Общие свойства электромагнитных волн (ЭМВ). Электромагнитное излучение — определение, разновидности, характеристики Основные характеристики частотомеров

Государственное образовательное учреждение высшего профессионального образования

ВОЛГОГРАДСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ

(ВолгГТУ)

Кафедра «Электротехника»

Семестровая работа

по метрологии, стандартизации и сертификации

Тема: «Измерение частоты электромагнитных волн »

Выполнил:

студент группы ИВТ-260 Сова А.В.

Проверил:

проф. Заярный В.П.

Волгоград, 2008г.

Семестровая работа 1

Основные характеристики частотомеров: 3

МЕТОДЫ ИЗМЕРЕНИЯ ЧАСТОТЫ 4

ОБЩИЕ СВЕДЕНИЯ 4

МЕТОД ПЕРЕЗАРЯДКИ КОНДЕНСАТОРА 5

РЕЗОНАНСНЫЙ МЕТОД 7

МЕТОД СРАВНЕНИЯ 14

Введение:

Измерение частоты в общем случае осуществляется весьма разнообразными способами, так как колебания в природе имеют различный характер. Это может быть самый обыкновенный маятник, электрическая цепь, волна, или даже вибрации какого-либо тела. Колебательных процессы очень частое явление в современном мире техники, а частота является одной из самых основных их характеристик, чаще всего не зависящая от среды, поэтому её точное измерение очень важно. Рассмотрим основные способы измерения частоты колебаний электромагнитных волн.

Основные характеристики частотомеров:

Одной из важнейших задач измерительной техники является - измерение частоты или длины волны колебаний. Измерения частоты и длины волны по своей природе различны: первое основано на измерении времени, а второе - на измерении: длины. Обычно в качестве основной величины выбирают частоту, поскольку значение ее не зависит от условий распространения и, что не менее важно, существуют эталоны частоты высокой точности, с которыми можно сравнивать измеряемые частоты. Основными характеристиками приборов, используемых для измерения частоты и длины волны, являются: относительная погрешность, чувствительность, диапазон измеряемых частот и надежность работы. Под относительной погрешностью прибора понимают отношение разности измеренной и образцовой частот к значению образцовой частоты. По точности все приборы разбиваются на три группы: малой точности с относительной погрешностью более 0,1%, средней точности с погрешностью (0,01-0,1)% и высокой точности с погрешностью менее 0,01%. Чувствительность прибора характеризуется минимальной мощностью сигнала, подводимого к частотомеру, при которой возможен отсчет частоты.

Методы измерения частоты общие сведения

Частотой колебаний называют число полных колебаний в единицу времени:

f=n/t (1)

где t - время существования п колебаний.

Для гармонических колебаний частота f = 1/ T , где Т - период колебаний.

Единица частоты герц определяется как одно колебание в одну секунду. Частота и время неразрывно связаны между собой, поэтому измерение той или другой величины дикту­ется удобством эксперимента и требуемой погрешностью измерения. В Международной системе единиц СИ время является одной из семи основных физических величин. Частота электромагнитных колебаний связана с периодом колебания Т и длиной однородной плоской волны в свобод­ном пространстве  следующими соотношениями: fT = 1 и f  = с, где с- скорость света, равная 299 792,5 ± 0,3 км/с.

Спектр частот электромагнитных колебаний, исполь­зуемых в радиотехнике, простирается от долей герца до тысяч гигагерц. Этот спектр вначале разделяют на два диапазона - низких и высоких частот. К низким частотам относят и инфра звуковые (ниже 20 Гц), звуковые (20- 20 000 Гц) и ультразвуковые (20-200 кГц). Высокочас­тотный диапазон, в свою очередь, разделяют на высокие частоты (20 кГц - 30 МГц), ультравысокие (30 - 300 МГц) и сверхвысокие (выше 300 МГц). Верхняя граница сверхвысоких частот непрерывно повышается и в настоящее время достигла 80 ГГц (без учета оптического диапазона). Такое разделение объясняется разными способами получе­ния электрических колебаний и различием их физических свойств, а также особенностями распространения на рас­стояние. Однако четкой границы между отдельными участ­ками спектра провести невозможно, поэтому такое деление в большой степени условно.

), описывающей электромагнитное поле, теоретически показал, что электромагнитное поле в вакууме может существовать и в отсутствие источников - зарядов и токов. Поле без источников имеет вид волн, распространяющихся с конечной скоростью, которая в вакууме равна скорости света: с = 299792458±1, 2 м/с. Совпадение скорости распространения электромагнитных волн в вакууме с измеренной ранее скоростью света позволило Максвеллу сделать вывод о том, что свет представляет собой электромагнитные волны. Подобное заключение в дальнейшем легло в основу электромагнитной теории света.

