Системы автоматизации технологических процессов и производств. Автоматизация технологических процессов и производств: кем работать по этой специальности

Широкое внедрение автоматизации - наиболее эффективный путь повышения производительности труда.

На многих объектах для организации правильного технологического процесса необходимо длительно поддерживать заданные значения различных физических параметров или изменять их во времени по определенному закону. Вследствие различных внешних воздействий на объект эти параметры отклоняются от заданных. Оператор или машинист должен так воздействовать на объект, чтобы значения регулируемых параметров не выходили за допустимые пределы, т. е. управлять объектом. Отдельные функции оператора могут выполнять различные автоматические приборы. Воздействие их на объект осуществляется по команде человека, который следит за состоянием параметров. Такое управление называют автоматическим. Чтобы полностью исключить человека из процесса управления, система должна быть замкнутой: приборы должны следить за отклонением регулируемого параметра и соответственно давать команду на управление объектом. Такая замкнутая система управления называется системой автоматического регулирования (САР).

Первые простейшие автоматические системы регулирования для поддержания заданных значений уровня жидкости, давления пара, скорости вращения появились во второй половине XVIII в. с развитием паровых машин. Создание первых автоматических регуляторов шло интуитивно и было заслугой отдельных изобретателей. Для дальнейшего развития средств автоматизации необходимы были методы расчета автоматических регуляторов. Уже во второй половине XIX в. была создана стройная теория автоматического регулирования, основанная на математических методах. В работах Д. К. Максвелла "О регуляторах" (1866г.) и И.А. Вышнеградского "Об общей теории регуляторов" (1876г.), "О регуляторах прямого действия" (1876г.) регуляторы и объект регулирования впервые рассматриваются как единая динамическая система. Теория автоматического регулирования непрерывно расширяется и углубляется.

Современный этап развития автоматизации характеризуется значительным усложнением задач автоматического управления: увеличением числа регулируемых параметров и взаимосвязью объектов регулирования; повышением требуемой точности регулирования, их быстродействия; увеличением дистанционности управления и т. д. Эти задачи могут быть решены только на базе современной электронной техники, широкого внедрения микропроцессоров и универсальных компьютеров.

Широкое внедрение автоматизации на холодильных установках началось только в XX в., но уже в 60-х годах созданы крупные полностью автоматизированные установки.

Для управления различными технологическими процессами необходимо поддерживать в заданных пределах, а иногда изменять по определенному закону значение одной или одновременно нескольких физических величин. При этом необходимо следить, чтобы не возникали опасные режимы работы.

Устройство, в котором протекает процесс, требующий непрерывного регулирования, называют управляемым объектом, или сокращенно объектом (рис. 1,а).

Физическая величина, значение которой не должно выходить за определенные пределы, называется управляемым, или регулируемым параметром и обозначается буквой X. Это может быть температура t, давление р, уровень жидкости Н, относительная влажность? и т. д. Начальное (заданное) значение регулируемого параметра обозначим Х 0 . В результате внешних воздействий на объект действительное значение X может отклоняться от заданного Х 0 . Величину отклонения регулируемого параметра от своего начального значения называют рассогласованием:

Внешнее воздействие на объект, не зависящее от оператора и увеличивающее рассогласование, называют нагрузкой и обозначают Мн (или QH -- когда речь идет о тепловой нагрузке).

Чтобы уменьшить рассогласование, необходимо оказать на объект воздействие, противоположное нагрузке. Организованное воздействие на объект, уменьшающее рассогласование, называют регулирующим воздействием -- М р (или Q P -- при тепловом воздействии).

Значение параметра X (в частности, Х 0) сохраняется постоянным только тогда, когда регулирующее воздействие равно нагрузке:

Х = const только при М р = М н.

Это основной закон регулирования (как ручного, так и автоматического). Для уменьшения положительного рассогласования необходимо, чтобы М р было по модулю больше, чем М н. И наоборот, при М р <М н рассогласование увеличивается.

