Как определить относительная погрешность. Абсолютная погрешность

При прямых измерениях

1. Пусть на вольтметре однократно измерены два напряжения U 1 = 10 В, U 2 = 200 В. Вольтметр имеет следующие характеристики: класс точности d кл т = 0,2, U max = 300 В.

Определим абсолютную и относительную погрешности этих измерений.

Так как оба измерения произведены на одном приборе, то DU 1 = DU 2 и вычисляются по формуле (В.4)

Согласно определению относительные погрешности U 1 и U 2 соответственно равны

ε 1 = 0,6 ∙ В / 10 В = 0,06 = 6 %,

ε 2 = 0,6 ∙ В / 200 В = 0,003 = 0,3 %.

Из приведенных результатов вычислений ε 1 и ε 2 видно, что ε 1 значительно больше ε 2 .

Отсюда вытекает правило: следует выбирать прибор с таким пределом измерений, чтобы показания были в последней трети шкалы.

2. Пусть некоторая величина измерена многократно, то есть произведено n отдельных измерений этой величины А х 1 , А х 2 ,..., А х 3 .

Тогда для вычисления абсолютной погрешности производят следующие операции:

1) по формуле (В.5) определяют среднее арифметическое значение А 0 измеряемой величины;

2) вычисляют сумму квадратов отклонений отдельных измерений от найденного среднего арифметического и по формуле (В.6) определяют среднюю квадратическую погрешность, которая и характеризует абсолютную погрешность единичного измерения при многократных прямых измерениях некоторой величины;

3) относительная погрешность ε вычисляется по формуле (В.2).

Вычисление абсолютной и относительной погрешности

При косвенном измерении

Вычисление погрешностей при косвенных измерениях – более сложная задача, так как в этом случае искомая величина является функцией других вспомогательных величин, измерение которых сопровождается появлением погрешностей. Обычно при измерениях, если не считать промахов, случайные погрешности оказываются весьма малыми по сравнению с измеряемой величиной. Они настолько малы, что вторые и более высокие степени погрешностей лежат за пределами точностей измерений и ими можно пренебречь. Из-за малости погрешностей для получения формулы погрешности
косвенно измеряемой величины применяют методы дифференциального исчисления. При косвенном измерении величины, когда непосредственно измеряются величины, связанные с искомой некоторой мaтематической зависимостью, удобнее вначале определить относительную погрешность и уже
через найденную относительную погрешность вычислять абсолютную погрешность измерения.

Дифференциальное исчисление дает наиболее простой способ определения относительной погрешности при косвенном измерении.

Пусть искомая величина А связана функциональной зависимостью с несколькими независимыми непосредственно измеряемыми величинами x 1 ,
x 2 , ..., x k , т. е.

A = f (x 1 , x 2 , ..., x k ).

Для определения относительной погрешности величины А берется натуральный логарифм от обеих частей равенства

ln A = ln f (x 1 , x 2 , ..., x k ).

Затем вычисляется дифференциал натурального логарифма функции
A = f (x 1 ,x 2 , ..., x k ),

dlnA = dlnf (x 1 , x 2 , ..., x k )

В полученном выражении производятся все возможные алгебраические преобразования и упрощения. После этого все символы дифференциалов d заменяются на символы погрешности D, причем отрицательные знаки перед дифференциалами независимых переменных заменяются положительными, т. е. берется наиболее неблагоприятный случай, когда все погрешности складываются. В этом случае вычисляется максимальная погрешность результата.

С учетом вышесказанного

но ε = D А / А

Данное выражение является формулой относительной погрешности величины А при косвенных измерениях, оно определяет относительную погрешность искомой величины, через относительные погрешности, измеряемых величин. Вычислив по формуле (В.11) относительную погрешность,
определяют абсолютную погрешность величины А как произведение относительной погрешности на рассчитанное значение А т. е.

DА = εА , (В.12)

где ε выражено безразмерным числом.