В 1888 году теория электромагнитных волн получила экспериментальное подтверждение в опытах Г. Герца . Используя источник высокого напряжения и вибраторы (см. Герца вибратор), Герцу удалось выполнить тонкие эксперименты по определению скорости распространения электромагнитной волны и ее длины. Экспериментально подтвердилось, что скорость распространения электромагнитной волны равна скорости света, что доказывало электромагнитную природу света.

Общие свойства волновых процессов.

1. Примеры и классификация волновых процессов по физической природе, характеру переноса энергии, типу колеблющейся величины, форме волновых поверхностей.

1.1. Какие величины колеблются в звуковой волне, электромагнитной волне, волне на поверхности воды? (не меньше двух для каждого типа волн)

1.2. Приведите примеры продольных и поперечных волн.

1.3. Какие волны не переносят энергию в пространстве? Приведите пример таких волн.

1.4. Приведите примеры скалярных и векторных волн.

1.5. Приведите примеры бегущих и стоячих волн.

2. Характеристики гармонических волн. Период, частота, циклическая частота, волновое число, волновой вектор.

2.01. Что такое длина волны?

2.02. Какой порядок имеет длина волны для радиоволн, рентгеновского и гамма-излучения?

2.03. Укажите диапазон длин волн для видимого излучения.

2.04. Каковы длины волн для инфракрасного и ультрафиолетового излучения?

2.05. Что такое волновая поверхность?

2.06. Какие бывают виды волновых поверхностей?

2.07. Чем плоская волна отличается от сферической?

2.08. Что такое волновое число, в каких единицах оно измеряется в системе СИ?

2.09. Что такое фаза волн, в каких единицах оно измеряется в системе СИ?

2.10. Что такое амплитуда волн, в каких единицах оно измеряется в системе СИ?

2.11. Что такое волновой вектор, в каких единицах измеряется его модуль в системе СИ?

2.12. Что такое период электромагнитных волн, в каких единицах он измеряется в системе СИ?

2.12. Что такое циклическая частота электромагнитных волн, в каких единицах она измеряется в системе СИ?

2.13. В чем измеряется амплитуда электромагнитных волн в системе СИ?

2.14. В чем измеряется фаза электромагнитных волн в системе СИ?

3. Обобщенное одномерное и трехмерное волновое уравнение. Волновая функция для плоской волны, бегущей по и против оси Ox, для плоской волны с произвольным волновым вектором.

3.1. Напишите волновую функцию для плоских волн, бегущих по оси Ох .

3.2. Напишите волновую функцию для плоских волн, бегущих против оси Ох .

3.3. Напишите волновую функцию для сферических волн, исходящих из начала координат.

3.4. Напишите волновую функцию для плоских волн, бегущих в произвольном направлении .

3.5. Какому уравнению подчиняется волновая функция для плоских скалярных волн, бегущих по оси Ох ?

3.6. Какому уравнению подчиняется волновая функция для скалярных волн в трехмерном пространстве?

4. Группа волн. Фазовая скорость, её связь с циклической частотой и волновым числом. Групповая скорость, её выражение через фазовую скорость с учетом закона дисперсии среды.

4.01. Что такое фазовая скорость?

4.02. Какой формулой связаны фазовая скорость и циклическая частота для электромагнитных волн в вакууме?

4.03. Что такое группа волн?

4.04. Что такое принцип суперпозиции волн?

4.05. Что такое спектр сигнала?

4.06. Что такое степень монохроматичности?

4.07. Что такое групповая скорость?

4.08. В каком случае групповая скорость волн совпадает с фазовой?
4.09. Что такое дисперсия?

4.10. Какая дисперсия называется нормальной?

4.11. Какая дисперсия называется аномальной?

Общие свойства электромагнитных волн (ЭМВ)

5. Вывод волнового уравнения ЭМВ. Связь фазовой скорости с материальными константами среды.

5.1. Из каких уравнений выводится уравнение ЭМВ?

5.2. Как скорость ЭМВ выражается через постоянные e 0 m 0 ?

5.3. Как скорость ЭМВ зависит от диэлектрической проницаемости среды?

5.4. Что такое ротор вектора?

5.5. Что такое абсолютный и относительный показатели преломления?

5.6. Какие линзы, и в какой ситуации дают мнимое изображение для действительного предмета?

