Нейтрон (элементарная частица). Поговорим о том, как найти протоны, нейтроны и электроны

Как уже отмечалось, атом состоит из трех видов элементарных частиц: протонов, нейтронов и электронов. Атомное ядро - центральная часть атома, состоящая из протонов и нейтронов. Протоны и нейтроны имеют общее название нуклон, в ядре они могут превращаться друг в друга. Ядро простейшего атома - атома водорода - состоит из одной элементарной частицы - протона.


Диаметр ядра атома равен примерно 10-13 - 10-12 см и составляет 0,0001 диаметра атома. Однако, практически вся масса атома (99,95-99,98%) сосредоточена в ядре. Если бы удалось получить 1 см3 чистого ядерного вещества, масса его составила бы 100-200 млн.т. Масса ядра атома в несколько тысяч раз превосходит массу всех входящих в состав атома электронов.


Протон - элементарная частица, ядро атома водорода. Масса протона равна 1,6721 х 10-27 кг, она в 1836 раз больше массы электрона. Электрический заряд положителен и равен 1,66 х 10-19 Кл. Кулон - единица электрического заряда, равная количеству электричества, проходящему через поперечное сечение проводника за время 1с при неизменной силе тока 1А (ампер).


Каждый атом любого элемента содержит в ядре определенное число протонов. Это число постоянное для данного элемента и определяет его физические и химические свойства. То есть от количества протонов зависит, с каким химическим элементом мы имеем дело. Например, если в ядре один протон - это водород, если 26 протонов - это железо. Число протонов в атомном ядре определяет заряд ядра (зарядовое число Z) и порядковый номер элемента в периодической системе элементов Д.И. Менделеева (атомный номер элемента).


Нейтрон - электрически нейтральная частица с массой 1,6749 х 10-27кг, в 1839 раз больше массы электрона. Нейрон в свободном состоянии - нестабильная частица, он самостоятельно превращается в протон с испусканием электрона и антинейтрино. Период полураспада нейтронов (время, в течение которого распадается половина первоначального количества нейтронов) равен примерно 12 мин. Однако в связанном состоянии внутри стабильных атомных ядер он стабилен. Общее число нуклонов (протонов и нейтронов) в ядре называют массовым числом (атомной массой - А). Число нейтронов, входящих в состав ядра, равно разности между массовым и зарядовым числами: N = A - Z.


Электрон - элементарная частица, носитель наименьшей массы - 0,91095х10-27г и наименьшего электрического заряда - 1,6021х10-19 Кл. Это отрицательно заряженная частица. Число электронов в атоме равно числу протонов в ядре, т.е. атом электрически нейтрален.


Позитрон - элементарная частица с положительным электрическим зарядом, античастица по отношению к электрону. Масса электрона и позитрона равны, а электрические заряды равны по абсолютной величине, но противоположны по знаку.


Различные типы ядер называют нуклидами. Нуклид - вид атомов с данными числами протонов и нейтронов. В природе существуют атомы одного и того же элемента с разной атомной массой (массовым числом):
, Cl и т.д. Ядра этих атомов содержат одинаковое число протонов, но различное число нейтронов. Разновидности атомов одного и того же элемента, имеющие одинаковый заряд ядер, но различное массовое число, называются изотопами . Обладая одинаковым количеством протонов, но различаясь числом нейтронов, изотопы имеют одинаковое строение электронных оболочек, т.е. очень близкие химические свойства и занимают одно и то же место в периодической системе химических элементов.


Обозначают символом соответствующего химического элемента с расположенным сверху слева индексом А - массовым числом, иногда слева внизу приводится также число протонов (Z). Например, радиоактивные изотопы фосфора обозначают 32Р, 33Р или Р и Р соответственно. При обозначении изотопа без указания символа элемента массовое число приводится после обозначения элемента, например, фосфор - 32, фосфор - 33.


Большинство химических элементов имеет по несколько изотопов. Кроме изотопа водорода 1Н-протия, известен тяжелый водород 2Н-дей-терий и сверхтяжелый водород 3Н-тритий. У урана 11 изотопов, в природных соединениях их три (уран 238, уран 235, уран 233). У них по 92 протона и соответственно 146,143 и 141 нейтрон.


В настоящее время известно более 1900 изотопов 108 химических элементов. Из них к естественным относятся все стабильные (их примерно 280) и естественные изотопы, входящие в состав радиоактивных семейств (их 46). Остальные относятся к искусственным, они получены искусственным путем в результате различных ядерных реакций.


Термин «изотопы» следует применять только в тех случаях, когда речь идет об атомах одного и того же элемента, например, углерода 12С и 14С. Если подразумеваются атомы разных химических элементов, рекомендуется использовать термин «нуклиды», например, радионуклиды 90Sr, 131J, 137Cs.

Нейтрон (элементарная частица)

Данная статья была написана Владимиром Горунович для сайта "Викизнание", помещена на этот сайт в целях защиты информации от вандалов, а затем дополнена на этом сайте.

Полевая теория элементарных частиц, действуя в рамках НАУКИ, опирается на проверенный ФИЗИКОЙ фундамент:

  • Классическую электродинамику,
  • Квантовую механику,
  • Законы сохранения - фундаментальные законы физики.
В этом принципиальное отличие научного подхода, использованного полевой теорией элементарных частиц - подлинная теория должна строго действовать в рамках законов природы: в этом и заключается НАУКА.

Использовать не существующие в природе элементарные частицы, выдумывать не существующие в природе фундаментальные взаимодействия, или подменять существующие в природе взаимодействия сказочными, игнорировать законы природы, занимаясь математическими манипуляциями над ними (создавая видимость науки) - это удел СКАЗОК, выдаваемых за науку . В итоге физика скатывалась в мир математических сказок.