Автоматические системы . При ручном регулировании для изменения регулирующего воздействия машинисту приходится иногда выполнять целый ряд операций (открытие или закрытие вентилей, пуск насосов, компрессоров, изменение их производительности и т. д.). Если эти операции выполняются автоматическими устройствами по команде человека (например, нажатием кнопки "Пуск"), то такой способ работы называют автоматическим управлением. Сложная схема такого управления показана на рис. 1,б, Элементы 1, 2, 3 и 4 преобразуют один физический параметр в другой, более удобный для передачи следующему элементу. Стрелки показывают направление воздействия. Входным сигналом автоматического управления Х упр может быть нажатие кнопки, перемещение ручки реостата и т. д. Для увеличения мощности передаваемого сигнала к отдельным элементам может быть подведена дополнительная энергия Е.

Для управления объектом машинисту (оператору) необходимо непрерывно получать информацию от объекта, т. е. вести контроль: замерять значение регулируемого параметра X и подсчитывать величину рассогласования?Х. Этот процесс также можно автоматизировать (автоматический контроль), т. е. установить приборы, которые будут показывать, записывать величину?Х или подавать сигнал при выходе?Х за допустимые пределы.

Информацию, получаемую от объекта (цепочка 5--7), называют обратной связью, а автоматическое управление -- прямой связью.

При автоматическом управлении и автоматическом контроле оператору достаточно взглянуть на приборы и нажать кнопку. Нельзя ли и этот процесс автоматизировать, чтобы совсем обойтись без оператора? Оказывается, достаточно подать выходной сигнал автоматического контроля Х к на вход автоматического управления (к элементу 1), чтобы процесс управления стал полностью автоматизированным. При этом элемент 1 сравнивает сигнал Х к с заданным Х 3 . Чем больше рассогласование?Х, тем больше разность Х к --Х 3 , и соответственно увеличивается регулирующее воздействие М р.

Автоматические системы управления с замкнутой цепью воздействия, в которых управляющее воздействие вырабатывается в зависимости от рассогласования, называют системой автоматической регулирования (САР).

Элементы автоматического управления (1--4) и контроля (5--7) при замыкании цепи образуют автоматический регулятор. Таким образом, автоматическая система регулирования состоит из объекта и автоматического регулятора (рис. 1,в). Автоматическим регулятором (или просто регулятором) называют устройство, которое воспринимает рассогласование и воздействует на объект так, чтобы уменьшить это рассогласование.

По цели воздействия на объект различают следующие системы управления:

а) стабилизирующие,

б) программные,

в) следящие,

г) оптимизирующие.

Стабилизирующие системы поддерживают значение регулируемого параметра постоянным (в заданных пределах). Настройка у них постоянна.

Программные системы управления имеют настройку, изменяющуюся с течением времени по заданной программе.

В следящих системах настройка непрерывно изменяется в зависимости от какого-то внешнего фактора. В установках кондиционирования воздуха, например, в жаркие дни выгоднее поддерживать в помещении более высокую температуру, чем в прохладные. Поэтому желательно непрерывно изменять настройку в зависимости от температуры наружного воздуха.

В оптимизирующих системах поступающая на регулятор информация от объекта и внешней среды предварительно обрабатывается для определения наиболее выгодного значения регулируемого параметра. В соответствии с этим изменяется настройка.

Для поддержания заданного значения регулируемого параметра Х 0 кроме автоматических систем регулирования иногда применяют автоматическую систему отслеживания нагрузки (рис. 1,г). В этой системе регулятор воспринимает изменение нагрузки, а не рассогласования, обеспечивая непрерывное равенство М р =М н. Теоретически при этом точно обеспечивается X 0 = const. Однако практически из-за различных внешних воздействий на элементы регулятора (помехи) равенство М Р =М н может нарушиться. Возникающее при этом рассогласование?Х оказывается значительно больше, чем в системе автоматического регулирования, так как в системе отслеживания нагрузки отсутствует обратная связь, т. е. она не реагирует на рассогласование?Х.

В сложных автоматических системах (рис. 1,д) наряду с основными цепями (прямой и обратной связями) могут быть и дополнительные цепи прямой и обратной связей. Если направление дополнительной цепи совпадает с основной, то ее называют прямой (цепи 1 и 4); если направления воздействий не совпадают, то возникает дополнительная обратная связь (цепи 2 и 3). Входом автоматической системы считают задающее воздействие, выходом -- регулируемый параметр.

Наряду с автоматическим поддержанием параметров в заданных пределах необходима также защита установок от опасных режимов, которую выполняют системы автоматической защиты (САЗ). Они могут быть профилактическими или аварийными.