5.7. Какие зеркала, и в какой ситуации дают мнимое изображение для действительного предмета?

5.8. Что такое оптическая сила линзы, как её вычислить?

5.9. Что такое оптическая сила сферического зеркала, как её вычислить?

5.10. Что такое фокус линзы, как его вычислить?

5.11. Что такое фокус сферического зеркала, как его вычислить?

5.12. Собирающей или рассеивающей является двояковогнутая стеклянная линза в воздухе?

5.13. Собирающей или рассеивающей является воздушная двояковогнутая линза в воде?

5.14. Собирающей или рассеивающей является двояковыпуклая стеклянная линза в воздухе?

5.15. Собирающей или рассеивающей является воздушная двояковыпуклая линза в воде?

5.14. Какие линзы, и в какой ситуации дают увеличенное изображение для действительного предмета?

5.15. Какие зеркала, и в какой ситуации дают увеличенное изображение для действительного предмета?

6. Соотношение между волновым вектором, векторами электрической и магнитной напряженности в плоской ЭМВ.

6.1. Как связаны между собой электрическая и магнитная напряженности для ЭМВ в вакууме?

6.2. Как по направлениям электрическая и магнитная напряженности ЭМВ в вакууме найти направление распространения волн?

7. Объемная плотность энергии. Вектор плотности потока энергии. Интенсивность.

7.1. Во сколько раз возрастет интенсивность волн при увеличении амплитуды 1,5 раза?

7.2. Что такое вектор плотности потока энергии, в каких единицах измеряется в его модуль в системе СИ?

7.3. Что такое вектор Пойнтинга?

8. Импульс ЭМВ. Вектор объемной плотности импульса Световое давление.

8.1. Действием какой силы (каких сил) объясняется световое давление?

8.2. Как связаны объёмная плотность энергии и модуль вектора объемной плотности импульса ЭМВ?

Электромагнитные волны классифицируются по длине волны λ или связанной с ней частотой волны f . Отметим также, что эти параметры характеризуют не только волновые, но и квантовые свойства электромагнитного поля. Соответственно в первом случае электромагнитная волна описывается классическими законами, изучаемыми в этом курсе.

Рассмотрим понятие спектра электромагнитных волн. Спектром электромагнитных волн называется полоса частот электромагнитных волн, существующих в природе.

Спектр электромагнитного излучения в порядке увеличения частоты составляют:

Различные участки электромагнитного спектра отличаются по способу излучения и приёма волн, принадлежащих тому или иному участку спектра. По этой причине, между различными участками электромагнитного спектра нет резких границ, но каждый диапазон обусловлен своими особенностями и превалированием своих законов, определяемых соотношениями линейных масштабов.


Радиоволны изучает классическая электродинамика. Инфракрасное световое и ультрафиолетовое излучение изучает как классическая оптика, так и квантовая физика. Рентгеновское и гамма излучение изучается в квантовой и ядерной физике.


Рассмотрим спектр электромагнитных волн более подробно.

Низкочастотные волны

Низкочастотные волны представляют собой электромагнитные волны, частота колебаний которых не превышает 100 КГц). Именно этот диапазон частот традиционно используется в электротехнике. В промышленной электроэнергетике используется частота 50 Гц, на которой осуществляется передача электрической энергии по линиям и преобразование напряжений трансформаторными устройствами. В авиации и наземном транспорте часто используется частота 400 Гц, которая дает преимущества по весу электрических машин и трансформаторов в 8 раз по сравнению с частотой 50 Гц. В импульсных источниках питания последних поколений используются частоты трансформирования переменного тока единицы и десятки кГц, что делает их компактными, энергонасышенными.
Коренным отличием низкочастотного диапазона от более высоких частот является падение скорости электромагнитных волн пропорционально корню квадратному их частоты от 300 тыс. км/с при 100 кГц до примерно 7 тыс км/с при 50 Гц.

Радиоволны

Радиоволны представляют собой электромагнитные волны, длины которых превосходят 1 мм (частота меньше 3 10 11 гц = 300 Ггц) и менее 3 км (выше 100 кГц).

Радиоволны делятся на:

1. Длинные волны в интервале длин от 3 км до 300 м(частота в диапазоне 10 5 гц - 10 6 гц= 1 МГц);


2. Средние волны в интервале длин от 300 м до 100 м (частота в диапазоне 10 6 гц -3*10 6 гц=3мгц);


3. Короткие волны в интервале длин волн от 100м до 10м (частота в диапазоне 310 6 гц-310 7 гц=30мгц);


4. Ультракороткие волны с длиной волны меньше 10м(частота больше 310 7 гц=30Мгц).


