Монтажная схема индукционного нагревателя. Простой индукционный нагреватель


Умельцы придумали много способов для отопления дома. Один из них — индукционный нагреватель. Как и любой другой, он имеет свои преимущества и недостатки.

Принцип действия

В основе работы лежит закон Джоуля-Ленца, который отражает прямую зависимость тепловой отдачи проводника от напряженности электрического поля. Всем известна взаимосвязь магнетизма и электричества, которые просто не могут существовать одно без другого. Если на катушку подать ток высокой частоты, вокруг нее образуется магнитное поле. Его поток будет пронизывать токопроводящий сердечник, вставленный в катушку. Возникшая магнитная индукция будет постоянно меняться по направлению и времени, что вызовет появление вихревых токов, движущихся по замкнутому кругу. А это преобразовывает электромагнитную энергию в тепловую. Такова в общих чертах схема индукционного нагревателя.


Индукционные нагреватели блестяще зарекомендовали себя в самых разных областях применения. С их помощью можно проводить поверхностную закалку металлических изделий, сверхчистую, бесконтактную сварку, точечный прогрев и даже плавку токопроводящих материалов. Производственные индукторы оборудованы мощным трансформатором, способным подавать на них большие токи.

Индуктор в быту

Поскольку схема подобного нагревателя не отличается сложностью, а КПД такого устройства очень высок (до 98%), вихревой индукционный нагреватель не мог не заинтересовать народных умельцев.


Очень часто у многих возникает идея об использовании принципа индукции для отопления дома. Ведь индукционный обогреватель способен нагревать воду чуть ли не мгновенно. Поэтому существует целый ряд конструкций, представляющих собой самодельный индукционный нагреватель.

В физике много законов, обойти которые не получится никогда. Энергия не берется из ниоткуда, а потому количество потребляемого электричества не может быть меньше, чем требуется тепловой энергии.

Другими словами, если для прогрева помещения требуется 5 кВт/ч, то не получится сделать это, потребляя всего 2 кВт/ч электроэнергии, какой бы замечательной ни была конструкция нагревателя. Если планируется отапливаться с помощью индуктора, нужно быть готовым к повышению выплат за электричество.

Самым популярным вариантом среди мастеров-умельцев является индукционный нагреватель из сварочного инвертора. Этому есть ряд причин:

  1. Инвертор выдает ток повышенных частот, что значительно повышает напряженность электрического поля, а это благотворно сказывается на теплоотдаче.
  2. Сварочный инвертор способен на подачу больших токов. Из всех приборов, доступных для бытового применения, инвертор лучше всего подходит для использования в качестве блока питания индукционного нагревателя.

Элементы конструкции

Индукционный нагреватель своими руками делается следующим образом:

  1. Кусок пластиковой трубы с толщиной стенок не менее 3 мм заполняется кусками металлической проволоки. Длина их примерно около 5 см.
  2. Оба края этого отрезка трубы закрываются металлической сеткой, чтобы она удерживала эти куски на месте. Труба должна быть заполнена проволокой полностью.
  3. После этого она должна быть аккуратно обмотана толстым медным проводом — порядка 90 витков. Желательно выбирать провод с диаметром не ниже 3 мм.
  4. С помощью переходников и фитингов труба присоединяется к отопительной системе, которая после этого заполняется водой.
  5. Концы провода присоединяются к клеммам сварочного инвертора.
  6. Необходимо обеспечить выполнение всех мер пожарной и электробезопасности.

После включения устройства металлические куски проволоки мгновенно нагреются и начнут отдавать тепло проходящей свозь них воде.

Особо стоит заострить внимание на том, что вода обязательно должна непрерывно циркулировать.

В противном случае температура трубы поднимется настолько, что появится угроза ее расплавления


Это является 1 из самых серьезных недостатков подобных нагревателей. В случае частого отсутствия хозяев необходима система автоматического компьютерного контроля за работой нагревателя.

Индукционный нагреватель вполне пригоден для отопления, но при этом имеет свои недостатки. Они вполне исправимы и при грамотной проработке деталей данная конструкция способна конкурировать с другими.

Использование индукционных катушек вместо традиционных ТЭН в отопительном оборудовании позволило значительно увеличить КПД агрегатов при меньшем потреблении электроэнергии. Индукционные нагреватели появились в продаже относительно недавно, к тому же по достаточно высоким ценам. Поэтому народные умельцы не оставили эту тему без внимания и придумали, как сделать индукционный нагреватель из сварочного инвертора.

