Литий и гелий как связаны. Сюрприз: угадайте, какой элемент во Вселенной на третьем месте по распространенности? Тайны благородных газов

Литий

Гелий

Гелий занимает вторую позицию в таблице Менделеева после водорода. Атомная масса гелия - 4,0026. Он представляет собой инертный газ без цвета. Его плотность - 0,178 грамм на литр. Сжижается гелий труднее всех известных газов лишь при температуре минус 268,93 градуса Цельсия и практически не отвердевает. Охлажденный до минус 270,98 градуса Цельсия гелий приобретает сверхтекучесть. Образуется гелий чаще всего в результате распада крупных атомов. На Земле он распространен в малых количествах, но на Солнце, где идет интенсивный распад атомов, гелия очень много. Все эти данные являются как бы паспортными и хорошо известны.

Займемся топологий гелия, и для начала определим его размеры. Учитывая, что атомная масса гелия в четыре раза больше водородной, а атом водорода в 1840 раз тяжелее электрона, получим массу атома гелия равной 7360 электронам; следовательно, общее количество эфирных шариков в атоме гелия составляет приблизительно 22 000; длина шнура атома и диаметр исходного тора соответственно равны 7360 и 2300 эфирным шарикам. Чтобы зримо представить соотношение толщины шнура исходного тора атома гелия и его диаметра, изобразим на листе бумаги ручкой окружность диаметром в 370 миллиметров, и пусть след от ручки имеет ширину в одну треть миллиметра; полученная окружность даст нам указанное представление. Один электрон (строенные эфирные шарики) будет занимать на нарисованной окружности всего лишь 0,15 миллиметров.

Скручивание исходного тора в законченную форму атома гелия происходит следующим образом. Сначала окружность сплющивается в овал, потом - в форму гантели, далее - в восьмерку, а затем петли восьмерки развертываются так, что возникает перехлест. Между прочим, перехлест у более крупных атомов не образуется, и объясняется это тем, что длина шнура у атома гелия пока еще не большая, и при стремлении средних точек шнура сблизиться - края (петли) вынуждены развернуться. Далее края изогнутся и начнут сближаться.

До этого момента топология атома гелия, как мы видим, схожа с топологией атома изотопа водорода - трития, но если у трития не хватало сил на замыкание краев (не хватало длины его шнура), то у гелия петли надвигаются одна на другую и таким образом замыкаются. Для того, чтобы убедиться в надежности соединения петель, достаточно проследить за расположением их присасывающих сторон: у внутренней петли она будет снаружи, а у внешней - изнутри.

Топологию атомов очень удобно представлять в виде проволочных моделей; для этого достаточно использовать в меру упругую, но достаточно пластичную проволоку. Атом водорода изобразится в виде обычного кольца. Увеличим длину куска проволоки в четыре раза (во столько раз атом гелия тяжелее атома водорода), свернем его в кольцо, спаяем концы и продемонстрируем процесс скручивания атома гелия. При скручивании мы должны постоянно помнить, что радиусы гибки не должны быть меньше радиуса кольца, представляющего собой атом водорода; это как бы условие, задаваемое упругостью шнура - торовых оболочек. (В натуре, напомним, минимальный радиус равнялся 285 эфирным шарикам.) Принятый минимальный радиус гибки определяет топологию всех атомов; и еще: следствием одинаковых радиусов гибки будут одинаковые размеры присасывающих петель (своего рода - их стандартизация), и поэтому-то они образуют устойчивую валентность, выраженную в способности соединять различные атомы между собой. Если бы петли имели различные размеры, их соединение было бы проблематичным.



Доводя процесс скручивания проволочной модели атома гелия до конца, мы обнаружим, что соединенные внахлест петли надвинуты одна на другую не до упора. Точнее говоря, они предпочли бы закрутиться еще дальше, но не пускает упругость шнура, то есть условие минимального радиуса. И при всякой попытке петель продвинуться навстречу еще дальше упругость шнура отбросит их назад; отскочив, они снова устремятся вперед, и снова упругость отбросит их назад; при этом атом гелия будет то съеживаться, то распускаться, то есть возникает пульсация. Пульсация, в свою очередь, породит стоячее тепловое поле вокруг атома и сделает его пушистым; так мы пришли к выводу, что гелий - газ.

На основании топологии можно объяснить и прочие физические и химические характеристики гелия. О его инертности, например, говорит то, что его атомов нет ни открытых присасывающих петель, ни присасывающих желобов: он не способен вообще соединяться с другими атомами, поэтому - всегда атомарен и практически не отвердевает. Цвета гелий не имеет потому, что у его атомов нет прямых “звучащих” участков шнуров; а сверхтекучесть у него возникает вследствие всякого отсутствия вязкости (слипание атомов), округлой формы и малого размера атома.

Как и у водорода, у гелия атомы не имеют одного размера: одни из них больше, другие - меньше, а в общем они занимают почти все весовое пространство от водорода (трития) до следующего за гелием лития; менее прочные изотопы гелия, конечно, давно уже распались, но и существующих в настоящее время можно насчитать не одну сотню.

В таблице Менделеева гелий лучше располагать не в конце первого периода - в одном ряду с водородом, а в начале второго периода перед литием, потому что его атом, как и атомы всего этого периода, представляет собой одиночную конструкцию (одиночный клубочек), в то время как атом следующего инертного газа неона выглядит уже в виде спаренной конструкции, похожей по этому признаку на атомы третьего периода.

