Инфракрасная паяльная станция. Инфракрасная паяльная станция своими руками: особенности устройства Паяльные станции инфракрасного нагрева

Внимание! Данная статья предназначена только для ознакомительных целей, и к сборке не рекомендуется! Там же скачиваем обновленные версии прошивок для станции первой версии.

При ремонте материнских плат связанных с заменой BGA компонентов не обойтись без инфракрасной паяльной станции! Китайские станции качеством не блещут, а качественные ИК паяльные станции стоят не дешево. Выход - собрать самому паяльную станцию. Стоимость компонентов для сборки станции не превышает 10 тысяч рублей. Не смотря на дешевизну - самодельная ИК станция надежно себя зарекомендовала в ремонте материнских плат. Контроллер обеспечивает точное соблюдение термопрофиля, что является важным фактором во время замены BGA компонентов.

Описание конструкции

Станция состоит из контроллера управления, нижнего подогрева, верхнего нагревателя.

Контроллер двухканальный. К первому каналу можно подключить термопару или платиновый терморезистор. Ко второму каналу подключается только термопара. 2 канала имеют автоматический и ручной режим работы. Автоматический режим работы обеспечивает поддержание температуры 10-255 градусов через обратную связь с термопар или платинового терморезистора (в первом канале). В ручном режиме мощность в каждом канале можно регулировать в диапазоне 0-99%. В памяти контроллера заложено 14 термопрофилей для пайки BGA. 7 для свинецсодержащего припоя и 7 для безсвинцового припоя. Термопрофили указаны ниже. При желании их можно изменить (исходник в архиве).

Для безсвинцового припоя максимальная температура термопрофиля: - 8 термопрофиль - 225C о, 9 - 230C о, 10 - 235C о, 11 - 240C о, 12 - 245C о, 13 - 250C о, 14 - 255C о

Если верхний нагреватель, не успевает прогревать согласно термопрофилю, то контроллер становится на паузу и ждет пока не будет достигнута нужная температура. Это сделано для того, чтобы адаптировать контроллер для слабых нагревателей, которые прогревают долго и не успевают за термопрофилем.

Контроллер так же можно использовать в качестве регулятора температуры, например, во время сушки или запекания паяльной маски (в духовке, в которую помещена термопара), или прочих случаях, где требуется точное поддержание температуры.

Принципиальная схема контроллера

Далее приведены фото контроллера. Блок питания использовал от ноутбука, которое переделал на напряжение 12 Вольт. В качестве гнезда для термопар использовал usb гнездо с кусочками текстолита, которое припаяно к передней панели, смотрим фото. Охлаждение активное, я использовал термотрубку от охлаждения ноутбука. К термотрубке феном припаял медную пластину, на которую будут установлены элементы для охлаждения. Можно использовать охлаждение процессора от системного блока, но тогда габариты устройства увеличатся.

Нижний подогрев изготовлен из галогенового обогревателя на 3 лампы общей мощностью 1,2 кВт. Из обогревателя демонтируется основание со светоотражателем и защитной сеткой. Корпус для нижнего подогрева я изготовил из изогнутой листовой жести(конька оцинкованного), который вырезал ножницами по металлу. Так же в конструкцию добавлен порог алюминиевый(стык), для удобства установки на него швеллера алюминиевого. На швеллер через стойки устанавливается материнская плата. Нижний подогрев можно подключить к контроллеру. Я поступил другим способом чтобы не заморачиваться с второй термопарой, - в нижний подогрев встроил диммер на 600 Вт, только на симистор установил радиатор побольше. С регулировкой 1,2 кВт он прекрасно справляется. Примерное положение диммера я запомнил, при котором стабильно держится требуемая температура на материнской плате. Для небольших плат (например видеокарт) можно использовать канцелярские прищепки, прикрученные к DIN рейке. Пример на фото.

Качественный верхний нагреватель из подручных средств, к сожалению невозможно изготовить. Я проводил эксперименты с галогеновыми лампами, кварцевыми трубками со спиралями, так же экспериментировал с ИК лампой. Но лучше всего себя зарекомендовал керамический нагреватель фирмы ELSTEIN серии SHTS (с позолотой). Подобные нагреватели используются в дорогих ИК станциях. Я использовал ELSTEIN SHTS/100 800W и ELSTEIN SHTS/4 300W. Нагреватели греют очень хорошо, и практически не светят. Спектр ИК излучения очень подходит для замены BGA компонентов. Нагреватели из Китая не рекомендую, хоть внешне они и похожи на ELSTEIN.

Тепловое пятно нагревателя ELSTEIN SHTS/100 800W. Размер нагревателя 96х96 мм. Расстояние между нагревателем и платой 5см.

Круг El1 диаметр 4 см (перепад температуры 5 градусов от центра до края окружности).

Круг El2 диаметр 5 см (перепад температуры 10 градусов от центра до края окружности).

Круг El3 диаметр 6 см (перепад температуры 15 градусов от центра до края окружности).

Тепловое пятно нагревателя ELSTEIN SHTS/4 300W. Размер нагревателя 60х60 мм. Расстояние между нагревателем и платой 5см.

Круг El1 диаметр 2,5 см (перепад температуры 5 градусов от центра до края окружности). Подходит для большинства чипов.

Круг El2 диаметр 3 см (перепад температуры 10 градусов от центра до края окружности).

Круг El3 диаметр 4,5 см (перепад температуры 15 градусов от центра до края окружности).

Как видим оба нагревателя подходят для замены BGA компонентов. Но ELSTEIN SHTS/100 800W имеет преимущество перед вторым нагревателем. Это гораздо большее равномерное тепловое пятно. Круг диаметром 4 см у которого перепад температуры не более 5C о. Практически показатель как у Термопро с 3D отражателем (у которого однородное квадратное тепловое пятно 4х4см с перепадом температуры не более 5C о)

Ниже приведены фото конструкции верхнего нагревателя и станины, которую изготовил из того что было в строительном магазине. Конструкция получилась удачной, регулируется по высоте и длине, нагреватель крутится вокруг своей оси, его легко установить над любым участком платы.

Термопара крепится к штативу. Ее легко навести на любой участок платы. Конструкция на фото. Гибкий металлический рукав я использовал от USB фонарика из магазина, где все по одной цене. В металлический рукав я вставил термопару без внешней изоляции при помощи проволоки.