    1 Радиус нейтрона
    2 Магнитный момент нейтрона
    3 Электрическое поле нейтрона
    4 Масса покоя нейтрона
    5 Время жизни нейтрона
    6 Новая физика: Нейтрон (элементарная частица) - итог

Нейтрон - элементарная частица квантовое число L=3/2 (спин = 1/2) - группа барионов, подгруппа протона, электрический заряд +0 (систематизация по полевой теории элементарных частиц).

Согласно полевой теории элементарных частиц (теории - построенной на научном фундаменте и единственной получившей правильный спектр всех элементарных частиц), нейтрон состоит из вращающегося поляризованного переменного электромагнитного поля с постоянной составляющей. Все голословные утверждения Стандартной модели о том, что нейтрон якобы состоит из кварков, не имеют ничего общего с действительностью . - Физика экспериментально доказала, что нейтрон обладает электромагнитными полями (нулевая величина суммарного электрического заряда, еще не означает отсутствие дипольного электрического поля, что косвенно вынуждена была признать даже Стандартная модель, введя электрические заряды у элементов структуры нейтрона), и еще гравитационным полем. О том, что элементарные частицы не просто обладают - а состоят из электромагнитных полей, физика гениально догадалась еще 100 лет назад, но вот построить теорию никак не удавалось до 2010 года. Теперь в 2015 году появилась еще и теория гравитации элементарных частиц, установившая электромагнитную природу гравитации и получившая уравнения гравитационного поля элементарных частиц, отличные от уравнений гравитации, на основании которых была построена не одна математическая сказка в физике.

Структура электромагнитного поля нейтрона (E-постоянное электрическое поле,H-постоянное магнитное поле, желтым цветом отмечено переменное электромагнитное поле).

Энергетический баланс (процент от всей внутренней энергии):

  • постоянное электрическое поле (E) - 0,18%,
  • постоянное магнитное поле (H) - 4,04%,
  • переменное электромагнитное поле - 95,78%.
Наличие мощного постоянного магнитного поля объясняет обладание нейтроном ядерными силами. Структура нейтрона приведена на рисунке.

Несмотря на нулевой электрический заряд, нейтрон обладает дипольным электрическим полем.

1 Радиус нейтрона

Полевая теория элементарных частиц определяет радиус (r) элементарной частицы как расстояние от центра до точки в которой достигается максимум плотности массы.

Для нейтрона это будет 3,3518 ∙10 -16 м. К этому надо добавить еще толщину слоя электромагнитного поля 1,0978 ∙10 -16 м.

Тогда получится 4,4496 ∙10 -16 м. Таким образом, внешняя граница нейтрона должна находиться от центра на расстоянии более 4,4496 ∙10 -16 м. Получилась величина почти равная радиусу протона и это не удивительно. Радиус элементарной частицы определяется квантовым числом L и величиной массы покоя. У обеих частиц одинаковый набор квантовых чисел L и M L , а массы покоя незначительно отличаются.

2 Магнитный момент нейтрона

В противовес квантовой теории полевая теория элементарных частиц утверждает, что магнитные поля элементарных частиц не создаются спиновым вращение электрический зарядов, а существуют одновременно с постоянным электрическим полем как постоянная составляющая электромагнитного поля. Поэтому магнитные поля есть у всех элементарных частиц с квантовым числом L>0.

Полевая теория элементарных частиц не считает магнитный момент нейтрона аномальным - его величина определяется набором квантовых чисел в той степени, в какой квантовая механика работает в элементарной частице.

Так магнитный момент нейтрона создается током:

  • (0) с магнитным моментом -1 eħ/m 0n c
Далее умножаем его на процент энергии переменного электромагнитного поля нейтрона разделенный, на 100 процентов, и переводим в ядерные магнетоны. При этом не следует забывать, что ядерные магнетоны учитывают массу протона (m 0p), а не нейтрона (m 0n), так что полученный результат надо умножить на отношение m 0p /m 0n . В итоге получим 1,91304.

3 Электрическое поле нейтрона

Несмотря на нулевой электрический заряд, согласно полевой теории элементарных частиц у нейтрона должно быть постоянное электрическое поле. У электромагнитного поля, из которого состоит нейтрон, имеется постоянная составляющая, а, следовательно, у нейтрона должны быть постоянное магнитное поле и постоянное электрическое поле. Поскольку электрический заряд равен нулю то постоянное электрическое поле будет дипольным. То есть у нейтрона должно быть постоянное электрическое поле аналогичное полю двух распределенных параллельных электрических зарядов равных по величине и противоположного знака. На больших расстояниях электрическое поле нейтрона будет практически незаметно из-за взаимной компенсации полей обоих знаков заряда. Но на расстояниях порядка радиуса нейтрона это поле будет оказывать существенное влияние на взаимодействия с другими элементарными частицами близких по размерам. Это, прежде всего, касается взаимодействия в атомных ядрах нейтрона с протоном и нейтрона с нейтроном. Для нейтрон - нейтронного взаимодействия это будут силы отталкивания при одинаковом направлении спинов и силы притяжения при противоположном направлении спинов. Для нейтрон - протонного взаимодействия знак силы зависит не только от ориентации спинов, но еще и от смещения между плоскостями вращения электромагнитных полей нейтрона и протона.
Итак, у нейтрона должно быть дипольное электрическое поле двух распределенных параллельных симметричных кольцевых электрических зарядов (+0.75e и -0.75e), среднего радиуса , расположенных на расстоянии

Электрический дипольный момент нейтрона (согласно полевой теории элементарных частиц) равен:

где ħ - постоянная Планка, L - главное квантовое число в полевой теории элементарных частиц, e - элементарный электрический заряд, m 0 - масса покоя нейтрона, m 0~ - масса покоя нейтрона, заключенная в переменном электромагнитном поле, c - скорость света, P - вектор электрического дипольного момента (перпендикулярен плоскости нейтрона, проходит через центр частицы и направлен в сторону положительного электрического заряда), s - среднее расстояние между зарядами, r e - электрический радиус элементарной частицы.