Итак, относительную и абсолютную погрешности косвенно измеряемой величины следует рассчитать в такой последовательности:

1) берется формула, по которой рассчитывается искомая величина (расчетная формула);

2) берется натуральный логарифм от обеих частей расчетной формулы;

3) вычисляется полный дифференциал натурального логарифма искомой величины;

4) в полученном выражении производятся все возможные алгебраические преобразования и упрощения;

5) символ дифференциалов d заменяется на символ погрешности D, при этом все отрицательные знаки перед дифференциалами независимых переменных заменяются на положительные (величина относительной погрешности будет максимальной) и получается формула относительной погрешности;

6) рассчитывается относительная погрешность измеряемой величины;

7) по рассчитанной относительной погрешности вычисляется абсолютная погрешность косвенного измерения по формуле (В.12).

Рассмотрим несколько примеров расчета относительной и абсолютной погрешностей при косвенном измерении.

1. Искомая величина А связана с непосредственно измеряемыми величинами х , у , z соотношением

где a и b – постоянные величины.

2. Возьмем натуральный логарифм от выражения (В.13)

3. Вычислим полный дифференциал натурального логарифма искомой величины А , то есть дифференцируем (В.13)

4. Производим преобразования. Учитывая, что dа = 0, так как а = const, cos у /sin y = ctg y , получаем:

5. Заменим символы дифференциалов символами погрешностей и знак «минус» перед дифференциалом на знак «плюс»

6. Рассчитываем относительную погрешность измеряемой величины.

7. По рассчитанной относительной погрешности вычисляется абсолютная погрешность косвенного измерения по формуле (В.12), т. е.

Определяется длина волны желтого цвета спектральной линии ртути при помощи дифракционной решетки (используя принятую последовательность вычисления относительной и абсолютной погрешностей для длины волны желтого цвета).

1. Длина волны желтого цвета в этом случае определяется по формуле:

где С – постоянная дифракционной решетки (косвенно измеряемая величина); φ ж – угол дифракции желтой линии в данном порядке спектра (непосредственно измеряемая величина); K ж – порядок спектра, в котором производилось наблюдение.

Постоянная дифракционной решетки вычисляется по формуле

где K з – порядок спектра зеленой линии; λ з – известная длина волны зеленого цвета (λ з – постоянная); φ з – угол дифракции зеленой линии в данном порядке спектра (непосредственно измеряемая величина).

Тогда с учетом выражения (В.15)

(В.16)

где K з, K ж – наблюдаемые, которые считаются постоянными; φ з, φ ж – являют-
ся непосредственно измеряемыми величинами.

Выражение (В.16) – расчетная формула длины волны желтого цвета, определяемой при помощи дифракционной решетки.

4. dK з = 0; dK ж = 0; dλ з = 0, так как K з, K ж и λ з – постоянные величины;

Тогда

5. (В.17)

где Dφ ж, Dφ з – абсолютные погрешности измерения угла дифракции желтой
и зеленой линий спектра.

6. Рассчитываем относительную погрешность длины волны желтого цвета.

7. Вычисляем абсолютную погрешность длины волны желтого цвета:

Dλ ж = ελ ж.

Реферат

Абсолютная и относительная погрешность


Введение


Абсолютная погрешность - является оценкой абсолютной ошибки измерения. Вычисляется разными способами. Способ вычисления определяется распределением случайной величины. Соответственно, величина абсолютной погрешности в зависимости от распределения случайной величины может быть различной. Если - измеренное значение, а - истинное значение, то неравенство должно выполняться с некоторой вероятностью, близкой к 1. Если случайная величина распределена по нормальному закону, то обычно за абсолютную погрешность принимают её среднеквадратичное отклонение. Абсолютная погрешность измеряется в тех же единицах измерения, что и сама величина.

Существует несколько способов записи величины вместе с её абсолютной погрешностью.

·Обычно используется запись со знаком ± . Например, рекорд в беге на 100 метров, установленный в 1983 году, равен 9,930±0,005 с .