Настройка контроллера

Для настройки канала верхней термопары R3 устанавливаем в среднее положение. Помещаем термопару контроллера и термопару образцового термометра на нагретую поверхность (например галогеновую лампу, где обе термопары соединены вместе и на них нанесена термопаста), и калибруем резистором R6 показания максимального значения температуры 250 градусов. Потом даем лампе остыть до комнатной температуры и калибруем резистором R3 нижнее показание температуры. Данную процедуру нужно повторить несколько раз, пока не будет совпадать нижнее и максимальное значение температур с реальными показателями. Такую же процедуру повторяем с каналом нижней термопары при помощи резисторов R11 и R14 соответственно. Аналогично калибруется первый канал при использовании платинового терморезистора резисторами R21 и R27 соответственно. Если не планируется использовать платиновый терморезистор, то ОУ U2 можно из схемы исключить со всей обвязкой, а 11 вывод микроконтроллера подключить на +5В.

Управление контроллером и изменение параметров, а так же процесс съема и установки чипа показан на видео. Верхний нагреватель я устанавливаю на высоте 5-6 см от поверхности платы. Если в момент исполнения термопрофиля происходит выбег температуры от заданного значения больше чем на 3 градуса - понижаем мощность верхнего нагревателя. Выбег на несколько градусов в конце термопрофиля(после отключения верхнего нагревателя) не страшен. Это сказывается инерционность керамики. Поэтому я выбираю нужный термопрофиль на 5 градусов меньше, чем мне надо. На данном нижнем подогреве температура немного отличается над зоной нагревателя, и в теневой зоне (разница около 10-15 градусов). Поэтому плату на нижний нагреватель желательно установить так, чтобы чип находился над зоной нагревателя (но это не критично). Перед съемом чипа при помощи зонда нужно убедиться(аккуратным нажатием на каждый угол чипа) что шары под чипом поплыли. При монтаже используем только качественный флюс, иначе неправильный выбор флюса может все испортить. Так же при монтаже чипа BGA рекомендуется накрыть кристалл прямоугольником из алюминиевой фольги с размером стороны равной примерно ½ от стороны BGA, чтобы снизить температуру в центре, которая всегда выше, чем температура около термопары (смотрим выше фото тепловых пятен ИК нагревателей ELSTEIN).

Внешний вентилятор программно не задействован, хотя на схеме он и указан. В дальнейшем планируется в исходник внести изменения и задействовать внешний вентилятор.

Ниже вы можете скачать архив с печатной платой в формате LAY, исходным кодом, прошивкой

Список радиоэлементов

Обозначение Тип Номинал Количество Примечание Магазин Мой блокнот
E1 Энкодер EC11 1 С кнопкой В блокнот
U1, U2 Операционный усилитель

LM358

2 В блокнот
U3 Линейный регулятор

LM7805

1 Устанавливается на радиатор В блокнот
U4 МК PIC 8-бит

PIC16F876

1 PIC16F876A В блокнот
U5, U6 Оптопара

PC817

2 В блокнот
LCD1 LCD-дисплей WH2004A-YYH-CT 1 20x4 на основе KS0066 (HD44780) с англо-русским словарем В блокнот
Q1, Q2 MOSFET-транзистор

TK20A60U

2 2SK3568 В блокнот
Q3, Q4, Q5 MOSFET-транзистор

IRLML0030

3 Или любой N-Channel MOSFET В блокнот
Z1 Кварц 16 МГц 1 В блокнот
VD1 Выпрямительный диод

LL4148

1 В блокнот
VD2, VD3 Диодный мост KBU1010 2 В блокнот
VD4, VD5 Стабилитрон 24 В 2 В блокнот
R1 Платиновый терморезистор PT100 1 В блокнот
R2, R10 Резистор

470 Ом

2 В блокнот
R3, R11 Подстроечный резистор 1 МОм 2 В блокнот
R4, R12 Резистор

1 МОм

2 В блокнот
R5, R13, R26 Резистор

1.5 кОм

3 В блокнот
R6, R14, R27 Подстроечный резистор 100 кОм 3 Многооборотный В блокнот
R7, R15 Резистор

130 кОм

2 В блокнот
R8, R16, R29 Резистор

20 кОм

3 В блокнот
R9, R28 Резистор

100 Ом

2 В блокнот
R17, R30 Резистор

10 кОм

2 В блокнот
R18, R19 Резистор

4.7 кОм

2 Допуск 1% или лучше В блокнот
R20 Резистор

51 Ом

1 В блокнот
R21 Подстроечный резистор 100 Ом 1 Многооборотный В блокнот
R22, R23, R24, R24 Резистор

220 кОм

4 Допуск 1% или лучше В блокнот
R31 Подстроечный резистор 10 кОм 1 Многооборотный В блокнот
R32 Резистор

16 Ом

1 Мощность 2Вт В блокнот
R33, R34, R36, R37 Резистор

47 кОм

4 Мощность 1Вт В блокнот
R35, R38 Резистор

5.1 кОм

2

С появлением микропроцессорной техники возникла необходимость при ремонте сталкиваться с перепайкой BGA микросхем, что привычными методами сделать или крайне сложно, или, чаще, невозможно. Даже фен не всегда поможет справиться с поставленной задачей. Именно поэтому изготовление инфракрасной паяльной станции своими руками будет наилучшей альтернативой и порой единственным актуальным решением.

ИК станция для пайки

Микросхемы BGA (Ball grid array) присутствуют практически в любом современном «умном» устройстве: телефоны, компьютеры, телевизоры, принтеры. В процессе эксплуатации они могут выходить из строя, что требует замены неисправной части на новую. Но такую процедуру осуществить без специального оборудования - задача крайне сложная.

Проблема заключается в том, что производители изобретают всё новые и новые методы для монтажа электронных деталей. И обычный паяльник или фен не всегда смогут помочь в решении такой проблемы. Ведь контактные шарики способствуют высокой теплоотдаче на плату, в результате чего они не могут расплавиться.

Если пытаться поднять температуру до необходимой для их плавления, то появляется риск перегреть микросхему, в результате чего она может выйти из строя. Вследствие перегрева не исключена и возможность повреждения близлежащих деталей. Особенно если их корпусы выполнены из легкоплавких материалов.

Отличным решением может выступить инфракрасная станция. Она позволяет производить замену даже крупных GPU контроллеров. А с широким распространением компьютеров, ноутбуков, материнских плат, видеоадаптеров и другой сложной техники такие работы при ремонте выполняются достаточно часто. И если раньше для замены крупных микросхем можно было использовать термовоздушные станции, то сейчас, когда производители используют бесконтактные методы пайки, единственным оптимальным решением является ИК станция, способная качественно справиться с заменой любой микропроцессорной детали.