Литий занимает третий номер в таблице Менделеева; его атомная масса равна 6,94; он относится к щелочным металлам. Литий - самый легкий из всех металлов: его плотность составляет 0,53 грамма в сантиметре кубическом. Он серебристо-белого цвета, с ярким металлическим блеском. Литий мягок и легко режется ножом. На воздухе он быстро тускнеет, соединяясь с кислородом. Температура плавления лития равна 180,5 градуса Цельсия. Известны изотопы лития с атомными весами 6 и 7. Первый изотоп используется для получения тяжелого изотопа водорода - трития; другой изотоп лития используется в качестве теплоносителя в котлах ядерных реакторов. Таковы общие физико-химические данные лития.

Топологию атомов лития начнем опять же с уяснения размеров исходного тора. Теперь мы знаем, что у каждого химического элемента, и в том числе у лития, существует большое количество изотопов, измеряемое сотнями и тысячами; поэтому размеры атомов будем указывать от … и до …. Но что значат эти пределы? Можно ли их определить точно? Или они указываются приблизительно? И каково количественное соотношение изотопов? Сразу скажем: однозначных ответов на поставленные вопросы нет; всякий раз необходимо внедряться в конкретную топологию атомов. Разберемся в этих вопросах на примере лития.

Как мы заметили, переход от протия к гелию с точки зрения топологии происходит планомерно: с увеличением размера исходного тора –постепенно изменяется окончательная конфигурация атомов. Но физические и, особенно, химические свойства атомов при переходе от протия к гелию изменяются более чем существенно, скорее - радикально: от всеобщей притягательности протия до полной инертности гелия. Где, на каком изотопе это произошло?

Подобные скачки свойств связаны с размерными скачками изотопов. Большой атом водорода (тритий), приобретающий очертания атома гелия, оказывается радиоактивным, то есть непрочным. Вызвано это тем, что его загнутые края петель не достигают друг друга, и можно представить, как они трепыхаются, устремленные навстречу. Они напоминают руки двух людей в расходящихся лодках, бессильно стремящихся дотянуться и сцепиться. Внешнее эфирное давление будет давить на консоли трепыхающихся петель атомов так сильно, что это до добра не доведет; получив со стороны даже небольшое дополнительное сдавливание, консоли отломятся - не выдержат крутого изгиба шнура, и атом разрушится; так оно и происходит. Поэтому можно сказать, что среди изотопов на границах существующих физико-химических переходов наблюдаются провалы: там изотопов просто нет.

Подобный провал существует между гелием и литием: если атом - уже не гелий, но еще не литий, то он непрочен, и его уже давно в земных условиях нет. Поэтому изотоп лития с атомным весом, равным шести, то есть с длиной шнура тора в 11 эфирных шариков, встречается очень редко и, как было сказано, используется для получения трития: его легко разорвать, укоротить и получить в результате изотоп водорода.

Таким образом, мы, вроде, определились с наименьшими размерами атома лития: это - 11 связанных электронов. Что же касается его верхнего предела, то тут возникает некоторая загвоздка: дело в том, что, согласно топологии, атом лития не имеет особых отличий от атома следующего за ним бериллия (мы в этом скоро убедимся), и между изотопами того и другого элементов нет никакого провала. Поэтому пока не станем указывать верхний предел размера атома лития.

Проследим за формообразованием атома лития. Исходная окружность только что возникшего микрозавихрения с указанными выше размерами будет стремится превратится в овал; только у лития овал - очень длинный: приблизительно в 8 раз длиннее диаметра концевого закругления (будущей петли); это - очень вытянутый овал. Начало свертывания атома лития похоже на такое же начало у больших атомов водорода и у гелия, но дальше происходит отклонение: восьмерка с перехлестом, то есть с разворотом петель, не возникает; дальнейшее сближение длинных сторон (шнуров) овала до полного их соприкосновения сопровождается одновременным загибом концов навстречу друг другу.

Почему не образуется восьмерка с перехлестом? Прежде всего потому, что овал очень длинный, и даже его полный прогиб в гантелю до соприкосновения шнуров в середине не вызывает их сильных изгибов; поэтому потенция разворота крайних петель - очень слабая. А во-вторых, развороту в какой-то степени противодействует начавшийся загиб концов овала. Другими словами: активный момент сил, стремящийся развернуть концевые петли, очень мал, а момент сопротивления развороту - большой.

Для наглядности воспользуемся резиновыми кольцами, например теми, что применяются в уплотнениях машин. Если пережимать кольцо малого диаметра, то оно обязательно свернется в восьмерку с перехлестом; а если выбрать кольцо большого диаметра, то его пережим до полного соприкосновения шнуров разворот концевых петель не вызывает. К слову: эти резиновые кольца также очень удобны для моделирования топологии атомов; если, конечно, имеется их широкий набор.

Загиб концов овала вызывается, как мы уже знаем, возмущением эфира между ними: чуть-чуть стронувшись с идеально прямого положения, они уже вынуждены будут сближаться до полного соприкосновения. Значит, в разные стороны концы отгибаться не могут. Но с направлением загиба у них есть выбор: либо так, что присасывающие стороны концевых петель окажутся снаружи, либо - изнутри. Первый вариант более вероятен, та как момент от сил отталкивания вращающихся оболочек шнура от прилегающего эфира на внешних точках петель будет больше, чем на внутренних.