Ультракороткие волны в свою очередь делятся на:


А) метровые волны;


Б) сантиметровые волны;


В) миллиметровые волны;


Волны с длиной волны меньше, чем 1 м (частота меньше чем 300мгц) называются микроволнами или волнами сверхвысоких частот(СВЧ - волны).


Из-за больших значений длин волн радиодиапазона по сравнению с размерами атомов распространение радиоволн можно рассматривать без учета атомистического строения среды, т.е. феноменологически, как принято при построении теории Максвелла . Квантовые свойства радиоволн проявляются лишь для самых коротких волн, примыкающих к инфракрасному участку спектра и при распространении т.н. сверхкоротких импульсов с длительностью порядка 10 -12 сек- 10 -15 сек, сравнимой со временем колебаний электронов внутри атомов и молекул.
Коренным отличием радиоволн от более высоких частот является иное термодинамическое соотношение между длиной волны носителя волн (эфира), равной 1 мм (2,7°К), и электромагнитной волны, распространяющейся в этой среде.

Биологическое действие радиоволнового излучения

Страшный жертвенный опыт применения мощного радиоволнового излучения в радиолокационной технике показал специфичное действие радиоволн в зависимости от длины волны (частоты).

На человеческий организм разрушительное действие оказывает не столько средняя, сколько пиковая мощность излучения, при которой происходят необратимые явления в белковых структурах. К примеру, мощность непрерывного излучения магнетрона СВЧ-печи (микроволновки), составляющая 1 КВатт, воздействует лишь на пищу в малом замкнутом (экранированном) объеме печи, и почти безопасна для человека, находящегося рядом. Мощность радиолокационной станции (РЛС, радара) в 1 КВатт средней мощности, излучаемой короткими импульсами скважностью 1000:1 (отношение периода повторения к длительности импульса) и, соответственно, импульсной мощностью в 1 МВатт, очень опасна для здоровья и жизни человека на расстоянии до сотен метров от излучателя. В последнем, конечно, играет роль и направленность излучения РЛС, которая подчеркивает разрушительное действие именно импульсной, а не средней мощности.

Воздействие метровых волн

Метровые волны большой интенсивности, излучаемые импульсными генераторами метровых радиолокационных станций (РЛС), имеющих импульсную мощность более мегаватта (таких, например, как станция дальнего обнаружения П-16) и соизмеримые с протяженностью спинного мозга человека и животных, а таже длиной аксонов, нарушают проводимость этих структур, вызывая диэнцефальный синдром (СВЧ-болезнь). Последняя приводит к быстрому развитию (в течение от нескольких месяцев до нескольких лет) полному или частичному (в зависимости от полученной импульсной дозы излучения) необратимому параличу конечностей человека, а также нарушению иннервации кишечника и других внутренних органов.

Воздействие дециметровых волн

Дециметровые волны соизмеримы по длине волны с кровеносными сосудами, охватывающими такие органы человека и животных, как легкие, печень и почки. Это одна из причин, почему они вызывают развитие "доброкачественных" опухолей (кист) в этих органах. Развиваясь на поверхности кровеносных сосудов, эти опухоли приводят к остановке нормального кровообращения и нарушению работы органов. Если вовремя не удалить такие опухоли оперативным путем, то наступает гибель организма. Дециметровые волны опасных уровней интенсивности излучают магнетроны таких РЛС, как мобильная РЛС ПВО П-15, а также РЛС некоторых воздушных судов.

Воздействие сантиметровых волн

Мощные сантиметровые волны вызывают такое заболевание, как лейкемию - "белокровие", а также другие формы злокачественных опухолей человека и животных. Волны достаточной для возникновения этих заболеваний интенсивности генерируют РЛС сантиметрового диапазона П-35, П-37 и практически все РЛС воздушных судов.

Инфракрасное, световое и ультрафиолетовое излучения

Инфракрасное, световое, ультрафиолетовое излучения составляют оптическую область спектра электромагнитных волн в широком смысле этого слова. Этот спектр занимает диапазон длин электромагнитных волн в интервале от 2·10 -6 м = 2мкм до 10 -8 м = 10нм (по частоте от1,5·10 14 гц до 3·10 16 гц). Верхняя граница оптического диапазона определяется длинноволновой границей инфракрасного диапазона, а нижняя коротковолновой границей ультрафиолета (рис.2.14).