Принцип действия

Основными проблемами при перепайке микросхем и контроллеров является или недогрев до температуры плавления контактного материала, или перегрев заменяемой части и её выход из строя.

Так пришла идея нагревать до температуры 100–150 градусов Цельсия непосредственно саму плату. После чего уже производить пайку деталей. Это позволяет качественно снизить теплоотток на текстолит платы, что даёт возможность понижать и «верхние» температуры. А значит, и сама деталь будет меньше подвергаться перегреву.

Производить нагрев можно и термофеном, но использовать инфракрасный паяльник предпочтительнее. Ведь ИК станция позволяет делать это контролируемо, то есть следить и поддерживать «низ» и «верх» температур или использовать рекомендуемый термопрофиль пайки.

Конструктивные особенности

Любые ИК паяльные станции состоят из трёх основных частей. Выглядит всё довольно просто, хотя каждая из них является самостоятельным сложным механизмом, объединённым с общей установкой. Так, любая станция включает в себя:

В зависимости от модели и производителя, ИК паяльники могут отличаться лишь техническими характеристиками. Одни делают работу проще, другие, напротив, требуют от пользователя дополнительного внимания и трудозатрат.

Влияет это и на стоимость оборудования. Поэтому, выбирая станцию требуется обращать внимание не только на цену, но и на технические данные, чтобы не переплачивать за ненужный функционал.

Изготовление своими руками

Производствам или лицам, занимающимся ремонтом сложной электронной аппаратуры, вполне можно приобрести для работы заводскую паяльную ИК станцию. А вот любителям или тем, кому такая установка нужна изредка, можно создать её своими руками. И в пользу этого, в первую очередь, говорит цена. Даже приборы китайского производства имеют стоимость от 1 тыс. долларов. Качественные же модели европейских марок от 2 тыс. долларов и выше. Позволить себе столь дорогое удовольствие сможет далеко не каждый.

Касательно самодельной инфракрасной паяльной станции всё выглядит значительно оптимистичнее. По средним расчётам, такой аналог ИК паяльника обойдётся в пределах 80 долларов, что выглядит несравнимо более приемлемо цен на заводские приборы.

Любой человек, занимающийся ремонтом сложной техники, имеет достаточно знаний, чтобы придумать и сконструировать ИК станцию самостоятельно. В связи с этим электронная часть, внешний вид и некоторые возможности могут отличаться. А вот основная конструкция останется в любой модели одинаковой . Именно поэтому не существует единой идеальной схемы, которую можно привести в качестве единственного верного решения. Но для того чтобы понять сам принцип создания ИК паяльника, подойдёт любая модель. А уже основываясь на личных знаниях и предпочтениях, можно убрать или добавить те или иные части.

Первый вариант

В этом варианте будет использоваться двухканальный контроллер.

  1. Первый канал задействован для платинового терморезистора Pt 100 или обычной термопары.
  2. Второй канал будет использоваться исключительно термопарой. Каналы контроллера могут работать в автоматическом или ручном режиме.

Температура может поддерживаться в пределах от 10 до 255 градусов Цельсия. Термопары или датчик и термопара посредством обратной связи контролируют эти параметры в автоматическом режиме. В ручном режиме будет регулироваться мощность на каждом из каналов от 0 до 99 процентов.

Память контроллера будет содержать 14 различных термопрофилей для работы с BGA микросхемами. Семь из них предназначены для свинецсодержащих сплавов, а другие семь для припоя без содержания свинца.

В случае со слабыми нагревателями верхний может не успевать за термопрофилем. В таком случае контроллер поставит выполнение на паузу и будет дожидаться, пока наберётся необходимая температура.

Также контроллер очень удобно выполняет термопрофиль на основании температуры преднагрева всей платы. Если по той или иной причине снять чип не получилось, то можно повторно запустить его с более высокой температурой.

Силовой блок, изображённый на схеме, имеет транзисторный ключ для верхнего нагрева и семисторный для нижнего. Хотя приемлемо использование двух транзисторных или симисторных. Участок, отмеченный красным пунктиром, можно не собирать, если рассчитывается использование двух термопар.

Для теплоотвода от ключей можно использовать радиатор с активным охлаждением от любой техники. Главное, чтобы он подходил под конструкцию моделируемого аппарата. Нижний нагреватель будет состоять из девяти галогеновых ламп номиналом 1500 Вт 220–240в R7S 254 мм. Должно получиться три части по три лампы, соединённых последовательно. Провода лучше использовать высокотемпературные силиконовые на 220 вольт.

Корпус собирается из стеклотекстолита или любого другого похожего материала и усиливается алюминиевыми уголками. А также придётся купить и вакуумный насос. Для более эстетичного внешнего вида можно использовать ИК стекло на нижней панели. Но здесь существует сразу несколько отрицательных моментов: слишком медленный нагрев и остывание, и вся конструкция в процессе работы чересчур нагревается. Хотя наличие стекла не только делает прибор более привлекательным, но и удобным, так как платы можно класть прямо на него.

Стойка выполняется из алюминиевого швеллера для стоек. Подготавливаются вакуумный пинцет и трубка для него, термопара и стойки. Верхний нагреватель рекомендуется сделать из ELSTEIN SHTS/100 800W. Когда все детали готовы, их нужно разместить в корпусе и можно переходить к настройке.

Нагреватели устанавливаются на расстоянии 5–6 сантиметров от плат. Если температурный выбег больше трёх градусов, то стоит понизить мощность верхнего нагревателя.

Второе решение

В качестве второго варианта можно предложить конструкцию, отличающуюся лишь внутренними составляющими. И сначала стоит подготовить все необходимые комплектующие:

Главное, сразу определиться с видом корпуса. Естественно, что много зависит от наличия подходящего материала. Поэтому именно от этого стоит отталкиваться, когда приходит время располагать комплектующие внутри.

Теперь нужно взять галогеновый обогреватель. Возможно получится найти уже старый, так как его необходимо разобрать и извлечь рефлекторы и галогеновые лампы. Сами лампы разбирать не нужно. Теперь всё это потребуется поместить в заготовленный корпус. Используется всего 4 лампы по 450 ватт, подключаемых параллельно. Провода предпочтительнее использовать те же, которыми они уже были подключены. Если по каким-либо причинам использовать их возможности нет, то придётся купить дополнительно термостойкие.