Сближающиеся боковые стороны овала очень скоро войду в соприкосновение, смычка шнуров распространится от центра к концам и остановится только тогда, когда на концах окончательно сформируются петли с минимально допустимыми радиусами изгиба. Одновременно происходящие загибы и взаимное сближение этих петель приводят к столкновению их вершин, после чего в дело вступают их присасывающие стороны: петли, присасываясь, ныряют вглубь; и завершается процесс формирования конфигурации атома лития тем, что сместившиеся петли упираются своими вершинами в спаренные шнуры ровно по центру конструкции. Отдаленно такая конфигурация атома напоминает сердечко или, точнее, яблоко.

Напрашивается сам собой первый вывод: атом лития начинается тогда, когда вершины спарившихся первичных петель, нырнувшие внутрь конструкции, дотянутся до шнуров середины атома. А до того был еще не литий, а какой-то иной элемент, которого теперь уже нет в природе; его атом был крайне неустойчив, очень сильно пульсировал, был поэтому пушистым и относился к газам. Но и атом самого начального изотопа лития (мы его определили состоящим из 11 000 связанных электронов) тоже получается не очень прочным: радиусы изгиба его петель - предельные, то есть упругие шнуры изогнуты до предела, и при всяком внешнем воздействии они готовы лопнуть. У более крупных атомов это слабое место устраняется.

Представляя по результатам топологии образ атома лития, можно оценить то, что получилось. Две первичные петли замкнулись и нейтрализовались, также нейтрализованными оказались вторичные петли по обе стороны от первичных. Спаренные шнуры создали желоб, и этот желоб идет по всему контуру атома - он как бы замкнут в кольцо, - и его присасывающая сторона оказалась снаружи. Отсюда следует, что атомы лития могут соединяться и между собой и с другими атомами только с помощью своих присасывающих желобов; петлевое молекулярное соединение атом лития образовать не может.

Сильно выпуклые присасывающие желоба атомов лития могут соединяться между собой только на коротких участках (теоретически - в точках), и поэтому пространственная конструкция из соединившихся между собой атомов лития получается очень рыхлой и разреженной; отсюда - малая плотность лития: он почти в два раза легче воды.

Литий - металл; его металлические свойства вытекают из особенностей форм его атомов. Можно сказать по-другому: те особые свойства лития, которые обусловлены особыми формами его атомов и которые делают его непохожим физически и химически на другие вещества, названы металлическими; рассмотрим часть из них:

  • электропроводность: она возникает по той причине, что атомы имеют кольцеобразную форму из спаренных шнуров, создающих присасывающие желоба, открытые наружу, охватывающие атомы по контуру и замыкающиеся сами на себе; электроны, прилипшие к этим желобам, могут беспрепятственно перемещаться по ним (напомним еще раз; что трудности возникают при отрыве электронов от атомов); а так как атомы соединяются между собой теми же желобами, то у электронов есть возможность перескакивать с атома на атом, то есть смещаться по телу;
  • теплопроводность: упруго-изогнутые шнуры атома образуют чрезвычайно жесткую упругую конструкцию, которая практически не поглощает низкочастотные крупноамплитудные (тепловые) удары соседних атомов, а передает их дальше; и если бы не было в толще атомов всевозможных нарушений в их контактах (дислокаций), то тепловая волна распространялась бы с огромной скоростью;
  • блеск: высокочастотные малоамплитудные удары световых волн эфира легко отражаются от напряженно изогнутых шнуров атомов и уходят прочь, подчиняясь законам волнового отражения; у атома лития нет прямых участков шнуров, поэтому у него нет собственного “звучания”, то есть нет собственного цвета - литий поэтому серебристо-белый с сильным блеском на срезах;
  • пластичность: округлые атомы лития могут соединяться между собой как угодно; они могут, не разрываясь, обкатываться друг по другу; и это выражается в том, что тело из лития может менять свою форму, не теряя своей целостности, то есть быть пластичным (мягким); в результате литий режется без особого труда ножом.

На примере отмеченных физических особенностей лития можно уточнить само понятие металла: металл есть вещество, состоящее из атомов с круто изогнутыми шнурами, образующими контурные присасывающие желоба, открытые наружу; атомы ярко выраженных (щелочных) металлов не имеют открытых присасывающих петель и прямых или плавно изогнутых участков шнуров . Поэтому литий в нормальных условиях не может соединиться с водородом, так как атом водорода представляет собой петлю. Их соединение может быть только гипотетическим: при глубоком холоде, когда водород отвердевает, его молекулы могут соединяться с атомами лития; но по всему видно, что их сплав был бы таким же мягким, как сам литий.

Заодно уточним понятие пластичности: пластичность металлов определяется тем, что их округлые атомы могут обкатываться друг по другу, изменяя взаиморасположение, но не теряя контакты между собой .

Бериллий занимает четвертую позицию в таблице Менделеева. Его атомная масса равна 9,012. Он представляет собой светло-серый металл с плотностью 1,848 грамма в кубическом сантиметре и температурой плавления 1284 градуса Цельсия; он - твердый и в то же время хрупкий. Конструкционные материалы на основе бериллия обладают одновременно и легкостью, и прочностью, и стойкостью к высоким температурам. Сплавы бериллия, будучи в 1,5 раза легче алюминия, тем не менее прочнее многих специальных сталей. Свою прочность они сохраняют до температуры 700 … 800 градусов Цельсия. Бериллий стоек к радиации.

По своим физическим свойствам, как видно, бериллий сильно отличается от лития, но по топологии атомов они почти не различимы; отличие лишь в том, что атом бериллия как бы “сшит с запасом”: если атом лития напоминает тесный костюм школьника на взрослом человеке, то атом бериллия, наоборот, - просторный костюм взрослого на фигуре ребенка. Избыточная длинна шнура атома бериллия при одинаковой конфигурации его с литием образует более пологие очертания с радиусами изгибов, превышающими минимальные критические. Такой “запас” кривизны у атомов бериллия позволяет их деформировать вплоть до выхода на предел изгибов шнуров.