Близость участков спектра перечисленных волн обусловило сходство методов и приборов, применяющихся для их исследования и практического применения. Исторически для этих целей применяли линзы, дифракционные решетки, призмы, диафрагмы, оптически активные вещества, входящие в состав различных оптических приборов (интерферометров, поляризаторов, модуляторов и пр.).

С другой стороны излучение оптической области спектра имеет общие закономерности прохождения различных сред, которые могут быть получены с помощью геометрической оптики, широко используемой для расчетов и построения, как оптических приборов, так и каналов распространения оптических сигналов. Инфракрасное излучение является видимым для многих членистоногих (насекомых, пауков и пр.) и рептилий (змей, ящериц и пр.) , доступным для полупроводниковых датчиков (инфракрасных фотоматриц), но его не пропускает толща атмосферы Земли, что не позволяет наблюдать с поверхности Земли инфракрасные звезды - "коричневые карлики", которые составляют более 90% всех звёзд в Галактике.

Ширина оптического диапазона по частоте составляет примерно 18 октав, из которых на оптический диапазон приходится примерно одна октава (); на ультрафиолет - 5 октав (), на инфракрасное излучение - 11 октав (

В оптической части спектра становятся существенными явления, обусловленные атомистическим строением вещества. По этой причине наряду с волновыми свойствами оптического излучения проявляются квантовые свойства.

Свет

Свет, световое, видимое излучение - видимая глазами человека и приматов часть оптического спектра электромагнитного излучения, занимает диапазон длин электромагнитных волн в интервале от 400 нанометров до 780 нанометров, то есть менее одной октавы - двухкратного изменения частоты.

Рис. 1.14. Шкала электромагнитных волн

Словесный мем-запоминалка порядка следования цветов в световом спектре:
"К аждая О безьяна Ж елает З нать Г лавный С екрет Ф изики" -
"Красный , Оранжевый , Желтый , Зелёный , Голубой , Синий , Фиолетовый ".

Рентгеновское и гамма излучение

В области рентгеновского и гамма излучения на первый план выступают квантовые свойства излучения.


Рентгеновское излучение возникает при торможении быстрых заряженных частиц (электронов, протонов и пр.), а также в результате процессов, происходящих внутри электронных оболочек атомов.


Гамма излучение является следствием явлений, происходящих внутри атомных ядер, а также в результате ядерных реакций. Граница между рентгеновским и гамма излучением определяются условно по величине кванта энергии , соответствующего данной частоте излучения.


Рентгеновское излучение составляют электромагнитные волны с длиной от50 нм до 10 -3 нм, что соответствует энергии квантов от 20эв до 1Мэв.


Гамма излучение составляют электромагнитные волны с длиной волны меньше 10 -2 нм, что соответствует энергии квантов больше 0.1Мэв.

Электромагнитная природа света

Свет представляет собой видимый участок спектра электромагнитных волн, длины волн которых занимают интервал от 0.4мкм до 0.76мкм. Каждой спектральной составляющей оптического излучения может быть поставлен в соответствие определённый цвет. Окраска спектральных составляющих оптического излучения определяется их длиной волны. Цвет излучения изменяется по мере уменьшения его длины волны следующим образом: красный, оранжевый, желтый, зеленый, голубой, синий, фиолетовый.

Красный свет, соответствующий наибольшей длине волны, определяет красную границу спектра. Фиолетовый свет - соответствует фиолетовой границе.

Естественный (дневной, солнечный) свет не окрашен и представляет суперпозицию электромагнитных волн из всего видимого человеком спектра. Естественный свет появляется в результате испускания электромагнитных волн возбужденными атомами. Характер возбуждения может быть различным: тепловой, химический, электромагнитный и др. В результате возбуждения атомы излучают хаотическим образом электромагнитные волны примерно в течении 10 -8 сек. Поскольку энергетический спектр возбуждения атомов достаточно широкий, то излучаются электромагнитные волны из всего видимого спектра, начальная фаза, направление и поляризация которых имеет случайный характер. По этой причине естественный свет не поляризован. Это означает, что "плотность" спектральных составляющих электромагнитные волны естественного света, имеющих взаимно перпендикулярные поляризации одинаково.


Гармонические электромагнитные волны светового диапазона называются монохроматическими . Для световой монохроматической волны одной из главных характеристик является интенсивность. Интенсивность световой волны представляет собой среднее значение величины плотности потока энергии (1.25) переносимого волной:



Где - вектор Пойнтинга.