Сразу придётся подумать и о системе удержания плат. Конкретные рекомендации давать здесь сложно. Ведь всё зависит от корпуса. Но хорошо бы использовать алюминиевые профили, в которые не жёстко вставляются болты с гайками таким образом, чтобы впоследствии можно было ими зажимать печатные платы и, одновременно, была возможность регулировки под разные размеры плат. Термопары, контролирующие заданную температурную схему в нижнем нагревателе, лучше пропустить в душевой шланг. Это даст подвижность и удобство в процессе работы и монтажа.

Роль верхнего нагревателя будет исполнять керамический мощностью 450 ватт. Такой можно купить как запчасть для ИК станций. Здесь же нужно позаботиться и о корпусе, так как именно он обеспечивает правильный и качественный нагрев. Сделать его можно из тонкого листового железа, согнув нужным образом, в зависимости от формы и размера нагревателя.

Теперь нужно подумать и о креплении верхнего нагревателя. Так как он должен быть подвижным, причём перемещаться не только вверх или вниз, но и под разными углами. Отлично подойдёт стойка от настольной лампы. Закрепить её можно любым удобным способом.

Пришло время заняться контроллером. Для него тоже понадобиться отдельный корпус. Если есть подходящий уже готовый, то можно использовать его. В противном случае придётся его сделать самостоятельно всё из того же тонкого металла. Твердотельные реле нуждаются в охлаждении, поэтому стоит установить к ним радиатор и вентилятор.

Так как автоматической настройки в контроллере нет, то значения P, I и D придётся вводить вручную. Здесь есть четыре профиля, для каждого отдельно устанавливается количество шагов, скорость роста температуры, время и шаг ожидания, нижний порог, целевая температура и значения для верхнего и нижнего нагревателя.

Радиолюбителям рано или поздно приходится сталкиваться с пайкой элементов посредством массива шариков. BGA способ пайки используется повсеместно в массовых производствах различной техники. Для монтажа используется инфракрасный паяльник, который производит соединение деталей бесконтактным способом. Готовые модификации стоят дорого, а более дешевые аналоги не обладают достаточным функционалом, поэтому возможно изготовить паяльник в домашних условиях.

Описание процесса ИК пайки

Принцип работы инфракрасной паяльной станции заключается в воздействии сильными волнами длиной 2-7 мкм на элемент. Устройство для пайки самодельными ИК паяльными станциями как самодельными, так и приобретаемыми, состоит из нескольких элементов:

  • Нижний нагреватель.
  • Верхний нагреватель, отвечающий за основное воздействие на материалы.
  • Конструкция держателя платы, размещенная на столе.
  • Контроллер температуры, состоящий из программируемого элемента и термопары.

Длина волны, напрямую зависит от температурных показателей источника энергии. Материалы в различной форме подвергаются пайке с помощью ИК станции, сделанной своими руками, существуют основные параметры передачи энергии, непрозрачность, отражение, полупрозрачность и прозрачность. Перед изготовлением ИК паяльной станции своими руками нужно понимать, что существуют некоторые недостатки данных систем:

  • Разная степень поглощения энергии компонентами ведет за собой неравномерный прогрев.
  • Каждая плата ввиду различных характеристик требует подбора температур, в противном случае, компоненты перегреваются, выходят из строя.
  • Наличие «мертвой зоны», где инфракрасная энергия не достигает требуемого объекта.
  • Обязательное условие защиты поверхностей остальных элементов от испарения флюсов.

Нагревание происходит за счет передачи тепла к монтажной плате. Тепловое воздействие инфракрасной станцией происходит поверх детали, температуры бывает не достаточно, поэтому конструкция подразумевает нагрев нижней части. Нижняя часть состоит из термостола, процесс пайки может осуществляться посредством спокойного инфракрасного излучения, либо потоком воздуха.

Профессиональное оборудование стоит достаточно дорого, более дешевые аналоги не обладают достаточным функционалом. Для экономии средств, выполнения нужных операций с BGA контроллерами, возможно изготовить инфракрасную паяльную станцию своими руками. Сборка возможна из доступных на рынке и подручных материалов. Конструкция представляет собой изготовленный из старого светильника термостол, оснащенный лампами галогенового типа. Контроллер и верхний нагреватель приобретается на рынке или собирается из старых запасных частей.

Термостол потребует наличие отражателей, галогеновых ламп, размещенных в корпусе из профиля или листового металла. При изготовлении инфракрасной паяльной станции своими руками, стоит придерживаться чертежей, которые возможно разработать самостоятельно или позаимствовать у других исполнителей. Обязательно корпус снабжается местом для термопары, которая передает информацию на контролер для предотвращения резких перепадов температуры, избыточного нагрева материала.

Сборка ИК паяльной станции подразумевает самодельные конструкции в виде крепежа из штатива. Контроль температуры нагревательного узла производится второй термопарой. Устанавливается параллельно с нагревателем, штатив закрепляется на панели таким способом, чтобы ИК элемент можно было перемещать над поверхностью термостола. Расположение платы производится выше галогеновых ламп на 2-3 см, в корпусе термостола. Крепление производится кронштейнами, для изготовления возможно использовать ненужный алюминиевый профиль.

Изготовление паяльной лампы своими руками в первую очередь потребует корпус. Для охлаждения системы требуется монтаж одного мощного или нескольких кулеров, материал желательно выбрать из оцинкованной стали. После полной сборки производится наладка системы путем запуска схемы, отладки устройства.

Нижний подогрев может быть изготовлен несколькими способами, но гораздо лучшим вариантом является использование галогеновых ламп. Рациональным решением является установка своими руками ламп суммарной мощностью от 1 кВт. По бокам конструкции устанавливаются порожки, которые зафиксируют плату. Установка материалов для пайки производится на швеллер, для более мелких деталей используются подложки или прищепки.

Известно, что верхний нагреватель подходящего качества невозможно изготовить своими руками. Для достижения наилучшего результата в процессе ИК пайки, необходимо воспользоваться керамическими нагревательными элементами. Для и нфракрасной паяльной станции, изготовленной своими руками оптимальным вариантом является использование нагревателя ELSTEIN. Производитель показывает наилучшие результаты, спектр излучения идеально подходит для замены BGA плат, других деталей. Не рекомендуется экономить на покупке верхнего нагревателя — обогревателя при сборке паяльной станции своими руками, т.к. при работе некачественным инструментом возможно повреждение платы или собранной конструкции.