Топологическое сходство атомов лития и бериллия говорит о том, что четкой границы между ними нет; и невозможно сказать, какой наибольший размер имеет атом лития и какой наименьший - атом бериллия. Ориентируясь только на табличный атомный вес (а он усредняет все значения), можно считать, что шнур среднего по размерам атома бериллия состоит приблизительно из 16 500 связанных электронов. Верхний предел размеров атомов изотопов бериллия упирается в минимальный размер атома следующего элемента - бора, конфигурация которого резко отличается.

Запас по радиусам кривизны шнуров атомов бериллия сказывается в первую очередь на соединении их между собой в момент затвердевания металла: они примыкают друг к другу уже не короткими (точечными) участками как у лития, а длинными границами; контуры атомов как бы подстраиваются друг под друга, деформируясь и прилегая друг к другу максимально возможным образом; поэтому такие соединения очень прочны. Свою упрочняющую способность атомы бериллия проявляют и в соединениях с атомами других металлов, то есть в сплавах, в которых бериллий используется в качестве присадок к тяжелым металлам: заполняя пустоты и присасываясь своими гибкими желобами к атомам основного металла, атомы бериллия скрепляют их как клей, делая сплав очень прочным. Отсюда следует, что прочность металлов определяется длинами слипшихся участков присасывающих желобов атомов : чем длиннее эти участки, тем прочнее металл. Разрушение металлов происходит всегда по поверхности с самыми короткими слипшимися участками.

Запас по радиусам изгиба шнуров атомов бериллия позволяет им деформироваться без изменения соединений между собой; в результате деформируется все тело; это уже - упругая деформация. Упругая она потому, что в любом исходном состоянии атомы имеют наименее напряженные формы, а при деформации вынуждены терпеть некоторые “неудобства”; и стоит только деформирующей силе исчезнуть, как атомы возвратятся в свои исходные менее напряженные состояния. Следовательно, упругость металла определяется избытком длин шнуров его атомов, позволяющим их деформировать без изменения участков взаимного соединения .

С упругостью бериллия связана его жаропрочность; она выражается в том, что тепловые движения атомов могут происходить в пределах упругих деформаций, не вызывающих изменение соединений атомов между собой; поэтому в общемжаропрочность металла определяется , как и упругость, избытком длин шнуров его атомов . Снижение прочности металла при высоком нагреве объясняется тем, что тепловые движения его атомов уменьшают участки соединений их между собой; а когда эти участки полностью исчезают, происходит плавление металла.

Упругости бериллия сопутствует его хрупкость. Хрупкость может рассматриваться в общем случае как антипод пластичности: если пластичность выражается в возможности атомов изменять свои взаиморасположения с сохранением соединяющих участков, то хрупкость выражается, в первую очередь, в том, что у атомов такой возможности нет. Всякое взаимное смещение атомов хрупкого материала может происходить только при полном разрыве их связей; у этих атомов нет иных вариантов соединений. У упругих материалов (у металлов) хрупкость характеризуется еще и тем, что она - как бы прыгающая: возникшая в результате чрезмерных напряжений трещина с быстротой молнии распространяется по всему сечению тела. Для сравнения: кирпич под ударами молотка может крошиться (это - тоже хрупкость), но не раскалываться. “Прыгающая” хрупкость бериллия объясняется тем, что его атомы соединены между собой не лучшим образом, и все они напряжены; и стоит только нарушиться одной какой-то связи, как граничные атомы стремительно начнут “выпрямляться” в ущерб соединений со своими соседями; связи последних также начнут разрушаться; и этот процесс примет цепной характер. Следовательно,хрупкость упругих металлов зависит от степени деформаций соединенных между собой атомов и от отсутствия возможности изменения связей между ними .

Радиационная стойкость бериллия объясняется все тем же запасом в размерах его атомов: шнур атома бериллия имеет возможность спружинить под жестким радиационным ударом, не доходя до своей критической кривизны, и тем самым сохраниться неразрушенным.

И тем же можно объяснить светло-серый цвет бериллия и отсутствие у него яркого металлического блеска, такого, например, как у лития: световые волны эфира, падая на нежесткие шнуры поверхностных атомов бериллия, поглощаются ими, и только часть из волн отражается и создает рассеянный свет.

Плотность бериллия почти в четыре раза больше чем у лития только потому, что плотность шнуров его атомов выше: они соединяются между собой не в точках, а длинными участками. В то же время в сплошной своей массе бериллий - достаточно рыхлое вещество: он всего лишь в два раза плотнее воды.

МОСКВА, 6 фев - РИА Новости. Российские и зарубежные химики заявляют о возможности существования двух стабильных соединений самого "ксенофобского" элемента - гелия, и экспериментально подтвердили существования одного из них - гелида натрия, говорится в статье, опубликованной в журнале Nature Chemistry.

"Данное исследование демонстрирует, как совершенно неожиданные явления могут быть обнаружены с помощью самых современных теоретических и экспериментальных методов. Наша работа в очередной раз иллюстрирует, насколько мало на сегодняшний день мы знаем о влиянии экстремальных условий на химию, и роль таких явлений на процессы внутри планет ещё предстоит объяснить", — рассказывает Артем Оганов, профессор Сколтеха и Московского Физтеха в Долгопрудном.