Профилактическая защита воздействует на регулирующие устройства или отдельные элементы регулятора до наступления опасного режима. Например, в случае прекращения подачи воды на конденсатор компрессор надо остановить, не дожидаясь аварийного повышения давления.

Аварийная защита воспринимает отклонение регулируемого параметра и, когда значение его становится опасным, отключает один из узлов системы, чтобы рассогласование больше не возрастало. При срабатывании автоматической защиты нормальное функционирование системы автоматического регулирования прекращается и регулируемый параметр обычно выходит за допустимые пределы. Если после срабатывания защиты контролируемый параметр вернулся в заданную зону, САЗ может снова включить отключенный узел, и система регулирования продолжает нормально работать (защита многоразового действия).

На крупных объектах чаще применяют САЗ одноразового действия, т. е. после возвращения контролируемого параметра в допустимую зону отключенные защитой узлы сами уже не включаются.


САЗ обычно сочетают с сигнализацией (общей или дифференцированной, т. е. указывающей на причину срабатывания). Преимущества автоматизации. Чтобы выявить преимущества автоматизации, сравним для примера графики изменения температуры в холодильной камере при ручном и автоматическом ее регулировании (рис. 2). Пусть требуемая температура в камере от 0 до 2°С. Когда температура достигает 0°С (точка 1), машинист останавливает компрессор. Температура начинает повышаться, и, когда поднимется примерно до 2°С, машинист снова включает компрессор (точка 2). График показывает, что из-за несвоевременного включения или остановки компрессора температура в камере выходит за допустимые пределы (точки 3, 4, 5). При частых повышениях температуры (участок А) сокращаются допустимые сроки хранения, ухудшается качество скоропортящихся продуктов. Пониженная температура (участок Б) вызывает усушку продуктов, а иногда и снижает их вкусовые качества; кроме того, на дополнительную работу компрессора бесцельно расходуются электроэнергия, охлаждающая вода, преждевременно наступает износ компрессора.

При автоматическом регулировании реле температуры включает и останавливает компрессор при 0 и +2 °С.

Основные функции защиты приборы также выполняют надежнее, чем человек. Машинист может не заметить быстрого повышения давления в конденсаторе (из-за прекращения подачи воды), неисправность в масляном насосе и пр., приборы же реагируют на эти неисправности мгновенно. Правда, в некоторых случаях неполадки скорее будут замечены машинистом, он услышит стук в неисправном компрессоре, почувствует местную утечку аммиака. Все же опыт эксплуатации показал, что автоматические установки работают значительно надежнее.

Таким образом, автоматизация обеспечивает следующие основные преимущества:

1) сокращаются затраты времени на обслуживание;

2) точнее поддерживается требуемый технологический режим;

3) уменьшаются эксплуатационные расходы (на электроэнергию, воду, ремонт и пр.);

4) повышается надежность работы установок.

Несмотря на перечисленные преимущества, автоматизация целесообразна лишь в тех случаях, когда это экономически обосновано, т. е. расходы, связанные с автоматизацией, окупаются экономией от ее внедрения. Кроме того, необходимо автоматизировать процессы, нормальное протекание которых не может быть обеспечено при ручном управлении: точные технологические процессы, работа во вредной или взрывоопасной среде.

Из всех процессов автоматизации наибольшее практическое значение имеет автоматическое регулирование. Поэтому далее в основном рассматриваются автоматические системы регулирования, являющиеся основой автоматизации холодильных установок.

Литература

1. Автоматизация технологических процессов пищевых производств /Под ред. Е. Б. Карпина.

2. Автоматические приборы, регуляторы и управляющие машины: Справочник/ Под ред. Б. Д. Кошарского.

3. Петров. И. К., Солощенко М. Н., Царьков В. Н. Приборы и средства автоматизации для пищевой промышленности: Справочник.

4. Автоматизация технологических процессов пищевой промышленности. Соколов.

Типы систем автоматизации включают в себя:

  • неизменяемые системы. Это системы, в которых последовательность действий определяется конфигурацией оборудования или условиями процесса и не может быть изменена в ходе процесса.
  • программируемые системы. Это системы, в которых последовательность действий может изменяться в зависимости от заданной программы и конфигурации процесса. Выбор необходимой последовательности действий осуществляется за счет набора инструкций, которые могут быть прочитаны и интерпретированы системой.
  • гибкие (самонастраиваемые) системы. Это системы, которые способны осуществлять выбор необходимых действий в процессе работы. Изменение конфигурации процесса (последовательности и условий выполнения операций) осуществляется на основании информации о ходе процесса.