Как видите, электрические заряды близки по величине к зарядам предполагаемых кварков (+2/3e=+0.666e и -2/3e=-0.666e) в нейтроне, но в отличие от кварков, электромагнитные поля в природе существуют, и аналогичной структурой постоянного электрического поля обладает любая нейтральная элементарная частица, независимо от величины спина и... .

Потенциал электрического дипольного поля нейтрона в точке (А) (в ближней зоне 10s > r > s приблизительно), в системе СИ равен:

где θ - угол между вектором дипольного момента P и направлением на точку наблюдения А, r 0 - нормировочный параметр равный r 0 =0.8568Lħ/(m 0~ c), ε 0 - электрическая постоянная, r - расстояние от оси (вращения переменного электромагнитного поля) элементарной частицы до точки наблюдения А, h - расстояние от плоскости частицы (проходящей через ее центр) до точки наблюдения А, h e - средняя высота расположения электрического заряда в нейтральной элементарной частице (равна 0.5s), |...| - модуль числа, P n - величина вектора P n . (В системе СГС отсутствует множитель .)

Напряженность E электрического дипольного поля нейтрона (в ближней зоне 10s > r > s приблизительно), в системе СИ равна:

где n =r /|r| - единичный вектор из центра диполя в направлении точки наблюдения (А), точкой (∙) обозначено скалярное произведение, жирным шрифтом выделены вектора. (В системе СГС отсутствует множитель .)

Компоненты напряженности электрического дипольного поля нейтрона (в ближней зоне 10s>r>s приблизительно) продольная (| |) (вдоль радиус-вектора, проведенного от диполя в данную точку) и поперечная (_|_) в системе СИ:

Где θ - угол между направлением вектора дипольного момента P n и радиус-вектором в точку наблюдения (в системе СГС отсутствует множитель ).

Третья компонента напряженности электрического поля - ортогональная плоскости, в которой лежат вектор дипольного момента P n нейтрона и радиус-вектор, - всегда равна нулю.

Потенциальная энергия U взаимодействия электрического дипольного поля нейтрона (n) с электрическим дипольным полем другой нейтральной элементарной частицы (2) в точке (А) в дальней зоне (r>>s), в системе СИ равна:

где θ n2 - угол между векторами дипольных электрических моментов P n и P 2 , θ n - угол между вектором дипольного электрического момента P n и вектором r , θ 2 - угол между вектором дипольного электрического моментаP 2 и вектором r , r - вектор из центра дипольного электрического момента p n в центр дипольного электрического момента p 2 (в точку наблюдения А). (В системе СГС отсутствует множитель )

Нормировочный параметр r 0 вводится с целью уменьшения отклонения значения E, от рассчитанного с помощью классической электродинамики и интегрального исчисления в ближней зоне. Нормировка происходит в точке, лежащей в плоскости параллельной плоскости нейтрона, удаленной от центра нейтрона на расстояние (в плоскости частицы) и со смещением по высоте на h=ħ/2m 0~ c, где m 0~ - величина массы заключенной в переменном электромагнитном поле покоящегося нейтрона (для нейтрона m 0~ = 0.95784 m. Для каждого уравнения параметр r 0 рассчитывается самостоятельно. В качестве приблизительного значения можно взять полевой радиус:

Из всего вышесказанного следует, что электрическое дипольное поле нейтрона (о существовании которого в природе, физика 20 века и не догадывалась), согласно законам классической электродинамики, будет взаимодействовать с заряженными элементарными частицами .

4 Масса покоя нейтрона

В соответствии с классической электродинамикой и формулой Эйнштейна, масса покоя элементарных частиц с квантовым числом L>0, в том числе и нейтрона, определяется как эквивалент энергии их электромагнитных полей:

где определенный интеграл берется по всему электромагнитному полю элементарной частицы, E - напряженность электрического поля, H - напряженность магнитного поля. Здесь учитываются все компоненты электромагнитного поля: постоянное электрическое поле (которое у нейтрона есть), постоянное магнитное поле, переменное электромагнитное поле. Эта маленькая, но очень емкая для физики формула, на основании которой получены уравнения гравитационного поля элементарных частиц, отправит в утиль не одну сказочную "теорию" - поэтому ее возненавидят некоторые их авторы.

Как следует из приведенной формулы, величина массы покоя нейтрона зависит от условий, в которых нейтрон находится . Так поместив нейтрон в постоянное внешнее электрическое поле (например, атомное ядро), мы повлияем на E 2 , что отразится на массе нейтрона и его стабильности. Аналогичная ситуация возникнет при помещении нейтрона в постоянное магнитное поле. Поэтому некоторые свойства нейтрона внутри атомного ядра, отличаются от тех же свойств свободного нейтрона в вакууме, вдали от полей.

5 Время жизни нейтрона

Установленное физикой время жизни 880 секунд соответствует свободному нейтрону.