·Для записи величин, измеренных с очень высокой точностью, используется другая запись: цифры, соответствующие погрешности последних цифр мантиссы, дописываются в скобках. Например, измеренное значение постоянной Больцмана равно 1,380 6488 (13)×10 ?23 Дж/К , что также можно записать значительно длиннее как 1,380 6488×10 ?23 ± 0,000 0013×10 ?23 Дж/К .

Относительная погрешность - погрешность измерения, выраженная отношением абсолютной погрешности измерения к действительному или среднему значению измеряемой величины (РМГ 29-99):.

Относительная погрешность является безразмерной величиной, либо измеряется в процентах.


1. Что называется приближённым значением?


С избыточным и недостаточным? В процессе вычислений весьма часто приходится иметь дело с приближенными числами. Пусть А - точное значение некоторой величины, называемое в дальнейшем точным числом А. Под приближенным значением величины А, или приближенным числам, называется число а , заменяющее точное значение величины А. Если а < А, то а называется приближенным значением числа А по недостатку. Если а > А, - то по избытку. Например, 3,14 является приближенным значением числа ? по недостатку, а 3,15 - по избытку. Для характеристики степени точности данного приближения пользуются понятием погрешности или ошибки.

Погрешностью ?а приближенного числа а называется разность вида


?а = А - а,


где А - соответствующее точное число.

Из рисунка видно, что длина отрезка АВ заключена между 6 см и 7 см.

Значит, 6 - приближенное значение длины отрезка АВ (в сантиметрах) > с недостатком, а 7 - с избытком.

Обозначив длину отрезка буквой у, получим: 6 < у < 1. Если a < х < b, то а называют приближенным значением числа х с недостатком, a b - приближенным значением х с избытком. Длина отрезка АВ (см. рис. 149) ближе к 6 см, чем к 7 см. Она приближенно равна 6 см. Говорят, что число 6 получилось при округлении длины отрезка до целых.

. Что называется погрешностью приближения?


А) Абсолютной?

Б) Относительной?

А) Абсолютной погрешностью приближения называется модуль разности между истинным значением величины и её приближённым значением. |x - x_n|, где x - истинное значение, x_n - приближённое. Например: Длина листа бумаги формата А4 равна (29.7 ± 0.1) см. А расстояние от Санкт-Петербурга до Москвы равно (650± 1) км. Абсолютная погрешность в первом случае не превосходит одного миллиметра, а во втором - одного километра. Вопрос, сравнить точность этих измерений.

Если вы думаете, что длина листа измерена точнее потому, что величина абсолютной погрешности не превышает 1 мм. То вы ошибаетесь. Напрямую сравнить эти величины нельзя. Проведем некоторые рассуждения.

При измерении длины листа абсолютная погрешность не превышает 0.1 см на 29.7 см, то есть в процентном соотношении это составляет 0.1/29.7 *100% = 0.33% измеряемой величины.

Когда мы измеряем расстояние от Санкт-Петербурга до Москвы абсолютная погрешность не превышает 1 км на 650 км, что в процентном соотношении составляет 1/650 *100% = 0.15% измеряемой величины. Видим, что расстояние между городами измерено точнее, чем длинна листа формата А4.

Б) Относительной погрешностью приближения называется отношение абсолютной погрешности к модулю приближённого значения величины.

математический погрешность дробь


где x - истинное значение, x_n - приближённое.

Относительную погрешность обычно вызывают в процентах.

Пример. При округлении числа 24,3 до единиц получается число 24.

Относительная погрешность равна. Говорят, что относительная погрешность в этом случае равна 12,5%.

) Какое округление, называется округлением?

А) С недостатком?

Б) С избытком?

А) Округление с недостатком

При округлении числа, выраженного десятичной дробью, с точностью до 10^{-n} с недостатком сохраняют n первых знаков после запятой, а последующие отбрасываются.

Например, округляя 12,4587 до тысячных с недостатком, получим 12,458.

Б) Округление с избытком

При округлении числа, выраженного десятичной дробью, с точностью до 10^{-n} с избытком сохраняют n первых знаков после запятой, а последующие отбрасываются.

Например, округляя 12,4587 до тысячных с недостатком, получим 12,459.