Тайны благородных газов

Первичная материя Вселенной, возникшая через несколько сотен миллионов лет после Большого Взрыва, состояла всего из трех элементов - водорода, гелия и следовых количеств лития. Гелий и сегодня является третьим по распространенности элементом мироздания, однако на Земле его встречается крайне мало, и запасы гелия на планете постоянно уменьшаются из-за того, что он улетучивается в космос.

Отличительной чертой гелия и других элементов восьмой группы таблицы Менделеева, которых ученые называют "благородными газами", является то, что они крайне неохотно - в случае ксенона и других тяжелых элементов - или в принципе, как неон, не способны вступать в химические реакции. Существует лишь несколько десятков соединений ксенона и криптона с фтором, кислородом и другими сильными окислителями, ноль соединений неона и одно соединение гелия, обнаруженное экспериментальным путем в 1925 году.

Это соединение, объединение протона и гелия, не является настоящим химическим соединением в строгом смысле этого слова - гелий в данном случае не участвует в образовании химических связей, хотя и влияет на поведение атомов водорода, лишенных электрона. Как раньше предполагали химики, "молекулы" этого вещества должны были встречаться в межзвездной среде, однако за последние 90 лет астрономы так и не обнаружили их. Возможной причиной этого является то, что данный ион крайне нестабилен и разрушается при контакте с почти любой другой молекулой.

Артем Оганов и его команда задумались, могут ли соединения гелия существовать при экзотических условиях, о которых земные химики задумываются крайне редко - при сверхвысоких давлениях и температурах. Оганов и его коллеги достаточно давно изучают подобную "экзотическую" химию и даже разработали специальный алгоритм для поиска веществ, существующих в таких условиях. При его помощи они обнаружили, что в недрах газовых гигантов и некоторых других планет может существовать экзотическая ортоугольная кислота, "невозможные" версии обычной поваренной соли, и ряд других соединений, "нарушающих" законы классической химии.

Используя эту же систему, USPEX, российские и зарубежные ученые обнаружили, что при сверхвысоких давлениях, превышающих атмосферное в 150 тысяч и миллион раз, существует сразу два стабильных соединения гелия - гелид натрия и оксигелид натрия. Первое соединение состоит из двух атомов натрия и одного атома гелия, а второе - из кислорода, гелия и двух атомов натрия.

Сверхвысокое давление заставило соль "нарушить" правила химии Американо-российские и европейские химики превратили обычную поваренную соль в химически "невозможное" соединение, молекулы которого организованы в экзотические структуры из разного числа атомов натрия и хлора.

Атом на алмазной наковальне

И то, и другое давление можно легко получить при помощи современных алмазных наковален, что и сделали коллеги Оганова под руководством другого россиянина — Александра Гончарова из Геофизической лаборатории в Вашингтоне. Как показали его опыты, гелид натрия формируется при давлении примерно в 1,1 миллиона атмосфер и остается стабильным как минимум до 10 миллионов атмосфер.

Что интересно, гелид натрия похож по своей структуре и свойствам на соли фтора, "соседа" гелия по периодической таблице. Каждый атом гелия в этой "соли" окружен восьмью атомами натрия, подобно тому, как устроен фторид кальция или любая другая соль плавиковой кислоты. Электроны в Na2He "притянуты" к атомам так сильно, что это соединение, в отличие от натрия, является изолятором. Подобные структуры ученые называют ионными кристаллами, так как электроны занимают в них роль и место отрицательно заряженных ионов.

МФТИ: недра Нептуна и Урана могут содержать "кислоту Гитлера" Химики из Московского физтеха и Сколтеха предполагают, что недра Урана и Нептуна могут содержать в себе прослойку из экзотической материи – ортоугольной кислоты, так называемой "кислоты Гитлера".

"Открытое нами соединение весьма необычно: хотя атомы гелия напрямую не участвуют в химической связи, их присутствие фундаментально меняет химические взаимодействия между атомами натрия, способствуя сильной локализации валентных электронов, что делает полученный материал изолятором", — поясняет Сяо Дун (Xiao Dong) из университета Нанканя в Тяньцзине (Китай).

Другое соединение — Na2HeO — оказалось стабильным в диапазоне давлений от 0,15 до 1,1 миллиона атмосфер. Вещество также является ионным кристаллом и имеет схожее с Na2He строение, только роль отрицательно заряженных ионов в них играют не электроны, а атомы кислорода.

Что интересно, все остальные щелочные металлы, обладающие более высокой реактивностью, гораздо менее охотно образуют соединения с гелием при давлениях, превышающих атмосферное не более чем в 10 миллионов раз.

Российские ученые смоделировали недра экзопланет-суперземель Группа специалистов из МФТИ попыталась выяснить, какие соединения могут образовывать кремний, кислород и магний при высоких давлениях. Ученые заявляют, что эти элементы являются основой химии Земли и планет земного типа.

Оганов и его коллеги связывают это с тем, что орбиты, по которым движутся электроны в атомах калия, рубидия и цезия, заметным образом меняются при повышении давления, чего с натрием, по пока не понятным причинам, не происходит. Как полагают ученые, гелид натрия и другие подобные вещества могут встречаться в ядрах некоторых планет, белых карликов и прочих звезд.

Учёным удалось получить и зарегистрировать молекулу литий-гелия LiHe. Это одна из самых хрупких известных молекул. А её размер более, чем в десять раз, превосходит размер молекул воды.

Как известно, нейтральные атомы и молекулы могут образовывать друг с другом более менее устойчивые связи тремя способами. Во-первых, при помощи ковалентных связей, когда два атома разделяют одну или несколько общих электронных пар. Ковалентные связи - самые сильные из трёх. Характерная энергия их разрыва равна обычно нескольким электрон-вольтам.