Эти типы систем могут применяться на всех уровнях автоматизации процессов по отдельности или в составе комбинированной системы.

В каждой отрасли экономики существуют предприятия и организации, которые производят продукцию или предоставляют услуги. Все эти предприятия можно разделить на три группы, в зависимости от их «удаленности» в цепочке переработки природных ресурсов.

Первая группа предприятий, это предприятия, добывающие или производящие природные ресурсы. К таким предприятиям относятся, например, сельскохозяйственные производители, нефтегазодобывающие предприятия.

Вторая группа предприятий, это предприятия, выполняющие переработку природного сырья. Они изготавливают продукцию из сырья, добытого или произведенного предприятиями первой группы. К таким предприятиям относятся, например, предприятия автомобильной промышленности, сталелитейные предприятия, предприятия электронной промышленности, электростанции и т.п.

Третья группа, это предприятия сферы услуг. К таким организациям относятся, например, банки, образовательные учреждения, медицинские учреждения, рестораны и пр.

Для всех предприятий можно выделить общие группы процессов, связанные с производством продукции или предоставлением услуг.

К таким процессам относятся:

  • бизнес процессы;
  • процессы проектирования и разработки;
  • процессы производства;
  • процессы контроля и анализа.
  • Бизнес процессы – это процессы, обеспечивающие взаимодействие внутри организации и с внешними заинтересованными сторонами (потребителями, поставщиками, надзорными органами и пр.). К этой категории процессов можно отнести процессы маркетинга и продаж, взаимодействия с потребителями , процессы финансового, кадрового, материального планирования и учета и пр.
  • Процессы проектирования и разработки – это все процессы, связанные с разработкой продукции или услуги. К таким процессам относятся процессы планирования разработки, сбора и подготовки исходных данных, выполнение проекта, контроль и анализ результатов проектирования и пр.
  • Процессы производства – это процессы, необходимые для производства продукции или предоставления услуг. К этой группе относятся все производственные и технологические процессы. Они также включают в себя процессы планирования потребности и планирования мощностей, логистические процессы и процессы обслуживания.
  • Процессы контроля и анализа – эта группа процессов связана со сбором и обработкой информации о выполнении процессов. К таким процессам относятся процессы контроля качества, операционного управления, процессы контроля запасов и пр.

Большинство процессов, относящихся к этим группам, может быть автоматизирована. На сегодняшний день, существуют классы систем, которые обеспечивают автоматизацию этих процессов.

Техническое задание на подсистему "Склады" Техническое задание на подсистему "Документооборот" Техническое задание на подсистему "Закупки"

Стратегия автоматизации процессов

Автоматизация процессов представляет собой сложную и трудоемкую задачу. Для успешного решения этой задачи необходимо придерживаться определенной стратегии автоматизации. Она позволяет улучшить процессы и получить от автоматизации ряд существенных преимуществ.

Кратко, стратегию можно сформулировать следующим образом:

  • понимание процесса. Для того чтобы автоматизировать процесс необходимо понимать существующий процесс со всеми его деталями. Процесс должен быть полностью проанализирован. Должны быть определены входы и выходы процесса, последовательность действий, взаимосвязь с другими процессами, состав ресурсов процесса и пр.
  • упрощение процесса. После проведения анализа процесса необходимо упростить процесс. Лишние операции, не приносящие ценности, должны быть сокращены. Отдельные операции могут объединяться или выполняться параллельно. Для улучшения процесса могут быть предложены другие технологии его исполнения.
  • автоматизация процесса. Автоматизация процессов может выполняться только после того, как процесс максимально упростился. Чем проще порядок действий процесса, тем проще его автоматизировать и тем эффективнее будет работать автоматизированный процесс.

И производств - специальность не лёгкая, но нужная. Что же она собой представляет? Где и над чем можно будет работать после получения профессиональной ступени?

Общая информация

Автоматизация технологических процессов и производств - специальность, позволяющая заниматься созданием современных аппаратно-технических и программных средств, которые могут проектировать, исследовать, проводить техническое диагностирование и промышленные испытания. Также человек, овладевший нею, сможет создавать современные системы управления. Код специальности автоматизация технологических процессов и производств - 15.03.04 (220700.62).