Расчет интенсивности световой, плоской, монохроматической волны с амплитудой электрического поля в однородной среде с диэлектрической и магнитной проницаемостями по формуле (1.35) с учетом (1.30) и (1.32) дает:




Традиционно оптические явления рассматриваются с помощью лучей. Описание оптических явлений с помощью лучей называется геометрооптическим . Правила нахождения траекторий лучей, разработанные в геометрической оптике, широко используются на практике для анализа оптических явлений и при построении различных оптических приборов.


Дадим определение луча, исходя из электромагнитного представления световых волн. Прежде всего, лучи - это линии, вдоль которых распространяются электромагнитные волны. По этой причине луч - это линия, в каждой точке которой усредненный вектор Пойнтинга электромагнитной волны направлен по касательной к этой линии.


В однородных изотропных средах направление среднего вектора Пойнтинга совпадает с нормалью к волновой поверхности (эквифазной поверхности), т.е. вдоль волнового вектора .


Таким образом, в однородных изотропных средах лучи перпендикулярны соответствующему волновому фронту электромагнитной волны.


Для примера рассмотрим лучи, испускаемые точечным монохроматическим источником света. С точки зрения геометрической оптики из точки источника исходит множество лучей в радиальном направлении. С позиции электромагнитной сущности света из точки источника распространяется сферическая электромагнитная волна. На достаточно большом расстоянии от источника кривизной волнового фронта можно пренебречь, считая локально сферическую волну плоской. Разбивая поверхность волнового фронта на большое количество локально плоских участков, можно через центр каждого участка провести нормаль, вдоль которого распространяется плоская волна, т.е. в геометрооптической интерпретации луч. Таким образом, оба подхода дают одинаковое описание рассмотренного примера.


Основная задача геометрической оптики состоит в нахождении направления луча (траектории). Уравнение траектории находится после решения вариационной задачи нахождения минимума т.н. действия на искомых траекториях. Не вдаваясь в подробности строгой формулировки и решения указанной задачи, можно полагать, что лучи представляют собой траектории с наименьшей суммарной оптической длиной. Данное утверждение является следствием принципа Ферма.

Вариационный подход определения траектории лучей может быть применен и к неоднородным средам, т.е. таким средам, у которых показатель преломления является функция координат точек среды. Если описать функцией форму поверхности волнового фронта в неоднородной среде, то её можно найти исходя из решения уравнения в частных производных, известного как уравнение эйконала, а в аналитической механике как уравнение Гамильтона - Якоби:

Таким образом, математическую основу геометрооптического приближения электромагнитной теории составляют различные методы определения полей электромагнитных волн на лучах, исходя из уравнения эйконала или каким - либо другим способом. Геометрооптическое приближение широко используется на практике в радиоэлектронике для расчета т.н. квазиоптических систем.


В заключение заметим, что возможность описать свет одновременно и с волновых позиций путем решения уравнений Максвелла и с помощью лучей, направление которых определяется из уравнений Гамильтона - Якоби, описывающих движение частиц, является одним из проявлений кажущегося дуализма света, приведшего, как известно, к формулировке логически противоречивых принципов квантовой механики.

На самом деле никакого дуализма в природе электромагнитных волн нет. Как показал Макс Планк в 1900 году в своей классической работе "О нормальном спектре излучения" , электромагнитные волны представляют собой отдельные квантованные колебания частотой v и энергией E=hv , где h =const , в эфире . Последний есть сверхтекучая среда, имеющая стабильное свойство разрывности мерой h - постоянная Планка. При воздействии на эфир энергией, превышающей hv во время излучения происходит образование квантованного "вихря". Точно такое же явление наблюдается во всех сверхтекучих средах и образование в них фононов - квантов звукового излучения.

Комфорт жизни обеспечивается различными приборами и установками, излучающими волны, в высоких концентрациях влияющими на здоровье. Поэтому каждый человек должен знать, как померить электромагнитное излучение, чтобы обезопасить себя от негативного воздействия.

Определение понятия

Электромагнитное излучение определяется как изменённое состояние электромагнитного поля. Оно порождается движением электрических зарядов и способно воздействовать на человека вдали от источника, уменьшая своё воздействие с увеличением расстояния.

Излучение представляет собой волны, которые подразделяются на следующие виды:

  • радиоизлучение;
  • инфракрасное;
  • терагерцовое;
  • ультрафиолет;
  • видимый свет;
  • рентген.

Любое пространство подвергается воздействию разной частоты, длины волн и поляризации. При этом излучение может оказывать негативное воздействие на работу электроприборов живые организмы.

Первым признаком повышения нормы электромагнитного излучения в квартире или производственном помещении являются неправильная работа бытовых приборов (их поломка и сбои), помехи при воспроизведении изображения и звука на телевизоре, неправильная работа персональных компьютеров, помехи в радиосвязи.