Конструкция для верхнего подогрева возможна из самодельной станины. Достаточно иметь регулировку по высоте и широте для комфортной работы на инфракрасной паяльной станции, изготовленной своими руками. К штативу крепится термопара для контроля температуры.

Корпус контроллера подбирается по размерам в соответствие с устанавливаемыми деталями. Подходящим вариантом может оказаться кусок листового метала, который без труда возможно отрезать ножницами по металлу. Размещается в блоке управления также вентиляторы, различные кнопки, а также дисплей и сам контроллер. В роли контроллера выступает Arduino, функциональность вполне достаточна для выполнения пайки BGA схем своими руками.

Детали для самодельного прибора

Перед сборкой любого оборудования своими руками, необходимо подготовить материалы и инструменты. Для инфракрасного паяльника понадобятся:

  • Комплект галогеновых ламп, количество которых зависит от формы будущего нижнего нагревателя паяльной станции, оптимальное количество подбирается в диапазоне от 4 до 6 штук.
  • Керамическая инфракрасная головка мощностью не менее 400 ватт для верхнего нагревателя.
  • Шланг от душевой лейки для проводов, алюминиевые уголки.
  • Стальная проволока, крепежный элемент от старого фотоаппарата или настольной лампы для изготовления штатива.
  • Контроллер Arduino, 2 реле и термопары, а также блок питания выходом 5 вольт, который можно изготовить от зарядного устройства мобильного телефона.
  • Винты, разъемы и дополнительные периферии.

В процессе сборки понадобятся чертежи, разобрать которые помогут элементарные знания в электронике.

Применение и устройство

Инфракрасный паяльник используется в основном при условиях отсутствия доступа к заменяемым компонентам. Применяется при замене мелких деталей, основным достоинством является отсутствие нагаров и прочих отложений, как при работе обычным паяльником, а также малая возможность повредить соседние элементы. Для домашнего использования возможно изготовить паяльник своими руками, используя прикуриватель от автомобиля.

Работа устройства происходит при питании 12 вольт, такое напряжения возможно получить путем использования преобразователя или не нужного блока питания для компьютера.

Изготовление

Перед сборкой паяльной станции, извлекается из корпуса прикуривателя нагревательный элемент. К контактам питания присоединяются провода питания, к центральному проводу возможно подвести медный провод с изоляцией. Сделать паяльник не составит большого труда, достаточно изолировать соединение на расстоянии от нагревательного элемента, возможно использовать термоусадочную трубку.

Корпус производится из тугоплавкого материала. Возможно воспользоваться нерабочим паяльником или приобрести кусок стали. Необходимо следить за отсутствием соприкосновения проводов. Важно понимать, что подобного рода устройство используется при незначимых работах, так как температурные пороги, другие параметры не контролируются.

Около двух лет назад я разместил статью . Данная статья вызвала интерес у многих радиолюбителей. Но к сожалению после повторения ИК паяльной станции не обошлось без замечаний в плане работы станции, которые я постарался устранить в данной версии станции:
- применены аналоговые усилители термопары AD8495 со встроенной компенсацией холодного спая, в следствие чего увеличена точность показания температуры
- проблема с выходом из строя транзисторов нижнего нагревателя решена при помощи симисторного регулятора мощности
- доработана прошивка (которая совместима с прошлой версией станции). После запуска термопрофиль начинает выполняться с той температуры, до которой преднагрета плата, что экономит много времени. Отдельная благодарность за корректировку и адаптацию прошивки под китайские дисплеи.
- добавлен вакуумный пинцет
- корпус паяльной станции полностью переработан. Конструкция станции получилась очень симпатичной, более устойчивой и надежной, на рабочем столе занимает меньше места. В одном корпусе совмещено все необходимое, - нижний нагреватель, верхний нагреватель, вакуумный пинцет и сам контроллер.

Описание конструкции

Контроллер двухканальный. К первому каналу можно подключить термопару или платиновый терморезистор PT100. Ко второму каналу подключается только термопара. 2 канала имеют автоматический и ручной режим работы. Автоматический режим работы обеспечивает поддержание температуры 10-255 градусов через обратную связь с термопар или платинового терморезистора (в первом канале). В ручном режиме мощность в каждом канале можно регулировать в диапазоне 0-99%. В памяти контроллера заложено 14 термопрофилей для пайки BGA. 7 для свинецсодержащего припоя и 7 для безсвинцового припоя. Термопрофили указаны ниже.

Для безсвинцового припоя максимальная температура термопрофиля: - 8 термопрофиль - 225C о, 9 - 230C о, 10 - 235C о, 11 - 240C о, 12 - 245C о, 13 - 250C о, 14 - 255C о

Если верхний нагреватель, не успевает прогревать согласно термопрофилю, то контроллер становится на паузу и ждет пока не будет достигнута нужная температура. Это сделано для того, чтобы адаптации контроллера для слабых нагревателей, которые прогревают долго и не успевают за термопрофилем.

Контроллер начинает выполнять термопрофиль с той температура, до которой преднагрета плата. Это очень удобно, и позволяет оперативно перезапустить термопрофиль в случае, например, если была температура недостаточна для снятия чипа, то можно выбрать термопрофиль с температурой повыше, и тут же снять чип со второй попытки.

На схеме применен комбо силовой блок, состоящий из транзисторного ключа для верхнего нагревателя, и симисторного для нижнего нагревателя. Хотя, например можно использовать 2 транзисторных, или 2 симисторных ключа.

Я использовал 2 готовых модуля на AD8495 , купленных на Aliexpress. Правда модули нужно немного доработать. Смотрим фото ниже.

Не обращаем внимания на то, что модуль на втором фото повернут на 90 градусов. Пришлось развернуть, так как модули у меня упирались в силовой блок. Разъемы для термопар использованы заводские.

Тем, кто не планирует в дальнейшем использовать платиновый терморезистор, то часть схемы выделенную красной пунктирной линией можно не собирать.

Печатные платы силового блока и контроллера.

Для охлаждения силовых ключей я применил радиатор от видеокарты с активным охлаждением.

Далее на фото будет виден этап сборки паяльной станции, как конструктора. Все материалы куплены в крупном строймагазине. Передняя и задняя панель сделаны из стеклотекстолита, укрепленного алюминиевым уголком. Базальтовый картон служит в качестве теплоизоляционного материала. Нижний подогрев состоит из 9 галогенных ламп (1500вт 220-240в R7S 254мм) объединенных в 3 группы по 3 соединенных последовательно лампы.