Ориентируясь по нему, можно быстро найти интересующую и посмотреть, чем же там занимаются. Но если говорить об этом в целом, то на таких кафедрах готовятся специалисты, умеющие создавать современные автоматизированные объекты, разрабатывать необходимое программное обеспечение и эксплуатировать их. Вот что собой представляет автоматизация

Номер специальности был приведён ранее в виде двух разных числовых значений из-за того, что была введена новая система классификации. Поэтому сначала указано, как описываемая специальность обозначается сейчас, а затем, как это делалось ранее.

Что изучается

Специальность "автоматизация технологических процессов и производств СПО" представляет собой во время обучения совокупность средств и методов, которые направлены на то, чтобы реализовать системы, которые позволяют управлять осуществляемыми процессами без непосредственного в них участия человека (или же для него остаются самые важные вопросы).

В качестве объектов влияния названных специалистов выступают те сферы деятельности, где присутствуют сложные и монотонные процессы:

  • промышленность;
  • сельское хозяйство;
  • энергетика;
  • транспорт;
  • торговля;
  • медицина.

Наибольшее внимание уделяется технологическим и производственным процессам, технической диагностике, научным исследованиям и производственным испытаниям.

Подробная информация об обучении

Мы рассмотрели, что же изучается желающими получить описываемую специальность, в целом. А сейчас давайте детализируем их знания:

  1. Собирать, группировать и анализировать исходные данные, необходимые для проектирования технических систем и модулей их управления.
  2. Оценивать значимость, перспективность и актуальность объектов, над которыми ведётся работа.
  3. Проектировать аппаратно-программные комплексы автоматизированных и автоматических систем.
  4. Контролировать проекты на соответствие стандартам и иной нормативной документации.
  5. Проектировать модели, которые покажут продукцию на всех этапах её жизненного цикла.
  6. Выбирать средства программного обеспечения и автоматизированного производства, которые наилучшим образом подойдут под конкретный случай. А также дополняющие их системы испытаний, диагностики, управления и контроля.
  7. Разрабатывать требования и правила к различной продукции, процессу её изготовления, качеству, условиям транспортировки и утилизации после использования.
  8. Выполнять и уметь понимать различную конструкторскую документацию.
  9. Оценивать уровень брака у созданной продукции, выявлять его причины появления, разрабатывать решения, которые предупредят отклонения от нормы.
  10. Сертифицировать разработки, технологические процессы, программные и
  11. Разрабатывать инструкции относительно использования продукции.
  12. Совершенствовать средства автоматизации и системы выполнения определённых процессов.
  13. Обслуживать технологическое оборудование.
  14. Настраивать, налаживать и регулировать системы автоматизации, диагностики и контроля.
  15. Повышать квалификацию сотрудников, которые будут работать с новым оборудованием.

На какие должности можно рассчитывать

Мы с вами рассмотрели, чем отличается специальность "автоматизация технологических процессов и производств". Работа же по ней может осуществляться на следующих должностях:

  1. Аппаратчик-оператор.
  2. Инженер-схемотехник.
  3. Программист-разработчик.
  4. Инженер-системотехник.
  5. Оператор полуавтоматических линий.
  6. Инженер механизации, автоматизации и автоматизирования производственных процессов.
  7. Конструктор вычислительных систем.
  8. Инженер измерительных приборов и автоматики.
  9. Материаловед.
  10. Техник-электромеханик.
  11. Разработчик автоматизированной системы управления.

Как видите, вариантов довольно много. Причем следует учитывать ещё и то, что в процессе изучения внимание будет уделено большому количеству языков программирования. А это, соответственно, даст широкие возможности в плане трудоустройства после окончания учебы. К примеру, выпускник может пойти и на автомобильный завод, чтобы работать над конвейером для автомобилей, или же в сферу электроники, чтобы создавать микроконтроллеры, процессоры и другие важные и полезные элементы.

Автоматизация технологических процессов и производств - специальность сложная, подразумевающая большой объем знаний, поэтому к ней необходимо будет подойти со всей ответственностью. Но в качестве вознаграждения следует принять тот факт, что здесь есть широкие возможности для творчества.

Для кого лучше всего подойдёт этот путь

Наибольшая вероятность стать успешными на этом поприще у тех, кто занимался чем-то схожим ещё с детства. Скажем, ходил в кружок радиотехники, программировал за своим компьютером или пробовал собрать свой трехмерный принтер. Если же ничем таким вы не занимались, то переживать не стоит. Шансы стать хорошим специалистом есть, просто придётся приложить значительное количество усилий.