Заметно слабее ковалентных водородные связи. Это притяжение, возникающее между связанным атомом водородом и электроотрицательным атомом другой молекулы (обычно таким атомом является кислород или азот, реже фтор). Несмотря на то, что энергия водородных связей в сотни раз меньше, чем ковалентных, именно они во многом определяют физические свойства воды, а также играют важнейшую роль в органическом мире.

И наконец, самым слабым является так называемое ван-дер-ваальсовое взаимодействие. Иногда его также называют дисперсным. Оно возникает в результате диполь-дипольного взаимодействия двух атомов или молекул. При этом диполи могут быть как изначально свойственны молекулам (например, дипольный момент есть у воды), так и индуцироваться в результате взаимодействия.

Характерная энергия ван-дер-ваальсовой связи - единицы кельвин (электрон-вольт, упоминавшийся выше, соответствует приблизительно 10 000 кельвин). Самой слабой из ван-дер-ваальсовых является связь между двумя индуцированными диполями. Если имеется два неполярных атома, то в результате теплового движения у каждого из них имеется некий осциллирующий случайным образом дипольный момент (электронная оболочка как бы немного дрожит относительно ядра). Эти моменты, взаимодействуя друг с другом, в результате преимущественно имеют такие ориентации, чтобы два атома начали притягиваться.


Наиболее инертным из всех атомов является гелий. Он не вступает в ковалентные связи ни с одним другим атомом. При этом и величина его поляризуемости очень мала, то есть и дисперсные связи ему образовывать сложно. Имеется, однако, одно важное обстоятельство. Электроны в атоме гелия настолько сильно связаны ядром, что его можно, не опасаясь возникновения отталкивающих сил, подносить очень близко к другим атомам - вплоть до расстояния порядка радиуса этого атома. Дисперсные же силы растут с уменьшением дистанции между атомами очень быстро - обратно пропорционально шестой степени расстояния!

Отсюда родилась идея: если сблизить два атома гелия друг с другом, то между ними всё-таки возникнет хрупкая ван-дер-ваальсова связь. Это, действительно удалось реализовать в середине 1990-х, хотя и потребовало значительных усилий. Энергия такой связи составляет всего 1 мК, и молекула He2 была зарегистрирована в незначительных количествах в сверхохлаждённых струях гелия.

При этом свойства молекулы He2 во многом уникальны и необычны. Так, например, её размер составляет… около 5 нм! Для сравнения, размер молекулы воды - около 0,1 нм. При этом минимум потенциальной энергии молекулы гелия приходится на значительно меньшее расстояние - около 0,2 нм - однако, большую часть времени - около 80% - атомы гелия в молекуле проводят в режиме туннелирования, то есть в области, где в рамках классической механики они находиться не могли бы.


Следующий по размерам после гелия атом - это литий, поэтому после получения молекулы гелия, естественным стало изучение возможности зафиксировать связь между гелием и литием. И вот, наконец, учёным удалось сделать и это . У молекулы литий-гелия LiHe энергия связи повыше, чем у гелий-гелия - 34±36 мК, а расстояние между атомами наоборот поменьше - около 2,9 нм. Однако и в этой молекуле атомы большую часть времени находятся в классически запрещённых состояниях под энергетическим барьером. Интересно, что потенциальная яма для молекулы LiHe настолько мала, что она может существовать только в одном колебательном энергетическом состоянии, являющемся правда расщеплённым из-за спина атома 7Li дублетом. Её константа вращения же настолько велика (около 40 мК), что возбуждение вращательного спектра приводит к разрушению молекулы.

Brett Esry/Kansas State University


Пока что полученные результаты интересны исключительно с фундаментальной точки зрения. Однако уже вызывают интерес для смежных областей науки. Так, гелиевые кластеры из многих частиц могут стать инструментом изучения эффектов запаздывания в вакууме Казимира. Изучение гелий-гелиевого взаимодействия важно и для квантовой химии, которая могла бы на этой системе тестировать свои модели. И, конечно, не вызывает сомнений, что учёные придумают и другие интересные и важные приложения для таких экстравагантных объектов как молекулы He2 и LiHe.

Российские и зарубежные химики заявляют о возможности существования двух стабильных соединений самого "ксенофобского" элемента - гелия, и экспериментально подтвердили существования одного из них - гелида натрия, говорится в статье, опубликованной в журнале Nature Chemistry.

"Данное исследование демонстрирует, как совершенно неожиданные явления могут быть обнаружены с помощью самых современных теоретических и экспериментальных методов. Наша работа в очередной раз иллюстрирует, насколько мало на сегодняшний день мы знаем о влиянии экстремальных условий на химию, и роль таких явлений на процессы внутри планет ещё предстоит объяснить", — рассказывает Артем Оганов, профессор Сколтеха и Московского Физтеха в Долгопрудном.

Тайны благородных газов

Первичная материя Вселенной, возникшая через несколько сотен миллионов лет после Большого Взрыва, состояла всего из трех элементов - водорода, гелия и следовых количеств лития. Гелий и сегодня является третьим по распространенности элементом мироздания, однако на Земле его встречается крайне мало, и запасы гелия на планете постоянно уменьшаются из-за того, что он улетучивается в космос.

Отличительной чертой гелия и других элементов восьмой группы таблицы Менделеева, которых ученые называют "благородными газами", является то, что они крайне неохотно - в случае ксенона и других тяжелых элементов - или в принципе, как неон, не способны вступать в химические реакции. Существует лишь несколько десятков соединений ксенона и криптона с фтором, кислородом и другими сильными окислителями, ноль соединений неона и одно соединение гелия, обнаруженное экспериментальным путем в 1925 году.