Провод для 220В применен силиконовый, высокотемпературный.

Хороший вакуумный насос можно приобрести на Aliexpress за 400-500 рублей. Ориентир для поиска на фото ниже.

Изначально я планировал использовать паяльную станцию совместно и ИК стеклом над нижним нагревателем, что давало хорошие преимущества:
- красивый внешний вид
- плату (на стойках можно ложить прямо на стекло), как у станций Термопро
Но увы, недостатки оказались весомее:
- очень долгий нагрев (остывание) платы
- очень сильно разогревается корпус паяльной станции, к примеру без стекла корпус во время работы едва теплый. Так что от стекла пришлось отказаться.

С открученным штативом стекло легко вынимается, или вставляется в станцию. Так же вместо стекла можно вставить, например, сетку.

Внешний вид собранной станции.

Аксессуары, стойки, алюминиевый швеллер для стоек, ручка вакуумного пинцета, силиконовая трубка для пинцета, термопара.

Необходимые "ингредиенты" для изготовления ручки вакуумного пинцета. Использован смеситель от эпоксидного клея Момент в сдвоенном шприце. Алюминиевая трубка(в которой необходимо просверлить отверстие) и соединитель соответствующего диаметра для силиконовой трубки. Все вклеено в алюминиевую трубку эпоксидным клеем момент.

Настройка контроллера
Резистором R32 необходимо установить напряжение 5,12В на выходе U4. Резистором R28 настраиваем контрастность дисплея. Если не планируете использовать платиновый терморезистор, то настройка станции закончена.
Описание калибровки канала с платиновым терморезистором описано в статье первой версии станции.

Рекомендации
Верхний нагреватель необходимо устанавливать на высоте5-6 см от поверхности платы. Если в момент выполнения термопрофиля происходит выбег температуры от заданного значения больше чем на 3 градуса - понижаем мощность верхнего нагревателя(включаем станцию с нажатым энкодером и устанавливаем максимальную мощность верхнего нагревателя). Выбег на несколько градусов в конце термопрофиля(после отключения верхнего нагревателя) не страшен. Это сказывается инерционность керамики. Поэтому я выбираю нужный термопрофиль на 5 градусов меньше, чем мне надо. Перед съемом чипа при помощи зонда нужно убедиться(аккуратным нажатием на каждый угол чипа) что шары под чипом поплыли. При монтаже используем только качественный флюс, иначе неправильный выбор флюса может все испортить. Так же при монтаже чипа BGA обязательно нужно накрыть кристалл прямоугольником из алюминиевой фольги с размером стороны равной примерно ½ от стороны BGA, чтобы снизить температуру в центре, которая всегда выше, чем температура около термопары (смотрим фото тепловых пятен ИК нагревателей ELSTEIN в статье первой версии станции).
В общем смотрим видео ниже.
Ниже вы можете скачать архив с печатной платой в формате LAY, исходным кодом, прошивкой.

Список радиоэлементов

Обозначение Тип Номинал Количество Примечание Магазин Мой блокнот
Е1 Энкодер 1 В блокнот
U1, U2 Операционный усилитель AD8495 2 В блокнот
U3 Операционный усилитель

LM358

1 В блокнот
U4 Линейный регулятор

LM7805

1 В блокнот
U5 МК PIC 8-бит

PIC16F876A

1 В блокнот
U6 МК PIC 8-бит

PIC12F683

1 Допустима замена на PIC12F675, но не рекомендуется В блокнот
U7, U8 Оптопара

PC817

2 В блокнот
U9 Оптопара

MOC3052M

1 В блокнот
LCD1 LCD дисплей VC20x4C-GIY-C1 1 20x4 на основе KS0066 (HD44780) В блокнот
Q1 MOSFET-транзистор

TK20A60U

1 В блокнот
Z1 Кварц 16 МГц 1 В блокнот
VD1 Выпрямительный диод

LL4148

1 В блокнот
VD2 Диодный мост KBU1010 1 В блокнот
VD3 Стабилитрон 24В 1 В блокнот
VD4 Диодный мост

DB107

1 В блокнот
T1 Симистор BTA41-600B 1 В блокнот
R9 Платиновый терморезистор PT100 1 В блокнот
R2, R3, R6, R7, R26, R27 Резистор

10 кОм

6 В блокнот
R1, R5 Резистор

1 МОм

2 В блокнот
R4, R8 Резистор

100 кОм

2 В блокнот
R10, R11 Резистор

4.7 кОм

2 Допуск 1% или лучше В блокнот
R12 Резистор

51 Ом

1 В блокнот
R13, R32 Подстроечный резистор 100 Ом 2 Многооборотный В блокнот
R14, R15, R16, R17 Резистор

220 кОм

5 Допуск 1% или лучше В блокнот
R18 Резистор

1.5 кОм

1 В блокнот
R19 Подстроечный резистор 100 кОм 1 Многооборотный В блокнот
R20 Резистор

100 Ом

1 В блокнот
R21 Резистор

20 кОм

1 В блокнот
R22 Резистор

510 Ом

1 В блокнот
R23, R24 Резистор

47 кОм

2 Мощность 1Вт В блокнот
R25 Резистор

5.1 кОм

1 В блокнот
R28 Подстроечный резистор 10 кОм 1 Многооборотный В блокнот
R29 Резистор

16 Ом

1 Мощность 2Вт В блокнот
R30, R31 Резистор

2.7 кОм

2 В блокнот
R33 Резистор

2.2 кОм

1 В блокнот
R34 Резистор

100 кОм

1 Мощность 1Вт (возможно придется подобрать номинал при настройке детектора нуля) В блокнот
R35 Резистор

47 кОм

1 возможно придется подобрать номинал при настройке детектора нуля В блокнот
R36 Резистор

470 Ом

1 В блокнот
R37 Резистор

360 Ом

1 Мощность 1Вт В блокнот
R38 Резистор

330 Ом

1 Мощность 1Вт В блокнот
R39 Резистор

Многие радиолюбители не могут подобрать подходящий инструмент различных микросхем и компонентов. Паяльная станция своими руками для таких умельцев – это один из лучших вариантов решения всех проблем.

Больше не нужно выбирать из множества несовершенных фабричных устройств, достаточно найти подходящие комплектующие, потратить немного времени и сделать идеальное устройство, удовлетворяющее все требования, своими руками.