Индукционные нагреватели с каждым днем набирают популярность у потребителя благодаря следующим достоинствам:

  • высокий показатель КПД;
  • агрегат работает практически бесшумно;
  • индукционные котлы и нагреватели считаются достаточно безопасными в сравнении с газовым оборудованием;
  • нагреватель работает полностью в автоматическом режиме;
  • оборудование не требует постоянного обслуживания;
  • благодаря герметичности аппарат, исключаются протечки;
  • из-за вибраций электромагнитного поля образование накипи становится невозможным.

Также к преимуществам данного типа нагревателя можно отнести простоту его конструкции и доступность материалов для сборки аппарата своими руками.

Схема работы индукционного нагревателя

Нагреватель индукторного типа содержит следующие элементы.

  1. Генератор тока . Благодаря данному модулю переменный ток бытовой электросети преобразуется в высокочастотный.
  2. Индуктор . Изготавливается из медной проволоки, скрученной в виде катушки, для образования магнитного поля.
  3. . Представляет собой металлическую трубу, размещенную внутри индуктора.

Все перечисленные элементы, взаимодействуя между собой, работают по следующему принципу . Выработанный генератором высокочастотный ток поступает на катушку индуктора, изготовленную из медного проводника. Ток высокой частоты преобразуется индуктором в электромагнитное поле. Далее, металлическая труба, находящаяся внутри индуктора, разогревается благодаря воздействию на нее вихревых потоков, возникающих в катушке. Теплоноситель (вода), проходящий через нагреватель, забирает тепловую энергию и переносит ее в отопительную систему. Также теплоноситель выступает в роли охладителя нагревательного элемента, что продляет “жизнь” отопительному котлу.

Ниже предоставлена электрическая схема индукционного нагревателя.

На следующем фото показано, как работает индукционный нагреватель металла.

Важно! Если прикоснуться разогреваемой деталью к двум виткам индуктора, то произойдет межвитковое замыкание, от которого мгновенно выгорят транзисторы.

Сборка и монтаж системы

Подключать индуктор к клеммам сварочного аппарата, предназначенным для подсоединения сварочных кабелей, нельзя. Если это сделать, то агрегат просто выйдет из строя. Чтобы приспособить инвертор под работу с индукционным нагревателем, потребуется достаточно сложная переделка аппарата, требующая, в первую очередь, знаний в радиоэлектронике.

В двух словах, эта переделка выглядит так: катушку, а именно ее первичную обмотку, требуется подсоединить после преобразователя высокой частоты инвертора вместо встроенной индукционной катушки последнего. Кроме этого, потребуется удалить диодный мост и спаять конденсаторный блок.

Как происходит переделка сварочного инвертора в индукционный нагреватель, можно узнать из этого видео .

Индукционная печь для металла

Чтобы сделать индукционный нагреватель из сварочного инвертора, потребуются следующие материалы.

  1. Инверторный сварочный аппарат . Хорошо, если в агрегате будет реализована функция плавной регулировки тока.
  2. Медная трубка диаметром около 8 мм и длиной, достаточной, чтобы сделать 7 витков вокруг заготовки 4-5 см в диаметре. Кроме этого, после витков должны остаться свободные концы трубки длиной около 25 см.

Для сборки печи выполните следующие действия.

  1. Подберите какую-либо деталь диаметром 4-5 см, которая будет служить шаблоном для наматывания катушки из медной трубки. Это может быть деревянная круглая деталь, металлическая или пластиковая труба.
  2. Возьмите медную трубку и заклепайте один ее конец молотком.
  3. Плотно заполните трубку сухим песком и заклепайте второй ее конец. Песок не даст трубке сломаться при скручивании.
  4. Сделайте 7 витков трубки вокруг шаблона, после чего спилите ее концы и высыпьте песок.
  5. Подсоедините получившуюся катушку к переделанному инвертору.

Совет! Если предполагается, что индукционная печь будет работать длительное время на большой мощности, то к трубке рекомендуется подвести водяное охлаждение.

Индукционный нагреватель для воды

Для сборки отопительного котла потребуются следующие конструктивные элементы.