) Правило округления десятичных дробей.

Правило. Чтобы округлить десятичную дробь до определенного разряда целой или дробной части, все меньшие разряды заменяются нулями или отбрасываются, а предшествующий отбрасываемой при округлении цифре разряд не изменяет своей величины, если за ним идут цифры 0, 1, 2, 3, 4, и увеличивается на 1 (единицу), если идут цифры 5, 6, 7, 8, 9.

Пример. Округлить дробь 93,70584 до:

десятитысячных: 93,7058

тысячных: 93,706

сотых: 93,71

десятых: 93,7

целого числа: 94

десятков: 90

Несмотря на равенство абсолютных погрешностей, т.к. различны измеряемые величины. Чем больше измеряемый размер, тем меньше относительная погрешность при постоянстве абсолютной.


Репетиторство

Нужна помощь по изучению какой-либы темы?

Наши специалисты проконсультируют или окажут репетиторские услуги по интересующей вас тематике.
Отправь заявку с указанием темы прямо сейчас, чтобы узнать о возможности получения консультации.

Абсолютную и относительную погрешность используют для оценки неточности в производимых расчетах с высокой сложностью. Также они используются в различных измерениях и для округления результатов вычислений. Рассмотрим, как определить абсолютную и относительную погрешность.

Абсолютная погрешность

Абсолютной погрешностью числа называют разницу между этим числом и его точным значением.
Рассмотрим пример : в школе учится 374 ученика. Если округлить это число до 400, то абсолютная погрешность измерения равна 400-374=26.

Для подсчета абсолютной погрешности необходимо из большего числа вычитать меньшее.

Существует формула абсолютной погрешности. Обозначим точное число буквой А, а буквой а – приближение к точному числу. Приближенное число – это число, которое незначительно отличается от точного и обычно заменяет его в вычислениях. Тогда формула будет выглядеть следующим образом:

Δа=А-а. Как найти абсолютную погрешность по формуле, мы рассмотрели выше.

На практике абсолютной погрешности недостаточно для точной оценки измерения. Редко когда можно точно знать значение измеряемой величины, чтобы рассчитать абсолютную погрешность. Измеряя книгу в 20 см длиной и допустив погрешность в 1 см, можно считать измерение с большой ошибкой. Но если погрешность в 1 см была допущена при измерении стены в 20 метров, это измерение можно считать максимально точным. Поэтому в практике более важное значение имеет определение относительной погрешности измерения.

Записывают абсолютную погрешность числа, используя знак ±. Например , длина рулона обоев составляет 30 м ± 3 см. Границу абсолютной погрешности называют предельной абсолютной погрешностью.

Относительная погрешность

Относительной погрешностью называют отношение абсолютной погрешности числа к самому этому числу. Чтобы рассчитать относительную погрешность в примере с учениками, разделим 26 на 374. Получим число 0,0695, переведем в проценты и получим 6%. Относительную погрешность обозначают процентами, потому что это безразмерная величина. Относительная погрешность – это точная оценка ошибки измерений. Если взять абсолютную погрешность в 1 см при измерении длины отрезков 10 см и 10 м, то относительные погрешности будут соответственно равны 10% и 0,1%. Для отрезка длиной в 10 см погрешность в 1см очень велика, это ошибка в 10%. А для десятиметрового отрезка 1 см не имеет значения, всего 0,1%.

Различают систематические и случайные погрешности. Систематической называют ту погрешность, которая остается неизменной при повторных измерениях. Случайная погрешность возникает в результате воздействия на процесс измерения внешних факторов и может изменять свое значение.

Правила подсчета погрешностей

Для номинальной оценки погрешностей существует несколько правил:

  • при сложении и вычитании чисел необходимо складывать их абсолютные погрешности;
  • при делении и умножении чисел требуется сложить относительные погрешности;
  • при возведении в степень относительную погрешность умножают на показатель степени.

Приближенные и точные числа записываются при помощи десятичных дробей. Берется только среднее значение, поскольку точное может быть бесконечно длинным. Чтобы понять, как записывать эти числа, необходимо узнать о верных и сомнительных цифрах.