Это соединение, объединение протона и гелия, не является настоящим химическим соединением в строгом смысле этого слова - гелий в данном случае не участвует в образовании химических связей, хотя и влияет на поведение атомов водорода, лишенных электрона. Как раньше предполагали химики, "молекулы" этого вещества должны были встречаться в межзвездной среде, однако за последние 90 лет астрономы так и не обнаружили их. Возможной причиной этого является то, что данный ион крайне нестабилен и разрушается при контакте с почти любой другой молекулой.

Артем Оганов и его команда задумались, могут ли соединения гелия существовать при экзотических условиях, о которых земные химики задумываются крайне редко - при сверхвысоких давлениях и температурах. Оганов и его коллеги достаточно давно изучают подобную "экзотическую" химию и даже разработали специальный алгоритм для поиска веществ, существующих в таких условиях. При его помощи они обнаружили, что в недрах газовых гигантов и некоторых других планет может существовать экзотическая ортоугольная кислота, "невозможные" версии обычной поваренной соли, и ряд других соединений, "нарушающих" законы классической химии.

Используя эту же систему, USPEX, российские и зарубежные ученые обнаружили, что при сверхвысоких давлениях, превышающих атмосферное в 150 тысяч и миллион раз, существует сразу два стабильных соединения гелия - оксигелид натрия и гелид натрия. Первое соединение состоит из двух атомов натрия и одного атома гелия, а второе - из кислорода, гелия и двух атомов натрия.

Атом на алмазной наковальне

И то, и другое давление можно легко получить при помощи современных алмазных наковален, что и сделали коллеги Оганова под руководством другого россиянина — Александра Гончарова из Геофизической лаборатории в Вашингтоне. Как показали его опыты, гелид натрия формируется при давлении примерно в 1,1 миллиона атмосфер и остается стабильным как минимум до 10 миллионов атмосфер.

Что интересно, гелид натрия похож по своей структуре и свойствам на соли фтора, "соседа" гелия по периодической таблице. Каждый атом гелия в этой "соли" окружен восьмью атомами натрия, подобно тому, как устроен фторид кальция или любая другая соль плавиковой кислоты. Электроны в Na2He "притянуты" к атомам так сильно, что это соединение, в отличие от натрия, является изолятором. Подобные структуры ученые называют ионными кристаллами, так как электроны занимают в них роль и место отрицательно заряженных ионов.

"Открытое нами соединение весьма необычно: хотя атомы гелия напрямую не участвуют в химической связи, их присутствие фундаментально меняет химические взаимодействия между атомами натрия, способствуя сильной локализации валентных электронов, что делает полученный материал изолятором", — поясняет Сяо Дун (Xiao Dong) из университета Нанканя в Тяньцзине (Китай).

Другое соединение — Na2HeO — оказалось стабильным в диапазоне давлений от 0,15 до 1,1 миллиона атмосфер. Вещество также является ионным кристаллом и имеет схожее с Na2He строение, только роль отрицательно заряженных ионов в них играют не электроны, а атомы кислорода.

Что интересно, все остальные щелочные металлы, обладающие более высокой реактивностью, гораздо менее охотно образуют соединения с гелием при давлениях, превышающих атмосферное не более чем в 10 миллионов раз.

Оганов и его коллеги связывают это с тем, что орбиты, по которым движутся электроны в атомах калия, рубидия и цезия, заметным образом меняются при повышении давления, чего с натрием, по пока не понятным причинам, не происходит. Как полагают ученые, гелид натрия и другие подобные вещества могут встречаться в ядрах некоторых планет, белых карликов и прочих звезд.

Надеюсь, каждый хоть разок побывал в зоопарке. Ходишь и любуешься на сидящих в клетках зверушек. Сейчас мы тоже отправимся в путешествие по удивительному «зоопарку», только в клетках будут находиться не звери, а различные атомы. «Зоопарк» этот носит имя своего создателя Дмитрия Ивановича Менделеева и называется «Периодическая система химических элементов» или попросту «таблица Менделеева».

В настоящем зоопарке в клетке могут жить сразу несколько зверушек с одним названием, например, в одной клетке помещается семья кроликов, а в другой - семья лис. И в нашем «зоопарке» в клетке «сидят» атомы-родственники, по-научному - изотопы. Какие же атомы считаются родственниками? Физики установили, что любой атом состоит из ядра и оболочки из электронов. В свою очередь, ядро атома состоит из протонов и нейтронов. Так вот, ядра атомов у «родственников» содержат одинаковое количество протонов и разное количество нейтронов.

На данный момент последним в таблице значится ливерморий, вписанный в клетку под № 116. Столько элементов, и у каждого своя история. В названиях много любопытного. Как правило, имя элементу давал учёный, его открывший, и только с начала ХХ века названия присваивает Международная ассоциация фундаментальной и прикладной химии.

Многие элементы названы в честь древнегреческих богов и героев мифов, великих учёных. Есть географические названия, в том числе связанные с Россией.

Существует легенда, что Менделееву повезло - таблица ему просто приснилась. Возможно. Но великий французский учёный Блез Паскаль как-то заметил, что случайные открытия совершают только подготовленные умы. А уж у кого ум был подготовлен ко встрече с периодической таблицей, так это у Дмитрия Ивановича, так как он много лет работал над этой проблемой.

А теперь отправимся в путь!