  1. Инвертор. Аппарат выбирается такой мощности, какая нужна для отопительного котла.
  2. Толстостенная труба (пластиковая), можно марки PN Ее длина должна быть 40-50 см. Сквозь нее будет проходить теплоноситель (вода). Внутренний диаметр трубы должен быть не меньше 5 см. В таком случае наружный диаметр будет равняться 7,5 см. Если внутренний диаметр будет меньше, то и производительность котла буде невысокой.
  3. Стальная проволока . Также можно взять пруток из металла диаметром 6-7 мм. Из проволоки или прутка нарезаются небольшие куски (4-5 мм). Эти отрезки будут выполнять роль теплообменника (сердечника) индуктора. Вместо стальных отрезков можно использовать цельнометаллическую трубку меньшего диаметра или стальной шнек.
  4. Палочки или стержни из текстолита , на которые будет наматываться индукционная катушка. Применение текстолита убережет трубу от нагретой катушки, поскольку данный материал устойчив к высоким температурам.
  5. Изолированный кабель сечением 1,5 мм 2 и длиной 10-10,5 метров. Изоляция кабеля должна быть волокнистой, эмалевой, стекловолоконной или асбестовой.

Совет! Вместо стальной проволоки допускается использовать металлическую губку из нержавейки. Но перед покупкой их проверяют магнитом: если мочалка притягивается магнитом, то ее можно использовать в качестве нагревателя.

Индукционный котел отопления собирается по следующему алгоритму. Заполните корпус теплообменника изделиями из металла, о которых говорилось выше. На конце трубы, служащей корпусом, припаяйте переходники, подходящие по диаметру к трубам отопительного контура.

При необходимости, к переходникам можно припаять уголки. Также следует припаять муфты-американки . Благодаря им нагреватель будет легко демонтировать, для проведения ремонта или профилактического осмотра.

На следующем этапе на корпус теплообменника необходимо наклеить текстолитовые полоски , на которые будет наматываться катушка. Также следует сделать из того же текстолита пару стоек высотой 12-15 мм. На них будут расположены контакты для подключения нагревателя к переделанному инвертору.

Поверх полосок из текстолита намотайте катушку. Между витками должно быть расстояние не менее 3 мм. Намотка должна состоять из 90 витков проводника. Концы кабеля необходимо закрепить на ранее подготовленных стойках.

Вся конструкция помещается в кожух, который в целях безопасности будет выполнять роль изоляции. Для кожуха подойдет пластиковая труба диаметром большим, чем катушка. В защитном кожухе необходимо сделать 2 отверстия для вывода электрического кабеля. В торцы трубы можно установить заглушки, после чего в них следует проделать отверстия под патрубки. Через последние котел будет подсоединяться к отопительной магистрали.

Важно! Испытывать нагреватель можно лишь после заполнение его водой. Если включить его “на сухую”, то пластиковая труба расплавится, и придется собирать нагреватель заново.

Схема подключения состоит из следующих элементов.

  1. Источник высокочастотного тока . В данном случае – это видоизмененный инвертор.
  2. Элементы безопасности . В эту группу могут входить: термометр, предохранительный клапан, манометр и т.д.
  3. Шаровые краны . Используются для слива или заправки системы водой, а также для перекрытия подачи воды на определенном участке контура.
  4. Циркуляционный насос . Благодаря ему вода сможет двигаться по отопительной системе.
  5. Фильтр. Применяется для очистки теплоносителя от механических загрязнений. Благодаря очистке воды продлевается срок службы всего оборудования.
  6. Расширительный бачок мембранного типа. Применяется для компенсации теплового расширения воды.
  7. Радиатор отопления . Для индукционного отопления лучше использовать либо алюминиевые радиаторы, либо биметаллические, поскольку они при небольших габаритах имеют высокую теплоотдачу.
  8. Шланг, через который можно заполнять систему либо сливать из нее теплоноситель.

Как видно из вышеописанного метода, самостоятельно изготовить индукционный нагреватель вполне возможно. Но лучше покупного он не будет. Даже если вы обладаете необходимыми знаниями в электротехнике, следует задуматься, насколько будет безопасной эксплуатация такого аппарата, поскольку он не оборудован ни специальными датчиками, ни блоком контроля. Поэтому рекомендуется отдать предпочтение готовому оборудованию, изготовленному в заводских условиях.

Индукционный нагрев (Induction Heating) - метод бесконтактного нагрева токами высокой частоты (англ. RFH - radio-frequency heating, нагрев волнами радиочастотного диапазона) электропроводящих материалов.

Описание метода.