Полевая теория элементарных частиц утверждает, что время жизни элементарной частицы зависит от условий, в которых она находится. Поместив нейтрон во внешнее поле (например, магнитное) мы изменяем энергию, содержащуюся в его электромагнитном поле. Можно выбрать направление внешнего поля так, чтобы внутренняя энергия нейтрона уменьшилась. В результате при распаде нейтрона выделится меньше энергии, что затруднит распад и увеличит время жизни элементарной частицы. Можно подобрать такую величину напряженности внешнего поля, что распад нейтрона будет требовать дополнительной энергии и, следовательно, нейтрон станет стабильным. Именно это наблюдается в атомных ядрах (например, дейтерия), в них магнитное поле соседних протонов не допускает распад нейтронов ядра. В прочем при внесении в ядро дополнительной энергии распады нейтронов вновь могут стать возможными.

6 Новая физика: Нейтрон (элементарная частица) - итог

Стандартная модель (опущенная в данной статье, но которая в 20 веке претендовала на истину) утверждает, что нейтрон является связанным состоянием трёх кварков: одного "верхнего" (u) и двух "нижних" (d) кварков (предполагаемая кварковая структура нейтрона: udd). Поскольку наличие кварков в природе экспериментально не доказано, электрический заряд, равный по величине заряду гипотетических кварков в природе не обнаружен, а имеются лишь косвенные свидетельства, которые можно интерпретировать как наличие следов кварков в некоторых взаимодействиях элементарных частиц, но можно и интерпретировать иначе, то утверждение Стандартной модели, что нейтрон обладает кварковой структурой остается всего лишь бездоказательным предположением. Любая модель, в том числе и Стандартная вправе предположить любую структуру элементарных частиц включая нейтрона, но пока на ускорителях не будут обнаружены соответствующие частицы, из которых якобы состоит нейтрон, утверждение модели следует считать не доказанным.

Стандартная модель, описывая нейтрон, вводит не найденные в природе кварки с глюонами (глюоны тоже никто не нашел), не существующие в природе поля и взаимодействия и вступает в противоречие с законом сохранения энергии;

Полевая теория элементарных частиц (Новая физика) описывает нейтрон исходя из существующих в природе полей и взаимодействий в рамках, действующих в природе законов - в этом и заключается НАУКА.

Владимир Горунович

Поговорим о том, как найти протоны, нейтроны и электроны. В атоме существует три вида элементарных частиц, причем у каждой есть свой элементарный заряд, масса.

Строение ядра

Для того чтобы понять, как найти протоны, нейтроны и электроны, представим Оно является основной частью атома. Внутри ядра располагаются протоны и нейтроны, именуемые нуклонами. Внутри ядра эти частицы могут переходить друг в друга.

Например, чтобы найти протоны, нейтроны и электроны в необходимо знать его порядковый номер. Если учесть, что именно этот элемент возглавляет периодическую систему, то в его ядре содержится один протон.

Диаметр атомного ядра составляет десятитысячную долю всего размера атома. В нем сосредоточена основная масса всего атома. По массе ядро превышает в тысячи раз сумму всех электронов, имеющихся в атоме.

Характеристика частиц

Рассмотрим, как найти протоны, нейтроны и электроны в атоме, и узнаем об их особенностях. Протон - это которая соответствует ядру атома водорода. Его масса превышает электрон в 1836 раз. Для определения единицы электричества, проходящего через проводник с заданным поперечным сечением, используют электрический заряд.

У каждого атома в ядре располагается определенное количество протонов. Оно является постоянной величиной, характеризует химические и физические свойства данного элемента.

Как найти протоны, нейтроны и электроны в атоме углерода? Порядковый номер данного химического элемента 6, следовательно, в ядре содержится шесть протонов. Согласно планетарной вокруг ядра по орбитам движется шесть электронов. Для определения количество нейтронов из значения углерода (12) вычитаем количество протонов (6), получаем шесть нейтронов.

Для атома железа число протонов соответствует 26, то есть этот элемент имеет 26-й порядковый номер в таблице Менделеева.

Нейтрон является электрически нейтральной частицей, нестабильной в свободном состоянии. Нейтрон способен самопроизвольно превращаться в положительно заряженный протон, испуская при этом антинейтрино и электрон. Средний период его полураспада составляет 12 минут. Массовое число - это суммарное значение количества протонов и нейтронов внутри ядра атома. Попробуем выяснить, как найти протоны, нейтроны и электроны в ионе? Если атом во время химического взаимодействия с другим элементом приобретает положительную степень окисления, то число протонов и нейтронов в нем не изменяется, меньше становится только электронов.

Заключение

Существовало несколько теорий, касающихся строения атома, но ни одна из них не была жизнеспособной. До версии, созданной Резерфордом, не было детального пояснения о расположении внутри ядра протонов и нейтронов, а также о вращении по круговым орбитам электронов. После появления теории планетарного строения атома у исследователей появилась возможность не только определять количество элементарных частиц в атоме, но и предсказывать физические и химические свойства конкретного химического элемента.

НЕЙТРОН (n) (от лат. neuter - ни тот, ни другой) - элементарная частица с нулевым электрич. зарядом и массой, незначительно большей массы протона. Наряду с протоном под общим назв. нуклон входит в состав атомных ядер. H. имеет спин 1 / 2 и, следовательно, подчиняется Ферми - Дирака статистике (является фермионом). Принадлежит к семейству адра-нов; обладает барионным числом B= 1, т. е. входит в группу барионов .