Верными называются такие цифры, разряд которых превосходит абсолютную погрешность числа. Если же разряд цифры меньше абсолютной погрешности, она называется сомнительной. Например , для дроби 3,6714 с погрешностью 0,002 верными будут цифры 3,6,7, а сомнительными – 1 и 4. В записи приближенного числа оставляют только верные цифры. Дробь в этом случае будет выглядеть таким образом – 3,67.

Что мы узнали?

Абсолютные и относительные погрешности используются для оценки точности измерений. Абсолютной погрешностью называют разницу между точным и приближенным числом. Относительная погрешность – это отношение абсолютной погрешности числа к самому числу. На практике используют относительную погрешность, так как она является более точной.

Часто в жизни нам приходится сталкиваться с различными приближенными величинами. Приближенные вычисления - всегда вычисления с некоторой погрешностью.

Понятие абсолютной погрешности

Абсолютная погрешность приближенного значения это модуль разности точного значения и приближенного значения.
То есть из точного значения нужно вычесть приближенное значение и взять полученное число по модулю. Таким образом, абсолютная погрешность всегда величина положительная.

Как вычислять абсолютную погрешность

Покажем, как это может выглядеть на практике. Например, у нас имеется график некоторой величины, пускай это будет парабола: y=x^2.

По графику мы сможем определить приблизительное значение в некоторых точках. Например, при x=1.5 значение у приблизительно равно 2.2 (y≈2.2).

По формуле y=x^2 мы можем найти точное значение в точке x=1.5 у= 2.25.

Теперь вычислим абсолютную погрешность наших измерений. |2.25-2.2|=|0.05| = 0.05.

Абсолютная погрешность равна 0.05. В таких случаях еще говорят значение вычислено с точность до 0.05.

Часто бывает так, что точное значение не всегда можно найти, а, следовательно, абсолютную погрешность не всегда возможно найти.

Например, если мы будем вычислять расстояние между двумя точками с помощью линейки, или значение угла между двумя прямыми с помощью транспортира, то мы получим приближенные значения. А вот точное значение вычислить невозможно. В данном случае, мы можем указать такое число, больше которого значение абсолютной погрешности быть не может.

В примере с линейкой это будет 0.1 см, так как цена деления на линейке 1 миллиметр. В примере для транспортира 1 градус потому, что шкала транспортира проградуирована через каждый градус. Таким образом, значения абсолютной погрешности в первом случае 0.1, а во втором случае 1.

Абсолютной погрешностью приближенного числа называется модуль разности между этим числом и его точным значением. . Отсюда следует, что заключено в пределах или .

Пример 1. На предприятии 1284 рабочих и служащих. При округлении этого числа до 1300 абсолютная погрешность составляет |1300 - 1284|=16. При округлении до 1280 абсолютная погрешность составляет |1280 - 1284| = 4.
Относительной погрешностью приближенного числа называется отношение абсолютной погрешности …
приближенного числа к модулю значения числа .
Пример 2 . В школе 197 учащихся. Округляем это число до 200. Абсолютная погрешность составляет |200 - 197| = 3. Относительная погрешность равна 3/|197| или 1,5 %.

В большинстве случаев невозможно узнать точное значение приближенного числа, а значит, и точную величину погрешности. Однако почти всегда можно установить, что погрешность (абсолютная или относительная) не превосходит некоторого числа.

Пример 3. Продавец взвешивает арбуз на чашечных весах. В наборе гирь наименьшая - 50 г. Взвешивание дало 3600 г. Это число – приближенное. Точный вес арбуза неизвестен. Но абсолютная погрешность не превышает 50 г. Относительная погрешность не превосходит 50/3600 ≈1,4%.

В примере 3 за предельную абсолютную погрешность можно взять 50 г, а за предельную относительную погрешность – 1,4 %.
Абсолютная погрешность обозначается греческой буквой Δ («дельта») или D a ; относительная погрешность - греческой буквой δ («дельта малая»). Если приближенное число обозначить буквой А, то δ = Δ/|А|.