Современный рынок предлагает радиолюбителям огромное количество всевозможных видов с разной комплектацией.

В большинстве случаев станции для пайки делятся на:

  1. Контактные станции.
  2. Цифровые и аналоговые устройства.
  3. Индукционные аппараты.
  4. Бесконтактные устройства.
  5. Демонтажные станции.

Первый вариант станций представляет собой паяльник, подключенный к блоку регулировки температуры.

Электрическая схема паяльной станции.

Контактные паяльные устройства делятся на:

  • устройства для работы со свинцовосодержащими припоями;
  • устройства для работы с безсвинцовыми припоями.

Позволяющие плавить безсвинцовый припой, обладают мощными нагревательными элементами. Такой выбор паяльников обусловлен высокой температурой плавления припоя без свинца. Безусловно, благодаря наличию регулятора температуры, подобные аппараты применимы для работы со свинцовосодержащим припоем.

Аналоговые аппараты для пайки регулируют температуру жала при помощи термодатчика. Как только наконечник перегревается, питание отключается. При остывании сердечника питание вновь подается на паяльник и начинается нагрев.

Цифровые устройства управляют температурой паяльника при помощи специализированного ПИД регулятора, который в свою очередь подчиняется своеобразной программе, заложенной в микроконтроллер.

Отличительной особенностью индукционных устройств является нагрев сердечника паяльника при помощи импульсной катушки. В процессе работы происходят колебания высоких частот, образующие в ферромагнетиковом покрытии аппаратуры вихревые токи.

Остановка нагрева происходит из-за достижения ферромагнетиком точки Кюри, после которой меняются свойства металла и прекращается эффект от воздействия высоких частот.

Бесконтактные аппараты для пайки делятся на:

  • инфракрасные;
  • термовоздушные;
  • комбинированные.

Паяльная станция состоит из нагревательного элемента в виде кварцевого или керамического излучателя.

Инфракрасные паяльные станции, по сравнению с термовоздушными, обладают следующими ощутимыми преимуществами:

  • отсутствие необходимости в поиске насадок на паяльный фен;
  • хорошо подходят для работы со всеми видами микросхем;
  • отсутствие термической деформации печатных плат из-за равномерного прогрева;
  • радиодетали не сдуваются воздухом с платы;
  • равномерный прогрев места пропая.

Важно отметить, что инфракрасные устройства для пайки являются профессиональным оборудованием и редко используются простыми радиолюбителями.

Зависимость температуры от времени пайки.

В большинстве случаев инфракрасные аппараты состоят из:

  • верхнего керамического или кварцевого нагревателя;
  • нижнего нагревателя;
  • стола для поддержки печатных плат;
  • микроконтроллера, управляющего станцией;
  • термопар для контроля текущих температур.

Термовоздушные станции для пайки используются для монтажа радиодеталей. В большинстве случает термовоздушными станциями удобно паять компоненты, находящиеся в SMD корпусах. Такие детали имеют миниатюрные размеры и хорошо паяются по средствам подачи на них горячего воздуха из термофена.

Комбинированные устройства, как правило, сочетают в себе несколько видов паяльного оборудования, например, термофен и паяльник.

Демонтажные станции комплектуются компрессором, работающим на втягивание воздуха. Такое оборудование оптимально подходит для снятия излишков припоя или демонтажа ненужных компонентов на печатной плате.

Все мало-мальски приличные станции компонентов в разных корпусах, имеют в наличие такое дополнительное оборудование:

  • лампы подсветки;
  • дымоуловители или вытяжки;
  • пистолеты для демонтажа и всасывания излишков припоя;
  • вакуумные пинцеты;
  • инфракрасные излучатели для прогрева всей печатной платы;
  • термофен для прогрева определенного участка;
  • термопинцет.

Паяльная станция своими руками

Наиболее функциональная и удобная станция – это инфракрасная.

Перед тем, как сделать инфракрасную паяльную станцию своими руками, следует приобрести следующие элементы:

  • галогеновый обогреватель на четырех инфракрасных лампах мощностью 2КВт;
  • верхний инфракрасный нагреватель для паяльной станции в виде керамической инфракрасной головки на 450 Вт;
  • алюминиевые уголки для создания каркаса конструкции;
  • шланг для душа;
  • проволока из стали;
  • нога от любой настольной лампы;
  • программируемый микрокомпьютер, например, Ардуино;
  • несколько твердотельных реле;
  • две термопары для контроля текущей температуры;
  • блок питания на 5 вольт;
  • небольшой экран;
  • зуммер на 5 вольт;
  • крепежные элементы;
  • при необходимости, паяльный фен.

В качестве верхнего нагревателя можно использовать кварцевые или керамические нагреватели.

Изготовление паяльной станции своими руками.

Преимущества керамических излучателей представлены:

  • невидимым спектром излучения, не повреждающим глаза радиолюбителя;
  • более длительным временем безотказной работы;
  • большой распространенностью.

В свою очередь, кварцевые ИК подогреватели обладают следующими плюсами:

  • большая однородность температуры в зоне подогрева;
  • меньшая стоимость.

Этапы сборки ИК паяльной станции представлены ниже:

  1. Монтаж элементов нижнего нагревателя для работы с bga элементами.
    Наиболее простым методом добычи четырех галогеновых ламп служит демонтаж их из старенького обогревателя. После того, как вопрос с лампами решен, следует придумать вид корпуса.
  2. Сборка конструкции паяльного стола и продумывание системы удержания плат на нижнем нагревателе.
    Установка системы крепления печатных плат заключается в отрезке шести кусков алюминиевого профиля и прикреплении их к корпусу при помощи гаек из перфорированной ленты. Получившаяся система крепления позволяет перемещать печатную плату и подстраивать ее под нужды радиолюбителя.
  3. Монтаж элементов верхнего нагревателя и паяльного фена.
    Керамический нагреватель на 450 – 500 Вт можно приобрести в китайском интернет магазине. Для монтажа верхнего подогрева необходимо взять лист металла и согнуть его по размерам нагревателя. После этого верхний нагреватель самодельной ик вместе с феном следует разместить на ножке от старой настолько лампы и подключить к блоку питания.
  4. Программирование и подключение микрокомпьютера.
    Наиболее ответственный этап создания собственного инфракрасного устройства для пайки, включающий: создание корпуса для микроконтроллера с продумыванием места под остальные компоненты и кнопки. В корпусе вместе с контроллером должны быть следующие элементы: два твердотельных реле, дисплей, блок питания, кнопки и соединительные клеммы.