Водород (H)

В клетке № 1 нашего зоопарка «живёт» водород. Так его назвал великий учёный Антуан Лавуазье. Он и дал этому элементу имя hydrogène (от греч. ὕδωρ - «вода» и корня -γεν- «рождать»), что означает «рождающий воду». Российский физик и химик Михаил Фёдорович Соловьёв перевёл это название на русский язык - водород. Водород обозначается буквой Н, это единственный элемент, изотопы которого имеют собственные имена: 1 Н - протий, 2 Н - дейтерий, 3 Н - тритий, 4 Н - квадий, 5 Н - пентий, 6 Н - гексий и 7 Н - септий (верхний индекс обозначает общее количество протонов и нейтронов в ядре атома).

Практически вся наша Вселенная состоит из водорода - на его долю приходится 88,6% всех атомов. Когда мы наблюдаем в небе Солнце, мы видим огромный шар из водорода.

Водород - самый лёгкий газ и, казалось бы, им выгодно наполнять воздушные шары, но он взрывоопасный, и с ним предпочитают не связываться, даже в ущерб грузоподъёмности.

Гелий (He)

В клетке № 2 находится благородный газ гелий. Название гелий получил от греческого имени Солнца - Ἥλιος (Гелиос), потому что его сначала обнаружили на Солнце. Как это удалось?

Ещё Исаак Ньютон выяснил, что видимый нами свет состоит из отдельных линий разных цветов. В середине XIX века учёные определили, что каждому веществу соответствует свой набор таких линий, совсем как у каждого человека есть свои отпечатки пальцев. Так вот, в лучах Солнца обнаружили ярко-жёлтую линию, не принадлежащую ни одному из ранее известных химических элементов. И только три десятилетия спустя гелий нашли на Земле.

Гелий относится к инертным газам. Другое название - благородные газы. Такие газы не горят, поэтому ими предпочитают наполнять воздушные шары, хотя гелий тяжелее водорода в 2 раза, что понижает грузоподъёмность.

Гелий - рекордсмен. Он переходит из газообразного в жидкое состояние, когда все элементы давно уже твёрдые: при температуре −268,93 °C, а в твёрдое состояние при нормальном давлении вообще не переходит. Только при давлении в 25 атмосфер и температуре −272,2 °C гелий становится твёрдым.

Литий (Li)

Клетку № 3 занимает литий. Литий своё название получил от греческого слова λίθος (камень), так как первоначально был обнаружен в минералах.

Бывает так называемое железное дерево, тонущее в воде, а бывает особо легкий металл литий - он, наоборот, в воде не тонет. И не только в воде - ни в какой другой жидкости тоже. Плотность лития почти в 2 раза меньше плотности воды. Он вообще не очень похож на металл - слишком мягкий. Да и плавать долго не мог бы - в воде литий с шипением растворяется.

Небольшие добавки лития повышают прочность и пластичность алюминия, что очень важно в авиации и ракетостроении. При реакции пероксида лития с углекислым газом выделяется кислород, что применяется для очистки воздуха в изолированных помещениях, например, на подводных лодках или космических кораблях.

Бериллий (Be)

В клетке № 4 находится бериллий. Название произошло от минерала берилла - исходного сырья для получения металла бериллия. Сам же берилл получил название по индийскому городу Белур, в окрестностях которого он добывался с древних времён. Кому он был тогда нужен?

Вспомните волшебника Изумрудного города - Великого и Ужасного Гудвина. Он заставлял всех носить зелёные очки, чтобы его город казался «изумрудным», а значит, и очень богатым. Так вот, изумруд - одна из разновидностей берилла, некоторые изумруды ценятся дороже алмаза. Так что в древности знали, зачем разрабатывать месторождения берилла.

В пятитомной энциклопедии «Вселенная и человечество» 1896 года издания про бериллий написано: «Практического применения не имеет». И много ещё прошло времени, прежде чем люди разглядели его удивительные свойства. Например, бериллий внёс свой вклад в развитие ядерной физики. Именно после его облучения ядрами гелия учёные открыли такую важную элементарную частицу, как нейтрон.

Поистине уникальным является сплав бериллия с медью - бериллиевая бронза. Если большинство металлов со временем «стареет», теряет прочность, то бериллиевая бронза как раз наоборот, со временем «молодеет», её прочность возрастает. Пружины из неё практически не изнашиваются.

Бор (В)

Бор занимает клетку № 5. Не надо думать, что этот элемент назвали в честь вратаря датского футбольного клуба «Академиск» Нильса Бора, впоследствии великого физика. Нет, своё имя элемент получил от персидского слова «бурах» или от арабского слова «бурак» (белый), которыми обозначали соединение бора - буру. Но мне больше нравится версия, что «бурак» не арабское, а чисто украинское слово, по-русски - «свёкла».

Бор - очень прочный материал, у него самый большой предел прочности на разрыв. Если соединение бора и азота нагреть до температуры 1350 °C при давлении 65 тысяч атмосфер (это сейчас технически достижимо), то можно получить кристаллы, способные поцарапать алмаз. Абразивные материалы, изготовленные на основе соединений бора, не уступают алмазным и при этом гораздо дешевле их.

В сплавы цветных и чёрных металлов бор обычно вводят для улучшения их свойств. Соединения бора с водородом - бораны - прекрасное ракетное топливо, почти в два раза эффективнее традиционного. Есть работа для бора и в сельском хозяйстве: бор добавляют в удобрения, потому что при его недостатке в почве заметно уменьшаются урожаи многих культур.

Художник Анна Горлач

Loading...Loading...