Значащей цифрой приближенного числа А называется всякая цифра в его десятичном представлении, отличная от нуля, и нуль, если он содержится между значащими цифрами или является представителем сохраненного десятичного разряда

Пример. А= 0,002080. Здесь только первые три нуля не являются значащими.

n первых значащих цифр приближенного числа А являются верными , если абсолютная погрешность этого числа не превышает половины разряда, выражаемого n – й значащей цифрой, считая слева направо. Цифры, не являющиеся верными, называются сомнительными.

Пример. Если в числе a = 0,03450 все цифры верные, то .

Правила приближенных вычислений
понятие определение пример или примечание
Приближенные вычисления Вычисления, производимые над числами, которые известны нам с определённой точностью, например, полученными в эксперименте. Выполняя вычисления, всегда необходимо помнить о той точности, которую нужно или которую можно получить. Недопустимо вести вычисления с большой точностью, если данные задачи не допускают или не требуют этого. И наоборот.
Погрешности Разница между точным числом а и его приближенным значением А называется погрешностью данного приближенного числа. Если известно, что | а — А | < D, то величина D называется абсолютной погрешностью приближенной величины А. Отношение D /|А| = δ называется относительной погрешностью ; последнюю часто выражают в процентах. 3,14 является приближенным значением числа а , погрешность его равна 0,00159…, абсолютную погрешность можно считать равной 0,0016, а относительную погрешность δ равной 0.0016/3.14 = 0,00051 = 0,051%.
Значащие цифры все цифры числа, начиная с 1-й слева, отличной от нуля, до последней, за правильность которой можно ручаться. Приближенные числа следует записывать, сохраняя только верные знаки. Если, например, абсолютная погрешность числа 52438 равна 100, то это число должно быть записано, например, в виде 524 . 10 2 или 0,524 . 10 5 . Оценить погрешность приближенного числа можно, указав, сколько верных значащих цифр оно содержит. Если число А = 47,542 получено в результате действий над приближенными числами и известно, что δ = 0,1%, то a имеет 3 верных знака, т.е. А = 47,5
Округление Если приближенное число содержит лишние (или неверные) знаки, то его следует округлить. При округлении сохраняются только верные знаки; лишние знаки отбрасываются, причем если первая отбрасываемая цифра больше или равна 5 , то последняя сохраняемая цифра увеличивается на единицу.
Действия над приближенными числами Результат действий над приближёнными числами представляет собой также приближённое число. Число значащих цифр результата можно вычислить при помощи следующих правил: 1. При сложении и вычитании приближённых чисел в результате следует сохранять столько десятичных знаков, сколько их в приближённом данном с наименьшим числом десятичных знаков. 2. При умножении и делении в результате следует сохранять столько значащих цифр, сколько их имеет приближённое данное с наименьшим числом значащих цифр.

Результат действий с приближенными числами есть тоже приближенное число. При этом неточными могут оказаться и те цифры, которые получены действиями над точными цифрами данных чисел.

Пример 5. Перемножаются приближенные числа 60,2 и 80,1. Известно, что все выписанные цифры верны, так что истинные величины могут отличаться от приближенных лишь сотыми, тысячными и т. д. долями. В произведении получаем 4822,02. Здесь могут быть неверными не только цифры сотых и десятых, но и цифры единиц. Пусть, например, сомножители получены округлением точных чисел 60,25 и 80,14. Тогда точное произведение будет 4828,435, так что цифра единиц в приближенном произведении (2) отличается от точной цифры (8) на 6 единиц.

Теория приближенных вычислений позволяет:

1) зная степень точности данных, оценить степень точности результатов еще до выполнения действий;

2) брать данные с надлежащей степенью точности, достаточной, чтобы обеспечить требуемую точность результата, но не слишком большой, чтобы избавить вычислителя от бесполезных расчетов;

3) рационализировать сам процесс вычисления, освободив его от тех выкладок, которые не окажут влияния на точные цифры результата.

Loading...Loading...