Открыт в 1932 Дж. Чедвиком (J. Chadwick), показавшим, что жёсткое проникающее излучение, возникающее при бомбардировке ядер бериллия a-частицами, состоит из электрически нейтральных частиц с массой, примерно равной протонной. В 1932 Д. Д. Иваненко и В. Гей-зенберг (W. Heisenberg) выдвинули гипотезу о том, что атомные ядра состоят из протонов и H. В отличие от заряж. частиц, H. легко проникает в ядра при любой энергии и с большой вероятностью вызывает ядерные реакции захвата (n,g), (n,a), (n, p), если баланс энергии в реакции положительный. Вероятность экзотермич. увеличивается при замедлении H. обратно пропорц. его скорости. Увеличение вероятности реакций захвата H. при их замедлении в водородсодержащих средах было обнаружено Э. Ферми (E. Fermi) с сотрудниками в 1934. Способность H. вызывать деление тяжёлых ядер, открытая О. Ганом (О. Hahn) и Ф. Штрасманом (F. Strassman) в 1938 (см. Деление ядер) , послужила основой для создания ядерного оружия и . Своеобразие взаимодействия с веществом медленных H., имеющих де-бройлевскую длину волны порядка атомных расстояний (резонансные эффекты, дифракция и т. д.), служит основой широкого использования нейтронных пучков в физике твёрдого тела. (Классификацию H. по энергиям - быстрые, медленные, тепловые, холодные, ультрахолодные - см. в ст. Нейтронная физика .)

В свободном состоянии H. нестабилен - испытывает B-распад; n p + е - + v e ; его время жизни t n = = 898(14) с, граничная энергия спектра электронов 782 кэВ (см. Бета-распад нейтрона) . В связанном состоянии в составе стабильных ядер H. стабилен (по эксперим. оценкам, его время жизни превышает 10 32 лет). По астр. оценкам, 15% видимого вещества Вселенной представлено H., входящими в состав ядер 4 He. H. является осн. компонентой нейтронных звёзд . Свободные H. в природе образуются в ядерных реакциях, вызываемых a-частицами радиоактивного распада, космическими лучами и в результате спонтанного либо вынужденного деления тяжёлых ядер. Искусств. источниками H. служат ядерные реакторы, ядерные взрывы , ускорители протонов (на ср. энергии) и электронов с мишенями из тяжёлых элементов. Источниками монохроматичных пучков H. с энергией 14 МэВ являются низкоэнергетич. ускорители дейтронов с тритиевой или литиевой мишенью, а в будущем интенсивными источниками таких H. могут оказаться термоядерные установки УТС. (См. .)

Основные характеристики H .

Масса H. т п = 939,5731(27) МэВ/с 2 = = 1,008664967(34) ат. ед. массы 1,675 . 10 -24 г. Разность масс H. и протона измерена с наиб. точностью из энергетич. баланса реакции захвата H. протоном: n + p d + g (энергия g-кванта = 2,22 МэВ), m n - m p = 1,293323 (16) МэВ/с 2 .

Электрический заряд H. Q n = 0. Наиболее точные прямые измерения Q n выполнены по отклонению пучков холодных либо ультрахолодных H. в электростатич. поле: Q n <= 3·10 -21 е (е - заряд электрона). Косв. данные по электрич. нейтральности мак-роскопич. кол-ва газа дают Q n <= 2·10 -22 е .

Спин H. J = 1 / 2 был определён из прямых опытов по расщеплению пучка H. в неоднородном магн. поле на две компоненты [в общем случае число компонент равно (2J + 1)].

Последоват. описание структуры адронов на основе совр. теории сильного взаимодействия - квантовой хромодинамики - пока встречает теоретич. трудности, однако для мн. задач вполне удовлетворит. результаты даёт описание взаимодействия нуклонов, представляемых как элементарные объекты, посредством обмена мезонами. Эксперим. исследование пространств. структуры H. выполняется с помощью рассеяния высокоэнергичных лептонов (электронов, мюонов, нейтрино, рассматриваемых в совр. теории как точечные частицы) на дейтронах. Вклад рассеяния на протоне измеряется в отд. эксперименте и может быть вычтен с помощью определ. вычислит. процедуры.

Упругое и квазиупругое (с расщеплением дейтрона) рассеяние электронов на дейтроне позволяет найти распределение плотности электрич. заряда и магн. момента H. (формфактор H.). Согласно эксперименту, распределение плотности магн. момента H. с точностью порядка неск. процентов совпадает с распределением плотности электрич. заряда протона и имеет среднеквадратичный радиус ~0,8·10 -13 см (0,8 Ф). Магн. форм-фактор H. довольно хорошо описывается т. н. диполь-ной ф-лой G M n = m n (1 + q 2 /0,71) -2 , где q 2 - квадрат переданного импульса в единицах (ГэВ/с) 2 .

Более сложен вопрос о величине электрич. (зарядового) формфактора H. G E n . Из экспериментов по рассеянию на дейтроне можно сделать заключение, что G E n (q 2 ) <= 0,1 в интервале квадратов переданных импульсов (0-1) (ГэВ/с) 2 . При q 2 0 вследствие равенства нулю электрич. заряда H. G E n -> 0, однако экспериментально можно определить дG E n (q 2 )/дq 2 | q 2=0 . Эта величина наиб. точно находится из измерений длины рассеяния H. на электронной оболочке тяжёлых атомов. Осн. часть такого взаимодействия определяется магн. моментом H. Наиб. точные эксперименты дают длину ne-рассеяния а nе = -1,378(18) . 10 -16 см, что отличается от расчётной, определяемой магн. моментом H.: a nе = -1,468 . 10 -16 см. Разность этих значений даёт среднеквадратичный электрич. радиус H. <r 2 E n >= = 0,088(12) Фили дG E n (q 2)/дq 2 | q 2=0 = -0,02 F 2 . Эти циф-ры нельзя рассматривать как окончательные из-за большого разброса данных разл. экспериментов, превышающих приводимые ошибки.