Индукционный нагрев - это нагревание материалов электрическими токами, которые индуцируются переменным магнитным полем. Следовательно - это нагрев изделий из проводящих материалов (проводников) магнитным полем индукторов (источников переменного магнитного поля). Индукционный нагрев проводится следующим образом. Электропроводящая (металлическая, графитовая) заготовка помещается в так называемый индуктор, представляющий собой один или несколько витков провода (чаще всего медного). В индукторе с помощью специального генератора наводятся мощные токи различной частоты (от десятка Гц до нескольких МГц), в результате чего вокруг индуктора возникает электромагнитное поле. Электромагнитное поле наводит в заготовке вихревые токи. Вихревые токи разогревают заготовку под действием джоулева тепла (см. закон Джоуля-Ленца).

Система «индуктор-заготовка» представляет собой бессердечниковый трансформатор, в котором индуктор является первичной обмоткой. Заготовка является вторичной обмоткой, замкнутой накоротко. Магнитный поток между обмотками замыкается по воздуху.

На высокой частоте вихревые токи вытесняются образованным ими же магнитным полем в тонкие поверхностные слои заготовки Δ (Поверхностный-эффект), в результате чего их плотность резко возрастает, и заготовка разогревается. Нижерасположенные слои металла прогреваются за счёт теплопроводности. Важен не ток, а большая плотность тока. В скин-слое Δ плотность тока уменьшается в e раз относительно плотности тока на поверхности заготовки, при этом в скин-слое выделяется 86,4 % тепла (от общего тепловыделения. Глубина скин-слоя зависит от частоты излучения: чем выше частота, тем тоньше скин-слой. Также она зависит от относительной магнитной проницаемости μ материала заготовки.

Для железа, кобальта, никеля и магнитных сплавов при температуре ниже точки Кюри μ имеет величину от нескольких сотен до десятков тысяч. Для остальных материалов (расплавы, цветные металлы, жидкие легкоплавкие эвтектики, графит, электролиты, электропроводящая керамика и т. д.) μ примерно равна единице.

Например, при частоте 2 МГц глубина скин-слоя для меди около 0,25 мм, для железа ≈ 0,001 мм.

Индуктор сильно нагревается во время работы, так как сам поглощает собственное излучение. К тому же он поглощает тепловое излучение от раскалённой заготовки. Делают индукторы из медных трубок, охлаждаемых водой. Вода подаётся отсасыванием - этим обеспечивается безопасность в случае прожога или иной разгерметизации индуктора.

Применение:
Сверхчистая бесконтактная плавка, пайка и сварка металла.
Получение опытных образцов сплавов.
Гибка и термообработка деталей машин.
Ювелирное дело.
Обработка мелких деталей, которые могут повредиться при газопламенном или дуговом нагреве.
Поверхностная закалка.
Закалка и термообработка деталей сложной формы.
Обеззараживание медицинского инструмента.

Преимущества.

Высокоскоростной разогрев или плавление любого электропроводящего материала.

Возможен нагрев в атмосфере защитного газа, в окислительной (или восстановительной) среде, в непроводящей жидкости, в вакууме.

Нагрев через стенки защитной камеры, изготовленной из стекла, цемента, пластмасс, дерева - эти материалы очень слабо поглощают электромагнитное излучение и остаются холодными при работе установки. Нагревается только электропроводящий материал - металл (в том числе расплавленный), углерод, проводящая керамика, электролиты, жидкие металлы и т. п.

За счёт возникающих МГД усилий происходит интенсивное перемешивание жидкого металла, вплоть до удержания его в подвешенном состоянии в воздухе или защитном газе - так получают сверхчистые сплавы в небольших количествах (левитационная плавка, плавка в электромагнитном тигле).

Поскольку разогрев ведётся посредством электромагнитного излучения, отсутствует загрязнение заготовки продуктами горения факела в случае газопламенного нагрева, или материалом электрода в случае дугового нагрева. Помещение образцов в атмосферу инертного газа и высокая скорость нагрева позволят ликвидировать окалинообразование.

Удобство эксплуатации за счёт небольшого размера индуктора.

Индуктор можно изготовить особой формы - это позволит равномерно прогревать по всей поверхности детали сложной конфигурации, не приводя к их короблению или локальному непрогреву.

Легко провести местный и избирательный нагрев.

Так как наиболее интенсивно разогрев идет в тонких верхних слоях заготовки, а нижележащие слои прогреваются более мягко за счёт теплопроводности, метод является идеальным для проведения поверхностной закалки деталей (сердцевина при этом остаётся вязкой).