Чему необходимо уделить внимание в первую очередь

Физика и математика - это основа описываемой специальности. Первая наука необходима для того, чтобы понимать происходящие процессы на аппаратном уровне. Математика же позволяет разрабатывать решения для сложных задач и создавать модели нелинейного поведения.

При знакомстве с программированием многим, когда они ещё только пишут свои программы «Привет, мир!», кажется, что знание формул и алгоритмов не нужно. Но это ошибочное мнение, и чем лучше потенциальный инженер разбирается в математике, тем больших высот он сможет достичь в разработке программной составляющей.

Что делать, если нет видения будущего?

Итак, учебный курс пройден, а четкого понимания того, что же нужно делать, нет? Что ж, это говорит о присутствии значительных пробелов в полученном образовании. Автоматизация технологических процессов и производств - специальность, как мы уже говорили, сложная, и надеяться, что все необходимые знания дадут в университете, не приходится. Очень многое перебрасывается на самообучение как в плановом режиме, так и подразумевая, что человек сам заинтересуется изучаемыми предметами и уделит им достаточно времени.

Заключение

Вот мы и рассмотрели в общих чертах специальность "автоматизация технологических процессов и производств". Отзывы специалистов, которые окончили это направление и трудятся здесь, говорят, что, несмотря на сложность первоначально, можно претендовать на довольно неплохую заработную плату, начиная с пятнадцати тысяч рублей. А со временем, поднабравшись опыта и умений, и рядовой специалист сможет претендовать на получение до 40 000 руб.! И даже это ещё не верхняя грань, поскольку для буквально гениальных (читайте - тех, кто много времени посвятил самосовершенствованию и развитию) людей возможным является и получение значительно больших сумм.

Иначе она может быть поставлена под сомнение и удалена.
Вы можете отредактировать эту статью, добавив ссылки на .
Эта отметка установлена 1 августа 2014 года .

Автоматизация технологического процесса - совокупность методов и средств, предназначенная для реализации системы или систем, позволяющих осуществлять управление самим технологическим процессом без непосредственного участия человека, либо оставления за человеком права принятия наиболее ответственных решений.

Как правило, в результате автоматизации технологического процесса создаётся АСУ ТП .

Основа автоматизации технологических процессов - это перераспределение материальных, энергетических и информационных потоков в соответствии с принятым критерием управления (оптимальности). В качестве оценочной характеристики может выступать понятие уровня (степени) автоматизации

  • Частичная автоматизация - автоматизация отдельных аппаратов, машин, технологических операций. Производится когда управление процессами вследствие их сложности или скоротечности практически недоступно человеку. Частично автоматизируется как правило действующие оборудование. Локальная автоматизация широко применяется на предприятиях пищевой промышленности.
  • Комплексная автоматизация - предусматривает автоматизацию технологического участка, цеха или предприятия функционирующих как единый, автоматизированный комплекс. Например, электростанции.
  • Полная автоматизация - высшая ступень уровня автоматизации, при которой все функции контроля и управления производством (на уровне предприятия) передаются техническим средствам. На современном уровне развития полная автоматизация практически не применяется, так как функции контроля остаются за человеком. Близкими к полной автоматизации можно назвать предприятия атомной энергетики.

Цели автоматизации

Основными целями автоматизации технологического процесса являются:

  • сокращение численности обслуживающего персонала;
  • увеличение объёмов выпускаемой продукции;
  • повышение эффективности производственного процесса;
  • повышение качества продукции;
  • снижение расходов сырья;
  • повышение ритмичности производства;
  • повышение безопасности;
  • повышение экологичности;
  • повышение экономичности.

Задачи автоматизации и их решение

Цели достигаются посредством решения следующих задач автоматизации технологического процесса:

  • улучшение качества регулирования;
  • повышение коэффициента готовности оборудования;
  • улучшение эргономики труда операторов процесса;
  • обеспечение достоверности информации о материальных компонентах, применяемых в производстве (в т. ч. с помощью управления каталогом);
  • хранение информации о ходе технологического процесса и аварийных ситуациях.

Решение задач автоматизации технологического процесса осуществляется при помощи:

  • внедрения современных средств автоматизации.