Особенностью взаимодействия H. с большинством ядер является положит. длина рассеяния, что приводит к коэф. преломления < 1. Благодаря этому H., падающие из вакуума на границу вещества, могут испытывать полное внутр. отражение. При скорости u < (5-8) м/с (ультрахолодные H.) H. испытывают полное отражение от границы с углеродом, никелем, бериллием и др. при любом угле падения и могут удерживаться в замкнутых объёмах. Это свойство ультрахолодных H. широко используется в экспериментах (напр., для поиска ЭДМ H.) и позволяет реализовать нейтронооптич. устройства (см. Нейтронная оптика ).

H. и слабое (электрослабое) взаимодействие . Важным источником сведений об электрослабом взаимодействии является b-распад свободного H. .На квар-ковом уровне этот процесс соответствует переходу . Обратный процесс взаимодействия электронного с протоном, , наз. обратным b-распадом. К этому же классу процессов относится электронный захват ,имеющий место в ядрах, ре - nv e .

Распад свободного H. с учётом кинематич. параметров описывается двумя константами - векторной G V , являющейся вследствие векторного тока сохранения универс. константой слабого взаимодействия, и аксиально-векторной G A , величина к-рой определяется динамикой сильно взаимодействующих компонент нуклона - кварков и глюонов. Волновые ф-ции начального H. и конечного протона и матричный элемент перехода n p благодаря изотопич. инвариантности вычисляются достаточно точно. Вследствие этого вычисление констант G V и G A из распада свободного H. (в отличие от вычислений из b-распада ядер) не связано с учётом ядерно-структурных факторов.

Время жизни H. без учёта нек-рых поправок равно: t n = k(G 2 V + 3G 2 A ) -1 , где k включает кинематич. факторы и зависящие от граничной энергии b-распада кулонов-ские поправки и радиационные поправки .

Вероятность распада поляризов. H. со спином S , энергиями и импульсами электрона и антинейтрино и р е, в общем виде описывается выражением:

Коэф. корреляции a, А, В, D могут быть представлены в виде ф-ции от параметра а = (G A /G V ,)exp(i f). Фаза f отлична от нуля или p, если T -инвариантность нарушена. В табл. приведены эксперим. значения для этих коэф. и вытекающие из них значения a и f.


Имеется заметное отличие данных разл. экспериментов для т n , достигающее неск. процентов.

Описание электрослабого взаимодействия с участием H. при более высоких энергиях гораздо сложнее из-за необходимости учитывать структуру нуклонов. Напр., m - -захват, m - p nv m , описывается по крайней мере удвоенным числом констант. H. испытывает также электрослабое взаимодействие с др. адронами без участия лептонов. К таким процессам относятся следующие.

1) Распады гиперонов L np 0 , S + np + , S - np - и т. д. Приведённая вероятность этих распадов в неск. раз меньше, чем у нестранных частиц, что описывается введением угла Кабиббо (см. Кабиббо угол ).

2) Слабое взаимодействие n - n или n - p, к-рое проявляется как ядерные силы, не сохраняющие пространств. чётность .Обычная величина обусловленных ими эффектов порядка 10 -6 -10 -7 .

Взаимодействие H. со средними и тяжёлыми ядрами имеет ряд особенностей, приводящих в нек-рых случаях к значит. усилению эффектов несохранения чётности в ядрах . Один из таких эффектов - относит. разность сечения поглощения H. с по направлению распространения и против него, к-рая в случае ядра 139 La равна 7% при = 1,33 эВ, соответствуют щей р -волновому нейтронному резонансу. Причиной усиления является сочетание малой энергетич. ширины состояний компаунд-ядра и большой плотности уровней с противоположной чётностью у этого компаунд-ядра, обеспечивающей на 2-3 порядка большее смешивание компонент с разной чётностью, чем у низко лежащих состояний ядер. В результате ряд эффектов: асимметрия испускания g-квантов относительно спина захватываемого поляризов. H. в реакции (n, g), асимметрия вылета заряж. частиц при распаде компаунд-состояний в реакции (n, р) или асимметрия вылета лёгкого (или тяжёлого) осколка деления в реакции (n, f ). Асимметрии имеют величину 10 -4 -10 -3 при энергии тепловых H. В р -волновых нейтронных резонансах реализуется дополнит. усиление, связанное с подавленностью вероятности образования сохраняющей чётность компоненты этого компаунд-состояния (из-за малой нейтронной ширины р -резонанса) по отношению к примесной компоненте с противоположной четностью, являющейся s -резонан-сом. Именно сочетание неск. факторов усиления позволяет крайне слабому эффекту проявляться с величиной, характерной для ядерного взаимодействия.

Взаимодействия с нарушением барионного числа . Теоретич. модели великого объединения и суперобъединения предсказывают нестабильность барионов - их распад в лептоны и мезоны. Эти распады могут быть заметны только для легчайших барионов - p и п, входящих в состав атомных ядер. Для взаимодействия с изменением барионного числа на 1, DB = 1, можно было бы ожидать превращения H. типа: n е + p - , или превращения с испусканием странных мезонов. Поиски такого рода процессов производились в экспериментах с применением подземных детекторов с массой в неск. тысяч тонн. На основании этих экспериментов можно сделать заключение, что время распада H. с нарушением барионного числа составляет более 10 32 лет.