Лёгкая автоматизация оборудования - циклов нагрева и охлаждения, регулировка и удерживание температуры, подача и съём заготовок.

Установки индукционного нагрева:

На установках с рабочей частотой до 300 кГц используют инверторы на IGBT-сборках или MOSFET-транзисторах. Такие установки предназначены для разогрева крупных деталей. Для разогрева мелких деталей используются высокие частоты (до 5 МГц, диапазон средних и коротких волн), установки высокой частоты строятся на электронных лампах.

Также для разогрева мелких деталей строятся установки повышенной частоты на MOSFET-транзисторах на рабочие частоты до 1,7 МГц. Управление транзисторами и их защита на повышенных частотах представляет определённые трудности, поэтому установки повышенной частоты пока ещё достаточно дороги.

Индуктор для нагрева мелких деталей имеет небольшие размеры и небольшую индуктивность, что приводит к уменьшению добротности рабочего колебательного контура на низких частотах и снижению КПД, а также представляет опасность для задающего генератора (добротность колебательного контура пропорциональна L/C, колебательный контур с низкой добротностью слишком хорошо «накачивается» энергией, образует короткое замыкание по индуктору и выводит из строя задающий генератор). Для повышения добротности колебательного контура используют два пути:
- повышение рабочей частоты, что приводит к усложнению и удорожанию установки;
- применение ферромагнитных вставок в индукторе; обклеивание индуктора панельками из ферромагнитного материала.

Так как наиболее эффективно индуктор работает на высоких частотах, промышленное применение индукционный нагрев получил после разработки и начала производства мощных генераторных ламп. До первой мировой войны индукционный нагрев имел ограниченное применение. В качестве генераторов тогда использовали машинные генераторы повышенной частоты (работы В. П. Вологдина) или искровые разрядные установки.

Схема генератора может быть в принципе любой (мультивибратор, RC-генератор, генератор с независимым возбуждением, различные релаксационные генераторы), работающей на нагрузку в виде катушки-индуктора и обладающей достаточной мощностью. Необходимо также, чтобы частота колебаний была достаточно высока.

Например, чтобы «перерезать» за несколько секунд стальную проволоку диаметром 4 мм, необходима колебательная мощность не менее 2 кВт при частоте не менее 300 кГц.

Выбирают схему по следующим критериям: надёжность; стабильность колебаний; стабильность выделяемой в заготовке мощности; простота изготовления; удобство настройки; минимальное количество деталей для уменьшения стоимости; применение деталей, в сумме дающих уменьшение массы и габаритов, и др.

На протяжении многих десятилетий в качестве генератора высокочастотных колебаний применялась индуктивная трёхточка (генератор Хартли, генератор с автотрансформаторной обратной связью, схема на индуктивном делителе контурного напряжения). Это самовозбуждающаяся схема параллельного питания анода и частотно-избирательной цепью, выполненной на колебательном контуре. Она успешно использовалась и продолжает использоваться в лабораториях, ювелирных мастерских, на промышленных предприятиях, а также в любительской практике. К примеру, во время второй мировой войны на таких установках проводили поверхностную закалку катков танка Т-34.

Недостатки трёх точки:

Низкий кпд (менее 40 % при применении лампы).

Сильное отклонение частоты в момент нагрева заготовок из магнитных материалов выше точки Кюри (≈700С) (изменяется μ), что изменяет глубину скин-слоя и непредсказуемо изменяет режим термообработки. При термообработке ответственных деталей это может быть недопустимо. Также мощные твч-установки должны работать в узком диапазоне разрешённых Россвязьохранкультурой частот, поскольку при плохом экранировании являются фактически радиопередатчиками и могут оказывать помехи телерадиовещанию, береговым и спасательным службам.

При смене заготовок (например, более мелкой на более крупную) изменяется индуктивность системы индуктор-заготовка, что также приводит к изменению частоты и глубины скин-слоя.

При смене одновитковых индукторов на многовитковые, на более крупные или более малогабаритные частота также изменяется.

Под руководством Бабата, Лозинского и других учёных были разработаны двух- и трёхконтурные схемы генераторов, имеющих более высокий кпд (до 70 %), а также лучше удерживающие рабочую частоту. Принцип их действия состоит в следующем. За счёт применения связанных контуров и ослабления связи между ними, изменение индуктивности рабочего контура не влечёт сильного изменения частоты частотозадающего контура. По такому же принципу конструируются радиопередатчики.