Автоматизация технологических процессов в рамках одного производственного процесса позволяет организовать основу для внедрения систем управления производством и систем управления предприятием.

В связи с различностью подходов различают автоматизацию следующих технологических процессов:

  • автоматизация непрерывных технологических процессов (Process Automation);
  • автоматизация дискретных технологических процессов (Factory Automation);
  • автоматизация гибридных технологических процессов (Hybrid Automation).

Примечания

Автоматизация производства предполагает наличие надежных, относительно простых по устройству и управлению машин, механизмов и аппаратов.

Литература

Л. И. Селевцов, Автоматизация технологических процессов. Учебник: Издательский центр "Академия"

В. Ю. Шишмарев, Автоматика. Учебник: Издательский центр "Академия"

Внедрение на предприятия технических средств, позволяющих автоматизировать производственные процессы, является базовым условием эффективной работы. Разнообразие современных методов автоматизации расширяет спектр их применения, при этом затраты на механизацию, как правило, оправдываются конечным результатом в виде увеличения объемов изготавливаемой продукции, а также повышения ее качества.

Организации, которые идут по пути технологического прогресса, занимают лидирующие места на рынке, обеспечивают более качественные трудовые условия и минимизируют потребность в сырье. По этой причине крупные предприятия уже невозможно представить без осуществления проектов по механизации - исключения касаются лишь мелких ремесленнических производств, где автоматизация производства себя не оправдывает ввиду принципиального выбора в пользу ручного изготовления. Но и в таких случаях возможно частичное включение автоматики на некоторых этапах производства.

Основные сведения об автоматизации

В широком смысле автоматизация предполагает создание таких условий на производстве, которые позволят без участия человека выполнять определенные задачи по изготовлению и выпуску продукции. При этом роль оператора может заключаться в решении наиболее ответственных задач. В зависимости от поставленных целей, автоматизация технологических процессов и производств может быть полной, частичной или комплексной. Выбор конкретной модели определяется сложностью технической модернизации предприятия за счет автоматической начинки.

На заводах и фабриках, где реализована полная автоматизация, обычно механизированным и электронным системам управления передается весь функционал по контролю над производством. Такой подход наиболее рационален, если рабочие режимы не предполагают изменений. В частичном виде автоматизация внедряется на отдельных этапах производства или при механизации автономного технического компонента, не требуя создания сложной инфраструктуры управления всем процессом. Комплексный уровень автоматизации производства обычно реализуется на определенных участках - это может быть отдел, цех, линия и т. д. Оператор в данном случае контролирует саму систему, не затрагивая непосредственный рабочий процесс.

Системы автоматизированного управления

Для начала важно отметить, что такие системы предполагают полный контроль над предприятием, фабрикой или заводом. Их функции могут распространяться на конкретную единицу оборудования, конвейер, цех или производственный участок. В данном случае системы автоматизации технологических процессов принимают и обрабатывают информацию от обслуживаемого объекта и на основе этих данных оказывают корректирующее воздействие. Например, если работа выпускающего комплекса не отвечает параметрам технологических нормативов, система по специальным каналам изменит его рабочие режимы согласно требованиям.

Объекты автоматизации и их параметры

Главной задачей при внедрении средств механизации производства является поддержание качественных параметров работы объекта, что в результате отразится и на характеристиках продукции. На сегодняшний день специалисты стараются не углубляться в сущность технических параметров разных объектов, поскольку теоретически внедрение систем управления возможно на любой составной части производства. Если рассматривать в этом плане основы автоматизации технологических процессов, то в перечень объектов механизации войдут те же цеха, конвейеры, всевозможные аппараты и установки. Можно лишь сравнивать степени сложности внедрения автоматики, которая зависит от уровня и масштаба проекта.

Относительно параметров, с которыми ведут работу автоматические системы, можно выделить входные и выходные показатели. В первом случае это физические характеристики продукции, а также свойства самого объекта. Во втором - это непосредственно качественные показатели готового продукта.

Регулирующие технические средства

Приборы, обеспечивающие регулирование, применяются в системах автоматизации в виде специальных сигнализаторов. В зависимости от назначения они могут отслеживать и управлять различными технологическими параметрами. В частности, автоматизация технологических процессов и производств может включать сигнализаторы температурных показателей, давления, характеристик потока и т. д. Технически приборы могут быть реализованы как бесшкальные устройства с электрическими контактными элементами на выходе.