Большинство радиолюбителей предпочитают использовать старые системные блоки в качестве основы корпуса и алюминиевые уголки для крепления всех основных элементов нижнего нагревателя. При подключении ламп рекомендуется использовать штатную проводку разобранного галогенового обогревателя.

По завершению процесса сборки станции следует переходить к непосредственной настройке микроконтроллера. Радиолюбителям, сделавшим самому инфракрасную паяльную станцию, зачастую приходилось использовать микрокомпьютер Ардуино ATmega2560.

Программное обеспечение, написанное специально для устройств, основанных на данном типе контроллера, можно найти в интернете.

Схема

Принципиальная схема инфракрасного паяльника.

Типовая схема паяльной станции включает:

  • блок усилителей термопар;
  • микроконтроллер с экраном;
  • клавиатуру;
  • звуковой сигнализатор, например, компьютерный спикер;
  • элементы питания и поддержки паяльного фена;
  • чертежи элементов детектора нуля;
  • элементы силовой части;
  • блок питания всей аппаратуры.

В большинстве случаев, схема станции представлена следующими микрокомпонентами:

  • опторазвязка;
  • мосфет;
  • симистор;
  • несколько стабилизаторов;
  • потенциометр;
  • подстроечный резистор;
  • резистор;
  • светодиоды;
  • резонатор;
  • несколько резонаторов в СМД корпусах;
  • конденсаторы;
  • переключатели.

Точные маркировки деталей разнятся в зависимости от потребностей и предполагаемых рабочих режимов.

Процесс

Процесс сборки инфракрасной паяльной станции во многом зависит от предпочтений мастера.

Типовой вариант устройства на микроконтроллере Ардуино, устраивающий большинство радиолюбителей, собирается в такой последовательности:

  • подбор необходимых элементов;
  • подготовка радиодеталей и нагревателей к проведения монтажных работ;
  • сборка корпуса паяльной станции;
  • установка нижних предварительных нагревателей для равномерного разогрева массивных печатных плат;
  • установка платы управления комбайном для пайки и ее фиксация при помощи заранее подготовленных крепежных элементов;
  • монтаж верхнего нагревателя и паяльного термофена;
  • установка креплений для термопар;
  • программирование микроконтроллера под определенные условия паяльных работ;
  • проверка всех элементов, включая галогеновые лампы нижнего нагревателя, инфракрасный излучатель и паяльный фен.

Устройство паяльной станции.

После полной сборки инфракрасной станции следует проверить все элементы на работоспособность.

Отдельное внимание нужно уделить проверке корректности работы термопар, поскольку в данной системе отсутствует их компенсация.

Это означает, что при перемене температуры воздуха в помещении термопара начнет измерять температуру с существенной погрешностью.

Проверка головки керамического нагревателя также важна. В случае, если инфракрасный излучатель перегревается, необходимо обеспечить обдув воздухом или охлаждение при помощи дополнительного радиатора.

Настройка

Настройка режимов работы ИК паяльной станции в основном заключается в:

  • установке допустимых режимов работы паяльных фенов;
  • проверке режимов работы нижнего нагревательного элемента;
  • выставлении рабочих температур верхнего кварцевого излучателя;
  • установке специальных кнопок для быстрого изменения параметров нагрева;
  • программировании микроконтроллера.

Особенности устройства паяльной станции.

По мере выполнения паяльных работ может потребоваться изменение температур и режимов.

Такие действия можно произвести при помощи кнопок, связанных с микрокомпьютером:

  • кнопка + должна быть настроена на повышение температуры покупного или самодельного кварцевого излучателя с шагом в 5 – 10 градусов;
  • кнопки – должна понижать температуру также с небольшим шагом.

Основные настройки микрокомпьютера представлены:

  • регулировкой значений P, I и D;
  • подстройкой профилей, в которых прописан шаг изменения тех или иных параметров;
  • настройкой критических температур, при которых станция отключается.

Некоторые конструкторы верхний нагреватель делают из фена. Такой подход подойдет лишь для пайки небольших элементов в SMD корпусах.

Самодельные ИК паяльные станции отлично подойдут для небольшого ремонта дома или в частных мастерских. Благодаря относительной простоте конструкции и широкому функционалу инфракрасные станции пользуются невероятным спросом.

Электрическая схема паяльника.

  1. Грамотная настройка параметров микроконтроллера.
    В случае, если в компьютер внесены неверные параметры, паяльная установка может некачественно пропаивать компоненты и повреждать маску печатных плат.
  2. Надевание средств защиты при выполнении паяльных работ.
    Кварцевый излучатель, в отличие от керамического, при работе порождает излучение на видимой для глаза длине волны. Поэтому, если в устройстве используется кварцевый инфракрасный излучатель рекомендуется надевать специальные защитные очки, защищающие оператора от повреждения зрения.
  3. Электрическая принципиальная схема станции должна содержать только надежные элементы.
    Кроме этого, все конденсаторы и резисторы, используемые при сборке, должны иметь быть выбраны с небольшим запасом.
  4. Контроллер для ИК паяльной станции можно выбрать из популярных моделей Ардуино.
    При желании, контроллер можно изготовить и из неизвестного микрокомпьютера, однако, в этом случае мастеру придется самостоятельно разработать программное обеспечение для работы паяльной станции.
  5. При сборке станции следует предусмотреть разъем для подключения паяльника.
    Иногда, компоненты платы удобнее точечно выпаивать при помощи обычного паяльника или устройства с термофеном вместо жала. Подобное решение можно реализовать, путем проектирования дополнительной термопары для контроля температуры паяльника.
  6. Для пайки с использованием активных флюсов и припоев с высоким содержанием свинца следует обеспечить циркуляцию воздуха.
    Хорошая вытяжка или вентилятор значительно облегчат дыхание оператора и позволяет ему не дышать испарениями вредных металлов.

Заключение

ИК паяльные станции – это одни из лучших установок в самых разных корпусных исполнениях. Сделать паяльную станцию на инфракрасных подогревающих элементах можно даже в домашних условиях.

Как правило, домашние мастера для нижних нагревателей предпочитают использовать мощные галогеновые лампы. Основные распиновки разъемов, параметры микросхем, модели микроконтроллера, инструкции о том, как из бытового фена сделать паяльный и другая информация доступна в интернете.

Loading...Loading...