Современные твч-генераторы - это инверторы на IGBT-сборках или мощных MOSFET-транзисторах, обычно выполненные по схеме мост или полумост. Работают на частотах до 500 кГц. Затворы транзисторов открываются с помощью микроконтроллерной системы управления. Система управления в зависимости от поставленной задачи позволяет автоматически удерживать

А) постоянную частоту
б) постоянную мощность, выделяемую в заготовке
в) максимально высокий КПД.

Например, при нагреве магнитного материала выше точки Кюри толщина скин-слоя резко увеличивается, плотность тока падает, и заготовка начинает греться хуже. Также пропадают магнитные свойства материала и прекращается процесс перемагничивания - заготовка начинает греться хуже, сопротивление нагрузки скачкообразно уменьшается - это может привести к "разносу" генератора и выходу его из строя. Система управления отслеживает переход через точку Кюри и автоматически повышает частоту при скачкообразном уменьшении нагрузки (либо уменьшает мощность).

Замечания.

Индуктор по возможности необходимо располагать как можно ближе к заготовке. Это не только увеличивает плотность электромагнитного поля вблизи заготовки (пропорционально квадрату расстояния), но и увеличивает коэффициент мощности Cos(φ).

Увеличение частоты резко уменьшает коэффициент мощности (пропорционально кубу частоты).

При нагреве магнитных материалов дополнительное тепло также выделяется за счет перемагничивания, их нагрев до точки Кюри идет намного эффективнее.

При расчёте индуктора необходимо учитывать индуктивность подводящих к индуктору шин, которая может быть намного больше индуктивности самого индуктора (если индуктор выполнен в виде одного витка небольшого диаметра или даже части витка - дуги).

Имеются два случая резонанса в колебательных контурах: резонанс напряжений и резонанс токов.
Параллельный колебательный контур – резонанс токов.
В этом случае на катушке и на конденсаторе напряжение такое же, как у генератора. При резонансе, сопротивление контура между точками разветвления становится максимальным, а ток (I общ) через сопротивление нагрузки Rн будет минимальным (ток внутри контура I-1л и I-2с больше чем ток генератора).

В идеальном случае полное сопротивление контура равно бесконечности - схема не потребляет тока от источника. При изменение частоты генератора в любую сторону от резонансной частоты полное сопротивление контура уменьшается и линейный ток (I общ) возрастает.

Последовательный колебательный контур – резонанс напряжений.

Главной чертой последовательного резонансного контура является то, что его полное сопротивление минимально при резонансе. (ZL + ZC – минимум). При настройке частоты на величину, превышающую или лежащую ниже резонансной частоты, полное сопротивление возрастает.
Вывод:
В параллельном контуре при резонансе ток через выводы контура равен 0, а напряжение максимально.
В последовательном контуре наоборот - напряжение стремится к нулю, а ток максимален.

Статья взята с сайта http://dic.academic.ru/ и переработана в более понятный для читателя текст, компанией ООО «Проминдуктор».

Сегодня при организации нагрева воды большое распространение получил индукционный водонагреватель. Эта востребованность обеспечена тем, что прибор является полностью экологически безопасным, не сушит и не пережигает воздух. Использование такого прибора может быть реализовано для проточного нагревания воды или в качестве нагревательного котла. Купить индукционный водонагреватель можно как в магазине, так и изготовить своими руками. Стоит отметить, что по техническим характеристикам он не уступит покупаемой модели, правда, будет выглядеть не так привлекательно, но стоит при этом намного меньше.

Применение такого прибора в домашних условиях позволяет получить максимальную производительность и надежность в эксплуатации. При этом агрегат не нужно сопровождать особой документацией и разрешением для установки, например, как газовый бойлер. Применяя индукционный нагреватель в роли традиционного отопительного котла, в некоторых случаях не потребуется использование насоса. Движение теплоносителя достигается путем процессов конвекции : вода при большом нагревании превращается в пар.

Стоит отметить, что у индукционного водонагревателя есть масса преимуществ, которые выделяют его среди конкурентов.