Принцип работы регулирующих сигнализаторов также различен. Если рассматривать наиболее распространенные температурные устройства, то можно выделить манометрические, ртутные, биметаллические и терморезисторные модели. Конструкционное исполнение, как правило, обуславливается принципом действия, но немалое влияние на него оказывают и условия работы. В зависимости от направления работы предприятия, автоматизация технологических процессов и производств может проектироваться с расчетом на специфические условия эксплуатации. По этой причине и регулирующие приборы разрабатываются с ориентировкой на использование в условиях повышенной влажности, физического давления или на действие химических веществ.

Программируемые системы автоматизации

Качество управления и контроля производственных процессов заметно повысилось на фоне активного снабжения предприятий вычислительными устройствами и микропроцессорами. С точки зрения промышленных нужд возможности программируемых технических средств позволяют не только обеспечивать эффективное управление технологическими процессами, но и автоматизировать проектирование, а также проводить производственные испытания и эксперименты.

Устройства ЭВМ, которые применяются на современных предприятиях, в режиме реального времени решают задачи регулирования и управления технологическими процессами. Такие средства автоматизации производства называются вычислительными комплексами и работают на принципе агрегатирования. Системы включают в состав унифицированные функциональные блоки и модули, из которых можно составлять различные конфигурации и приспосабливать комплекс к работе в определенных условиях.

Агрегаты и механизмы в системах автоматизации

Непосредственное исполнение рабочих операций берут на себя электрические, гидравлические и пневматические устройства. По принципу работы классификация предполагает функциональные и порционные механизмы. В пищевой промышленности обычно реализуются подобные технологии. Автоматизация производства в этом случае предполагает внедрение электрических и пневматических механизмов, конструкции которых могут включать электроприводы и регулирующие органы.

Электродвигатели в системах автоматизации

Основу исполнительных механизмов нередко формируют электромоторы. По типу управления они могут быть представлены в бесконтактном и контактном исполнениях. Агрегаты, которые управляются от релейно-контактных приборов, при манипуляциях оператором могут изменять направление движения рабочих органов, но скорость выполнения операций остается неизменной. Если предполагается автоматизация и механизация технологических процессов с применением бесконтактных устройств, то используют полупроводниковые усилители - электрические или магнитные.

Щиты и пульты управления

Для установки оборудования, которое должно обеспечивать управление и контроль производственного процесса на предприятиях, монтируются специальные пульты и щиты. На них размещают приборы для автоматического управления и регулирования, контрольно-измерительную аппаратуру, защитные механизмы, а также различные элементы коммуникационной инфраструктуры. По конструкции такой щит может представлять собой металлический шкаф или плоскую панель, на которой и устанавливаются средства автоматизации.

Пульт, в свою очередь, является центром для дистанционного управления - это своего рода диспетчерская или операторская зона. Важно отметить, что автоматизация технологических процессов и производств должна предусматривать и доступ к обслуживанию со стороны персонала. Именно эта функция во многом и определяется пультами и щитами, позволяющими вести расчеты, оценивать производственные показатели и в целом отслеживать рабочий процесс.

Проектирование систем автоматизации

Основным документом, который выступает руководством для технологической модернизации производства с целью автоматизации, является схема. На ней отображается структура, параметры и характеристики устройств, которые в дальнейшем выступят средствами автоматической механизации. В стандартном исполнении схема отображает следующие данные:

  • уровень (масштаб) автоматизации на конкретном предприятии;
  • определение параметров работы объекта, которые должны быть обеспечены средствами контроля и регулирования;
  • характеристики управления - полное, дистанционное, операторское;
  • возможности блокировки исполнительных механизмов и агрегатов;
  • конфигурацию расположения технических средств, в том числе на пультах и щитах.

Вспомогательные средства автоматизации

Несмотря на второстепенную роль, дополнительные устройства обеспечивают важные контрольные и управляющие функции. Благодаря им обеспечивается та самая связь между исполнительными устройствами и человеком. В плане оснащения вспомогательными приборами автоматизация производства может предусматривать кнопочные станции, реле управления, различные переключатели и командные пульты. Существует множество конструкций и разновидностей данных устройств, но все они ориентированы на эргономичное и безопасное управление ключевыми агрегатами на объекте.

Loading...Loading...