болезни, лучевых ожогов и злокачественных опухолей. По причине этого при работе с рентгеновским излучением необходимо соблюдать меры защиты. Считается, что поражение прямо пропорционально поглощённой дозе излучения. Рентгеновское излучение является мутагенным фактором.

Влияние рентгена на организм Рентгеновские лучи обладают большой проникающей способностью, т.е. они способны беспрепятственно проникать сквозь изучаемые органы и ткани. Влияние рентгена на организм проявляется также тем, что рентгеновское излучение ионизирует молекулы веществ, что приводит к нарушению первоначальной структуры молекулярного строения клеток. Тем самым формируются ионы (положительно или отрицательно заряженные частицы), а также молекулы, которая становятся активными. Эти изменения в той или иной мере могут быть причиной развития лучевых ожогов кожи и слизистых, лучевой болезни, а также мутаций, что приводит к формированию опухоли, в том числе и злокачественной. Однако эти изменения могут возникнуть только в том случае, если продолжительность и частота воздействия рентгена на организм значительная. Чем мощнее рентгеновский луч и чем длительнее воздействие, тем выше риск получения негативных эффектов.

В современной рентгенологии используются приборы, которые обладают очень маленькой энергией луча. Считается, что риск развития онкологических заболеваний после проведения одного стандартного рентгеновского исследования крайне мал и не превышает 1 тысячной процента. В клинической практике применяется весьма короткий промежуток времени при условии, что потенциальная польза от получения данных о состоянии организма, значительно выше его потенциальной опасности. Врачи-рентгенологи, а также техники и лаборанты, должны придерживаться обязательных мер защиты. Врач, производящий манипуляцию облачается в специальный защитный фартук, который представляет собой защитные свинцовые пластины. Кроме того, врачи-рентгенологи имеют индивидуальный дозиметр, и как только он зафиксирует, что доза облучения велика, врач отстраняется от работы с рентгеном. Таким образом, рентгеновское излучение, хоть и обладает потенциально опасными эффектами в отношении организма, на практике безопасно.

Гамма-излучение - вид электромагнитного излучения с чрезвычайно малой длиной волны - менее 2·10−10 м имеет самую высокую проникающую способность. Такой вид излучения может задержать толстая свинцовая или бетонная плита. Опасность радиации состоит в ее ионизирующем излучении, взаимодействующим с атомами и молекулами, которые это воздействие превращает в положительное заряженные ионы, тем самым разрывая химические связи молекул, составляющих живые организмы, и вызывая биологически важные изменения.

Мощность дозы - показывает какую дозу облучения за промежуток времени получит предмет, либо живой организм. Единица измерения - Зиверт /час. Годовые эффективные эквивалентные дозы, мкЗв /год Космическое излучение 32 Облучение от стройматериалов и на местности 37 Внутреннее облучение 37 Радон-222, радон-220 126 Медицинские процедуры 169 Испытания ядерного оружия 1,5 Ядерная энергетика 0,01 Всего 400

Таблица результатов однократного воздействия гамма-излучений на организм человека, измеряемое в зивертах.

Воздействие радиационного излучения на живой организм вызывает в нем различные обратимые и необратимые биологические изменения. И эти изменения делятся на две категории - соматические изменения, вызываемые непосредственно у человека, и генетические, возникающие у потомков. Тяжесть воздействия радиации на человека зависит от того, как происходит это воздействие - сразу или порциями. Большинство органов успевает восстановиться в той или и ной степени от радиации, поэтому они лучше переносят серию кратковременных доз, по сравнению с той же суммарной дозой облучения, получаемой за один раз. Красный костный мозг и органы кроветворной системы, репродуктивные органы и органы зрения наиболее сильно подвержены воздействию радиации Дети сильнее подвержены воздействию радиации, чем взрослый человек. Большинство органов взрослого человека не так подвержены радиации - это почки, печень, мочевой пузырь, хрящевые ткани.

Выводы Подробно рассмотрены виды электромагнитного излучения Выявлено, что инфракрасное излучение при нормальной интенсивности не оказывает негативного влияния на организм рентгеновское излучение может быть причиной лучевых ожогов и злокачественных опухолей гамма излучение вызывает биологически важные изменения в организме

Спасибо за внимание

О чем рассказывает свет Суворов Сергей Георгиевич

Шкала электромагнитных излучений

Таким образом, шкала излучений, обнаруженных человеком в природе, оказалась очень широкой. Если идти от наиболее длинных волн к коротким, мы увидим следующую картину (рис. 27). Сначала идут радиоволны, они самые длинные. В их же число входят и излучения, открытые Лебедевым и Глаголевой-Аркадьевой; это - ультракороткие радиоволны. Далее последовательно идут инфракрасные излучения, видимый свет, ультрафиолетовые излучения, рентгеновские и, наконец, гамма-излучения.

Границы между различными излучениями весьма условны: излучения непрерывно следуют одно за другим и даже отчасти перекрывают друг друга.

Взглянув на шкалу электромагнитных волн, читатель может заключить, что видимые нами излучения составляют весьма небольшую часть известного нам общего спектра излучений.