Чем вредно электромагнитное излучение

Организм человека и домашних животных зависит от условий среды обитания. Ежедневно человек сталкивается с работой многочисленных приборов, способных влиять на электромагнитный фон. При повышенных нормах этого фона надо применять защитные меры.

На человека в помещении могут отрицательно влиять электропроводка и электроприборы, находящиеся рядом линии электропередач, трансформаторные подстанции, передающие теле-, радиостанции. Большее воздействие может оказывать то ЭМИ, которое имеет высокие показатели при условии расположения на близком расстоянии.

Воздействие источников, генерирующих излучение, оказывает губительное действие на:

  • сердце и сосуды;
  • иммунную систему;
  • женское и мужское половое здоровье;
  • нервную и эндокринную систему.

Повышенный электромагнитный фон становится причиной утомляемости организма, вызывает заболевания крови и злокачественные опухоли. Поэтому каждый человек должен знать, как измерить электромагнитное излучение.

Пример электромагнитного фона

Наглядно представить уровень электромагнитного излучения можно на следующем примере. Для этого подойдёт внутреннее пространство офиса, в котором имеются такие приборы: персональный компьютер с WI-FI, сотовый телефон, WI-FI роутер, устройство Yota WiMax, СВЧ-печь, бытовой вентилятор.

Каждый из приборов генерирует электромагнитное излучение. При изменении состояния устройства оно также изменяется. Максимальные цифры измеритель АТТ-2592 покажет у работающего прибора и находящегося радом с измерителем. Соответственно минимальные будут у выключенного устройства, находящегося на отдалённом расстоянии и излучающего радиацию в сторону от измерителя.

Например, наибольшее напряжение электрического излучения, расположенного рядом с измерителем сотового телефона с датчиком, направленным на антенну, будет 24,52 В/м, с ненаправленным – 11,44 В/м. Если передающее устройство удалено на 0,3 м от датчика, и антенна повёрнута в сторону, наивысшее значение напряжения будет 10,65 В/м. Пример наглядно показывает, как можно снизить электромагнитный фон.

Инструкция по измерению излучения вручную

Для того чтобы измерить электромагнитное излучение в квартире, сначала надо приготовить необходимые инструменты и приборы. Для работы понадобится отвёртка с индикатором, простой радиоприёмник, ручной анализатор для измерения излучения.

Процесс измерения излучения с помощью приёмника включает следующие этапы:

  • Выдвинуть антенну из приёмника и прикрутить к ней проволочную петлю диаметром 40 см.
  • Настроить радио на пустую частоту.
  • Медленно обойти помещение, прислушиваясь к звукам приёмника.
  • Сделать вывод: место, где слышатся отчётливые звуки, является источником радиации.

Измерение электромагнитного излучения можно наглядно провести при помощи индикаторной отвёртки со светодиодом. Её можно купить в магазине. Если поднести устройство к включенному прибору, индикатор загорится красным цветом, интенсивность которого скажет о силе излучения. Данные способы не позволят определить излучение в цифрах.

Диагностика специальным прибором

Замерить электромагнитное излучение в цифрах поможет специальный прибор – ручной анализатор. Он работает на разных частотах и позволяет улавливать уровень напряжённости электромагнитного поля. Прибор доступен работникам служб Госсанэпиднадзора, организациям по охране труда и сертификации.

Данный измеритель электромагнитного излучения настраивается на нужный режим частот. Затем выбираются единицы измерения. Это могут быть вольт/метр или микроватт/см². Прибор отслеживает выбранную частоту, результаты выводятся на компьютер.

Описание устройства

Приборов, при помощи которых измеряется электромагнитное излучение, много. Оптимальным является измеритель уровней электромагнитных излучений АТТ-2592. Устройство портативное, имеет 3-х канальный датчик, дисплей ЖК с подсветкой, объём памяти в 99 измерений, питание от батареи «Крона» (9 В), габариты 60/60/237, весит 200 гр.

Измерения выполняются изотропным методом в диапазоне частот от 50 МГц до 3,5 ГГц, частота дискретизации – 2 раза в секунду, отключается автоматически через 15 минут. Прибор позволяет замерять напряжение в следующих единицах: мВ/м, В/м, мкА/м, мА/м, мкВт/м², мВт/м², мкВт/см².

Процедура измерения ЭМИ

В любом помещении есть опасность превышения электромагнитного фона. Если это производство, то там ведётся строгий контроль за показателями. В жилых помещениях сам владелец должен позаботиться о том, как измерить электромагнитное излучение и минимизировать его вредное влияние.