  1. Стоимость такого устройство незначительная.
  2. Есть возможность собрать нагреватель самостоятельно.
  3. Не издает постороннего шума. Катушка в процессе работы достаточно сильно вибрирует, но она практически не ощутима.
  4. Из-за постоянной вибрации грязь и накипь не успевает прикрепляться к функциональным элементам, поэтому прибор не нуждается в регулярной чистке.
  5. В своем составе имеет тепловой генератор, который очень легко делается герметичным. Вода, выступающая теплоносителем, помещена в нагревательный элемент, благодаря чему энергия передается через магнитное поле. Здесь не требуется использование контактов, а соответственно сальников и различных уплотнительных резинок, которые имеют особенность быстро выходить из строя.
  6. Редко ломается, так как за нагрев воды отвечает простая трубка, в которой просто нечему сломаться или перегореть.

Выбирая индукционный водонагреватель, хозяин получает прибор с минимальным эксплуатационным обслуживанием, так как он состоит из небольшого числа составляющих. А они, в свою очередь, очень редко выходят из строя.

Принцип работы индукционного котла

Но и без недостатков нельзя обойтись. Как и в любом виде техники, они есть.

  1. Высокое потребление электроэнергии , которое выльется большими счетами за свет;
  2. Устройство очень сильно нагревается, причем горячим становится все вокруг, поэтому не стоит прикасаться к прибору во время его работы.
  3. Индукционный водонагреватель имеет сильную теплоотдачу, поэтому необходима установка датчика температуры , чтобы предотвратить перегрев прибора, и, соответственно, взрыв.

Виды индукционных водонагревателей

Все приборы подобного типа, которые могут быть изготовлены своими руками, можно разделить на две группы:

  1. Вихревые нагреватели индукторного типа , которые чаще всего используются в домах для выполнения функций отопления. Именно их процесс изготовления будет рассмотрен ниже.
  2. Обогреватели, конструкция которых подразумевает применение разных видов электронных узлов и деталей.

При создании вихревого индукционного нагревателя (или сокращенно ВИН) своими руками, следует предусмотреть следующие конструкционные узлы:

  • элемент, отвечающий за преобразование электроэнергии в ток высокочастотного типа;
  • индуктор (чаще всего выполняется в виде цилиндрическом элементе из медной проволоки), что при использовании выполняет функцию трансформатора, отвечающего за образование поля магнитного характера;
  • элемент, который будет играть роль нагревательного, располагается внутри самого индуктора.

Работа ВИН выглядит следующим образом.

  1. Высокочастотный ток из преобразователя передается на индуктор.
  2. В индукторе образуется магнитное поле , что в свою очередь создает потоки вихревого характера.
  3. Теплообменник под действием вихревых потоков достаточно быстро достигает высокой температуры и, соответственно, нагревает теплоноситель, который распространяет тепло дальше.

Схема современного водонагревателя

Одним из самых главных компонентов является индукционная катушка, к изготовлению которой стоит отнестись с особой внимательностью. Медная проволока очень аккуратно наматывается на трубу из пластика, причем число мотков не должно быть меньше 100.

Из представленного описания можно сделать вывод, что изготовить индукционный водонагреватель самостоятельно не сложно.

Особенности изготовления

Индукционный нагреватель своими руками можно изготовить двумя способами. Вкратце стоит рассмотреть каждый из них.

Вариант 1

Наиболее простой прибор (при этом он будет иметь высокую мощность) можно изготовить на основе печатной схемы . Среди особенностей схемы, которая будет использоваться в приборе, следует выделить следующие моменты:

  • вся конструкция, по сути, представлена мультивибратором с организацией высокой мощности;
  • особое внимание стоит уделить сопротивлению, так как именно оно будет предотвращать перегрев транзисторов;
  • индуктор в таком приборе должен быть выполнен в виде спирали из 6-8 витков медной проволоки;
  • в качестве регулятора можно использовать соответствующий элемент из блока питания компьютера и не задумываться над его контракцией.

Вихревой индукционный нагреватель

Вариант 2

В основу изготовления такого прибора своими руками положено использование электронного трансформатора.

Суть такого способа изготовления индукционного водонагревателя состоит в следующем.

  1. Две трубы с использованием сварки стоит соединить так, чтобы визуально они походили на бублик. Этот элемент впоследствии будет играть роль как элемента для нагревания, так и проводника.
  2. На корпус потребуется намотать проволоку из меди.
  3. Чтобы обеспечить качественное и быстрое движение воды, в основной корпус приваривают 2 патрубка. В один из них вода будет поступать, а со второго выходить уже в саму систему.

Вот и все советы по тому, как собрать такой нагревательный прибор своими руками и обеспечить в доме качественное отопление и постоянное присутствие горячей воды.