Для обнаружения и изучения невидимых излучений физик должен был вооружиться дополнительными приборами. Невидимые излучения можно обнаружить по их действию. Так, например, радиоизлучения действуют на антенны, создавая в них электрические колебания: инфракрасные излучения сильнее всего действуют на тепловые приборы (термометры), а все остальные излучения наиболее сильно действуют на фотопластинки, вызывая в них химические изменения. Антенны, тепловые приборы, фотопластинки - это новые «глаза» физиков для различных участков шкалы электромагнитных волн.

Рис. 27. Шкала излучений. Заштрихованная сеткой область изображает часть спектра, видимую человеческим глазом

Открытие многообразных электромагнитных излучений- одна из самых блестящих страниц истории физики.

Из книги Курс истории физики автора Степанович Кудрявцев Павел

Открытие электромагнитных волн Вернемся, однако, к Герцу. Как мы видели, в своей первой работе Герц получил быстрые электрические колебания и исследовал действие вибратора на приемный контур, особенно сильное в случае резонанса. В работе «О действии тока» Герц перешел к

Из книги НИКОЛА ТЕСЛА. ЛЕКЦИИ. СТАТЬИ. автора Тесла Никола

ИНТЕРЕСНАЯ ОСОБЕННОСТЬ РЕНТГЕНОВСКИХ ИЗЛУЧЕНИЙ* Возможно, ценность изложенных здесь результатов, полученных с помощью ламп, испускающих рентгеновские излучения, в том, что они проливают дополнительный свет на природу излучений, а также лучше иллюстрируют уже известные

Из книги О чем рассказывает свет автора Суворов Сергей Георгиевич

Возбуждение электромагнитных волн Простейший способ возбудить электромагнитные волны - создать электрический разряд. Представим себе металлический стержень с шаром на конце, заряженный положительным электричеством, и другой такой же стержень, заряженный

Из книги История лазера автора Бертолотти Марио

Обнаружение электромагнитных волн Но электромагнитные волны в пространстве глазом не воспринимаются. Как же их обнаружить? И что, собственно, колеблется в этих волнах?Свойства водяных волн мы изучали, наблюдая за колебаниями пробки, па которую действовала водяная волна.

Из книги Атомная проблема автора Рэн Филипп

Длина волны электромагнитных волн Но там, где есть периодическое колебание, которое распространяется в пространстве, там можно говорить и о длине волны. У водяных волн мы называли длиной волны расстояние между двумя ближайшими гребнями. А что такое гребень водяной волны?

Из книги Астероидно-кометная опасность: вчера, сегодня, завтра автора Шустов Борис Михайлович

Поиски решетки для рентгеновских излучений Однако в работе с дифракционными решетками встретились свои трудности.Дело в том, что однотипной решетки для всех излучений подобрать нельзя. Для различных излучений нужны различные решетки. Ширина светлых штрихов решетки

Из книги автора

Нашлась решетка и для рентгеновских излучений Но нашлась дифракционная решетка и для рентгеновских излучений. Сама природа пришла здесь на помощь.В конце XIX и начале XX века физики усиленно изучали строение твердых тел. Известно, что многие твердые тела являются

Из книги автора

Серии рентгеновских излучений На рентгеновские спектры атомов внешние условия не оказывают столь большого влияния. Даже когда атомы вступают в химические соединения, их внутренние слои не перестраиваются. Поэтому рентгеновские спектры молекул те же, что и спектры

Из книги автора

Задача преобразования длинноволновых излучений в видимый свет В естественных преобразователях света - люминесцентных веществах - преобразуется свет с длиной волны более короткой, чем у видимого, в свет видимый. Однако практические потребности выдвигают задачу

Из книги автора

Экспериментальное открытие электромагнитных волн Параллельно с теоретическими изучениями уравнений Максвелла проводились экспериментальные исследования по генерации электрических колебаний, получаемых при разряде обычного конденсатора в электрической цепи, и

Из книги автора

Глава XI Проблемы защиты от радиоактивных излучений Проблемы защиты от радиоактивных излучений возникают на различных ступенях использования атомной энергии:- на низшей ступени, к которой относится, например, добыча урана, являющегося основным видом ядерного

Из книги автора

I. Защита от радиоактивных излучений на атомных заводах 1) Дозы радиоактивных излучений чаще всего выражаются в рентгенах.Различные международные комиссии установили, что для работающих на атомных заводах допустимая недельная доза облучения равна 0,3 рентгена. Эта доза,

Из книги автора

9.3. Туринская шкала Когда достаточно крупный объект только что открыт, заранее не известно, какую опасность он может представлять для Земли в ближайшем или более отдаленном будущем. Не исключено, хотя и маловероятно, что получение как можно большего числа наблюдений в

Из книги автора

9.4. Палермская техническая шкала для оценки угрозы столкновения Земли с астероидами и кометами Туринская шкала, рассмотренная в предыдущем разделе, была разработана прежде всего для описания и распространения сведений об астероиднокометной опасности средствами

Loading...Loading...