Дать точную картину ЭМИ в частном доме могут только специалисты. Они действуют в рамках закона по следующей схеме. При поступлении в службу СЭС соответствующего заявления работники выезжают на объект со специальным оборудованием для оценки состояния электромагнитного фона в помещении.

Приборы позволяют получить точные данные, которые потом обрабатываются. В случае нормального фона никаких мер не принимается. Если показатели завышены, то разрабатывается комплекс мер, способных привести к снижению фона. Прежде всего, выясняется причина данной ситуации. Это могут быть ошибки в проектировании и строительстве, нарушение правил эксплуатации объекта.

Экспертиза электромагнитного излучения

Электромагнитное поле образуется путём взаимодействия разноимённых зарядов физических тел между собою, образуется рядом с источником генерации и делится на три вида (дальний, промежуточный, ближний).

Величина электромагнитного излучения высчитывается по двум компонентам: электрическому (вольт/метр) и магнитному (тесла). Оба они делятся на волны низкой и высокой частоты, которые имеют разное происхождение и условия появления. На живые существа вредное влияние оказывает второй компонент.

Электрическое поле выше нормы характерно для мест, где установлены факсы, телевизоры, принтеры, плиты, копиры, излучающие электромагнитные волны, которые двигаются в пространстве. Уровень магнитного поля бывает повышен вблизи электропроводов, трансформаторов, антенн, так как оно возникает из-за движения тока по проводам.

В рамках работы санитарно-эпидемиологической службы РФ принят Федеральный закон, на основании которого представителями службы специальной аппаратурой проводится экспертиза помещений. Объектом обследования становятся бытовые электроприборы, системы радиосвязи, трансформаторные подстанции, радиолокационные установки, линии электропередач.

Санитарные нормы

Законом закреплены нормы электромагнитного излучения. Предельно допустимая норма излучаемой магнитной составляющей от 0,2 до 10 мкТл. Повышенный уровень магнитного поля фиксируется при достижении частотой излучения цифры 50 Гц. Не допускать превышения нормы магнитного излучения поможет правильно смонтированная система электроснабжения.

Нормы для электрического поля содержат следующие показатели, закреплённые в законе:

  • жилое помещение (до 0,5 кВ/м);
  • зона жилой застройки (до 1 кВ/м);
  • вне зоны жилой застройки (до 5 кВ/м);
  • в местах пересечения высоковольтных линий электропередач с автомагистралями I-IV класса (до 10 кВ/м);
  • в незаселённой местности (до 20 кВ/м).

При нарушении должностными лицами данных норм предусмотрена административная ответственность. Важными эти показатели являются для дачников, так как участки часто располагаются в зоне прохождения высоковольтных линий электропередач.

Очень важно помнить, что человек часто бессознательно подвергается воздействию ЭМИ, так как просто не имеет возможности самостоятельно замерить уровень излучаемых волн. Кроме того, нормы носят условный характер, так как ещё необходимо принимать во внимание индивидуальные особенности организма.

Способы защиты от воздействия

В случае, когда установлено превышение нормы воздействия электрического тока на человека, надо сократить до минимума пребывание в опасной зоне. Увеличение возможного расстояния от вредного источника во многих случаях позволяет добиться снижения нежелательного воздействия на организм.

Ещё один способ защиты – это установка специальных конструкций, которые будут препятствовать распространению опасных волн. Не надо пренебрегать и личными защитными средствами (обувь, одежда, очки, маски и т.д.). Эти предметы используются специалистами во время работы и способны снизить вредные показатели.

Существуют так называемые организационные средства защиты. Их время от времени применяют в отношении всего коллектива (работающих, проживающих в местах возможного повышенного фона). К таким средствам относятся плановые медицинские осмотры, отпуска, что позволяет уберечь здоровье человека.

Электроэнергия является значительным изобретением человечества. Без неё сегодня невозможно представить нашу жизнь. Но в то же время ЭМИ, образующееся при использовании электроэнергии для нужд человека, может оказывать негативное влияние на жизнь и здоровье.

Врач-пульмонолог, Терапевт, Кардиолог, Врач функциональной диагностики. Врач высшей категории. Опыт работы: 9 лет. Закончила Хабаровский государственный мединститут, клиническая ординатура по специальности «терапия». Занимаюсь диагностикой, лечением и профилактикой заболеваний внутренних органов, также провожу профосмотры. Лечу заболевания органов дыхания, желудочно-кишечного тракта, сердечно-сосудистой системы.

Loading...Loading...