Др. возможный тип взаимодействия с DВ = 2 может привести к явлению взаимопревращения H. и антинейтронов в вакууме, т. е. к осцилляции . В отсутствие внеш. полей или при их малой величине состояния H. и антинейтрона вырождены, поскольку массы их одинаковы, поэтому даже сверхслабое взаимодействие может их перемешивать. Критерием малости внеш. полей является малость энергии взаимодействия магн. момента H. с магн. полем (n и n ~ имеют противоположные по знаку магн. моменты) по сравнению с энергией, определяемой временем T наблюдения H. (согласно соотношению неопределённостей), D <=hT -1 . При наблюдении рождения антинейтронов в пучке H. от реактора или др. источника T есть время пролёта H. до детектора. Число антинейтронов в пучке растёт с ростом времени пролёта квадратично: /N n ~ ~ (T /t осц) 2 , где t осц - время осцилляции.

Прямые эксперименты по наблюдению рождения и в пучках холодных H. от высокопоточного реактора дают ограничение t осц > 10 7 с. В готовящихся экспериментах можно ожидать увеличения чувствительности до уровня t осц ~ 10 9 с. Ограничивающими обстоятельствами являются макс. интенсивность пучков H. и имитация явлений антинейтронов в детекторе космич. лучами.

Др. метод наблюдения осцилляции - наблюдение аннигиляции антинейтронов, к-рые могут образовываться в стабильных ядрах. При этом из-за большого отличия энергий взаимодействий возникающего антинейтрона в ядре от энергии связи H. эфф. время наблюдения становится ~ 10 -22 с, но большое число наблюдаемых ядер (~10 32) частично компенсирует уменьшение чувствительности по сравнению с экспериментом на пучках H. Из данных подземных экспериментов по поиску распада протона об отсутствии событий с энерговыделением ~2 ГэВ можно заключить с нек-рой неопределённостью, зависящей от незнания точного вида взаимодействия антинейтрона внутри ядра, что t осц > (1-3) . 10 7 с. Существ. повышение предела t осц в этих экспериментах затруднено фоном, обусловленным взаимодействием космич. нейтрино с ядрами в подземных детекторах.

Следует отметить, что поиски распада нуклона с DB = 1 и поиски -осцилляции являются независимыми экспериментами, т. к. вызываются принципиально разл. видами взаимодействий.

Гравитационное взаимодействие H . Нейтрон - одна из немногих элементарных частиц, падение к-рой в гравитац. поле Земли можно наблюдать экспериментально. Прямое измерение для H. выполнено с точностью 0,3% и не отличается от макроскопического. Актуальным остаётся вопрос о соблюдении эквивалентности принципа (равенства инертной и гравитац. масс) для H. и протонов.

Самые точные эксперименты выполнены методом Эт-веша для тел, имеющих разные ср. значения отношения A/Z , где А - ат. номер, Z - заряд ядер (в ед. элементарного заряда е) . Из этих опытов следует одинаковость ускорения свободного падения для H. и протонов на уровне 2·10 -9 , а равенство гравитац. и инертной масс на уровне ~10 -12 .

Гравитац. ускорение и замедление широко используются в опытах с ультрахолодными H. Применение гравитац. рефрактометра для холодных и ультрахолодных H. позволяет с большой точностью измерить длины когерентного рассеяния H. на веществе.

H. в космологии и астрофизике

Согласно совр. представлениям, в модели Горячей Вселенной (см. Горячей Вселенной теория )образование барионов, в т. ч. протонов и H., происходит в первые минуты жизни Вселенной. В дальнейшем нек-рая часть H., не успевших распасться, захватывается протонами с образованием 4 He. Соотношение водорода и 4 He при этом составляет по массе 70% к 30%. При формировании звёзд и их эволюции происходит дальнейший нуклеосинтез , вплоть до ядер железа. Образование более тяжёлых ядер происходит в результате взрывов сверхновых с рождением нейтронных звёзд, создающих возможность последоват. захвата H. нуклидами. При этом комбинация т. н. s -процесса - медленного захвата H. с b-распадом между последовательными захватами и r -процесса - быстрого последоват. захвата при взрывах звёзд в осн. может объяснить наблюдаемую распространённость элементов в космич. объектах.

В первичной компоненте космич. лучей H. из-за своей нестабильности вероятно отсутствуют. H., образующиеся у поверхности Земли, диффундирующие в космич. пространство и распадающиеся там, по-видимому, вносят вклад в формирование электронной и протонной компоненты радиационных поясов Земли.

Лит.: Гуревич И. С., Тарасов Л. В., Физика нейтронов низких энергий, M., 1965; Александров Ю. А.,. Фундаментальные свойства нейтрона, 2 изд., M., 1982.

Многим со школы хорошо известно, что все вещества состоял из атомы. Атомы в свою очередь состоят из протонов и нейтронов образующих ядро атомы и электронов, расположенных на некотором расстоянии от ядра. Многие также слышали, что свет тоже состоит из частиц – фотонов. Однако на этом мир частиц не ограничивается. На сегодняшний день известно более 400 различных элементарных частиц. Попробуем понять, чем элементарные частицы отличаются друг от друга.

Существует множество параметров, по которым можно отличить элементарные частицы друг от друга:

  • Масса.
  • Электрический заряд.
  • Время жизни. Почти все элементарные частицы имеют конечное время жизни по истечении которого они распадаются.
  • Спин. Его можно, весьма приближенно считать как вращательный момент.

Еще несколько параметров, или как их принято называть в науке квантовых чисел. Эти параметры не всегда имеют понятный физический смысл, но они нужны для того, чтобы отличать одни частицы от других. Все эти дополнительные параметры введены как некоторые величины, сохраняющиеся во взаимодействии.