Обновлено:

2016-09-12

Создать индукционный нагреватель своими руками просто. Это устройство, которое способно нагревать металл методом воздействия вихревым током Фуко. К достоинствам можно отнести следующее:

  • он герметичный и обеспечивает бесконтактную передачу данных;
  • бесшумный;
  • небольшая стоимость деталей;
  • экологически безопасный;
  • очень быстро нагревается;
  • на нем не появляется накипь вследствие вибрации индукционных действий;
  • долговечный.

Среди недостатков выделяют:

  • высокую стоимость потребляемого электричества;
  • электромагнитные поля отрицательно влияют на человека;
  • есть риск детонации отопительной системы по причине избытка давления.

Обратите внимание на схему нагревателя. Чтобы изготовить нагреватель, потребуется отрезок толстостенной трубы из пластика. Она послужит корпусом данного устройства. Затем нужно подготовить проволоку из стали, диаметр которой не составляет более 7 мм. Еще, если нужно будет подключить нагреватель к отопительной системе, то рекомендуется запастись переходниками. Также потребуется металлическая сетка. Она будет удерживать проволоку внутри корпуса. Обязательно потребуется проволока из стали для создания катушки индуктивности. Еще нужно найти высокочастотный инвертор, который имеется почти в любом гараже.

Теперь о самом процессе изготовления. Вначале проводятся предварительные действия для проволоки. Проволоку нужно нарезать отрезками, длина которых 5-6 см. Затем дно отрезка трубы накрывается сеткой, а внутрь насыпаются отрезки нарезанной проволоки. В верхней части трубу тоже потребуется накрыть сеткой. Проволоки требуется насыпать такое количество, чтобы до самого верха заполнилась вся труба.

Теперь, как показывает схема, делается катушка. Основа — это пластиковый корпус. На него следует намотать 90 медных витков.
Когда элемент будет сделан, потребуется его монтировать в отопительную систему. Потом можно подсоединить катушку к сети через инвертор. Считают, что такой нагреватель является достаточно простым и максимально бюджетным.
Не следует испытывать агрегат, если отсутствует подача жидкости либо антифриза. В ином случае труба расплавится. Перед запуском системы рекомендуется выполнить заземление для инвертора.

Сборка вихревого индукционного нагревателя

Итак, теперь разберем, как собрать самодельный индукционный нагреватель. Для выполнения сборки агрегата нужен дроссель. Данный элемент можно отыскать, если открыть блок питания компьютера. Затем наматывается провод из ферромагнитной стали, проволока 1,5 мм из меди. В зависимости от требуемых параметров может быть необходимо 10-30 витков. Потом подбираются полевые транзисторы. Они выбираются исходя из самого большого сопротивления открытого перехода. Диоды подбираются под обратное напряжение не менее 500 В, ток должен быть около 3-4 А. Еще потребуются стабилитроны, которые рассчитаны на 15-18 А. Их мощность должна составлять около 2-3 Вт. Резисторы — не более 0,5 Вт.

Затем схема собирается, и делается катушка. Это будет основой, на которой будет базироваться нагреватель. Катушка должна иметь 6-7 витков провода 1,5 мм из меди. Потом элемент включается в схему и подключается к сети. Агрегат может осуществлять нагрев болтов до желтого цвета.


Хоть схема и является простой, но в работе системой будет выделяться большое количество тепла, по этой причине желательно сделать установку радиаторов на транзисторы.

Теперь ясно, как собрать агрегат, осуществляющий индукционный нагрев металла.

Ознакомьтесь с видео о том, как самостоятельно сделать индукционный нагреватель (см. видео).

Нормы безопасности

При использовании и сборке своими руками нагревателя нужно соблюдать следующее:

  • необходима обязательная установка предохранительного клапана в целях уменьшения давления при выходе из строя насоса;
  • нужно заземлить индукционную обмотку: вывести провод на металлический контур, который находится в грунте;
  • не нужно включать систему без теплоносителя, иначе полимерные детали расплавятся;
  • открытые части из меди нужно изолировать в целях исключения ожогов либо удара током.

Вот теперь вам стало известно о том, как сделать индукционный нагреватель своими руками. Надеемся, инструкция и схема вам очень помогли. Еще очень полезным для выполнения самодельного нагревателя может стать для вас приложенное видео. Желаем успехов в выполнении работ.

Loading...Loading...