Массой обладают почти все частицы, кроме фотоны и нейтрино (по последним данным нейтрино обладают массой, но столь малой, что часто ее считают нулем). Без массовые частицы могут существуют только в движении. Масса у всех частиц различна. Минимальной массой, не считая нейтрино, обладает электрон. Частицы, которые называются мезонами обладают массой в 300-400 раз большей массы электрона, протон и нейтрон почти в 2000 раз тяжелее электрона. Сейчас уже открыты частицы, которые почти в 100 раз тяжелее протона. Масса,(или ее энергетический эквивалент по формуле Эйнштейна:

сохраняется во всех взаимодействиях элементарных частиц.

Электрическим зарядом обладают не все частицы, а значит что не все частицы способны участвовать в электромагнитном взаимодействии. У всех свободно существующих частиц электрический заряд кратен заряду электрона. Кроме свободно существующих частиц существуют также частицы, находящие только в связанном состоянии, о них мы скажем чуть позже.

Спин, как и другие квантовые числа у различных частиц различны и характеризуют их уникальность. Некоторые квантовые числа сохраняются в одних взаимодействиях, некоторые в других. Все эти квантовые числа определяют то, какие частицы взаимодействуют с какими и как.

Время жизни также очень важная характеристика частицы и ее мы рассмотрим наиболее подробно. Начнем с замечания. Как мы уже сказали в начале статьи – все что нас окружает состоит из атомов (электронов, протонов и нейтронов) и света (фотонов). А где же тогда еще сотни различных видов элементарных частиц. Ответ прост – всюду вокруг нас, но мы из не замечаем по двум причинам.

Первая из них – почти все остальные частицы живут очень мало, примерно 10 в минус 10 степени секунд и меньше, и потому не образовывают таких структур как атомы, кристаллические решетки и т.п. Вторая причина касается нейтрино, эти частицы хоть и не распадаются, но они подвержены только слабому и гравитационному взаимодействию. Это значит, что эти частицы взаимодействуют на столько незначительно, что обнаружить из почти невозможно.

Представим наглядно в чем выражается то, на сколько частица хорошо взаимодействуем. Например поток электронов можно остановить довольно тонким листом стали, порядка нескольких миллиметров. Это произойдет потому, что электроны сразу начнут взаимодействовать с частицами листа стали, будут резко менять свой направления, излучать фотоны, и таким образом довольно быстро потеряют энергию. С потоком нейтрино все не так, они почти без взаимодействий могут пройти насквозь Земного Шара. И потому обнаружить их очень тяжело.

Итак, большинство частиц живут очень короткое время, по истечении которого она распадаются. Распады частиц- наиболее часто встречающиеся реакции. В результате распада одна частица распадается на несколько других меньшей массы, а те в свою очередь распадаются дальше. Все распады подчиняются определенным правилам – законам сохранения. Так, например, в результате распада должен сохраняться электрический заряд, масса, спин и еще ряд квантовых чисел. Некоторые квантовые числа в ходе распада могут меняться, но тоже подчиняясь определенным правилам. Именно правила распада говорят нам о том, что электрон и протон это стабильные частицы. Они уже не могут распадаются подчиняясь правилам распада, и потому именно ими заканчиваются цепочки распада.

Здесь хочется сказать несколько слов о нейтроне. Свободный нейтрон тоже распадается, на протон и электрон примерно за 15 минут. Однако когда нейтрон находится в атомном ядре это не происходит. Этот факт можно объяснить различными способами. Например так, когда в ядре атома появляется электрон и лишний протон от распавшегося нейтрона, то тут же происходит обратная реакция – один из протонов поглощает электрон и превращается в нейтрон. Такая картина называется динамическим равновесием. Она наблюдалась в вселенной на ранней стадии ее развития вскоре после большого взрыва.

Кроме реакций распада есть еще реакции рассеяния – когда две или более частиц вступают во взаимодействие одновременно, и в результате получается одна или несколько других частиц. Также есть реакции поглощение, когда из двух или более частиц получается одна. Все реакции происходят в результате сильного слабого или электромагнитного взаимодействия. Реакции идущие за счет сильного взаимодействия идут быстрее всего, время такой реакции может достигать 10 в минус 20 секунды. Скорость реакций идущих за счет электромагнитного взаимодействия ниже, тут время может быть порядка 10 в минус 8 секунды. Для реакций слабого взаимодействия время может достигать десятков секунд а иногда и годы.

В завершении рассказа про частицы расскажем про кварки. Кварки – это элементарные частицы, имеющие электрический заряд кратный трети заряда электрона и которые не могут существовать в свободном состоянии. Их Взаимодействие устроено так, что они могут жить только в составе чего либо. Например комбинация из трех кварков определенного типа образуют протон. Другая комбинация дает нейтрон. Всего известно 6 кварков. Их различные комбинации дают нам разные частицы, и хотя далеко не все комбинации кварков разрешены физическими законами, частиц, составленных из кварков довольно много.

Здесь может возникнуть вопрос, как можно протон называть элементарным если он состоит из кварков. Очень просто – протон элементарен, так как его невозможно расщепить на составные части – кварки. Все частицы, которые участвуют в сильном взаимодействии состоят из кварков, и при этом являются элементарными.

Понимание взаимодействий элементарных частиц очень важно для понимания устройства вселенной. Все что происходит с макро телами есть результат взаимодействия частиц. Именно взаимодействием частиц описываются рост деревьев на земле, реакции в недрах звезд, излучение нейтронных звезд и многое другое.

Вероятности и квантовая механика >
Loading...Loading...