Kvadratne jednadžbe nisu jednake nuli. Kvadratne jednadžbe

Samo. Prema formulama i jasnim jednostavnim pravilima. U prvoj fazi

potrebno je zadanu jednadžbu dovesti u standardni oblik, t.j. na pogled:

Ako vam je jednadžba već data u ovom obliku, ne morate raditi prvu fazu. Najvažnije je ispravno

odrediti sve koeficijente a, b i c.

Formula za pronalaženje korijena kvadratne jednadžbe.

Izraz pod znakom korijena naziva se diskriminirajući . Kao što vidite, da bismo pronašli x, mi

koristiti samo a, b i c. Oni. izgledi od kvadratna jednadžba. Samo pažljivo umetnite

vrijednosti a, b i c u ovu formulu i brojite. Zamjena sa njihov znakovi!

na primjer, u jednadžbi:

a =1; b = 3; c = -4.

Zamijenite vrijednosti i napišite:

Primjer skoro riješen:

Ovo je odgovor.

Najčešće pogreške su zabuna sa znakovima vrijednosti a, b i s. Dapače, sa zamjenom

negativne vrijednosti u formulu za izračun korijena. Ovdje se sprema detaljna formula

s određenim brojevima. Ako imate problema s izračunima, učinite to!

Pretpostavimo da trebamo riješiti sljedeći primjer:

Ovdje a = -6; b = -5; c = -1

Sve slikamo detaljno, pažljivo, ne propuštajući ništa sa svim znakovima i zagradama:

Često kvadratne jednadžbe izgledaju malo drugačije. Na primjer, ovako:

Sada uzmite u obzir praktične tehnike koje dramatično smanjuju broj pogrešaka.

Prvi prijem. Ne budi lijen prije rješavanje kvadratne jednadžbe dovesti ga u standardni oblik.

Što to znači?

Pretpostavimo da nakon bilo koje transformacije dobijete sljedeću jednadžbu:

Nemojte žuriti s pisanjem formule korijena! Gotovo sigurno ćete pomiješati izglede a, b i c.

Izgradite primjer ispravno. Prvo, x na kvadrat, zatim bez kvadrata, zatim slobodni član. Kao ovo:

Riješite se minusa. Kako? Moramo pomnožiti cijelu jednadžbu sa -1. dobivamo:

A sada možete sigurno zapisati formulu za korijene, izračunati diskriminant i dovršiti primjer.

Odlučite sami. Trebali biste završiti s korijenima 2 i -1.

Drugi prijem. Provjerite svoje korijene! Po Vietin teorem.

Za rješavanje zadanih kvadratnih jednadžbi, t.j. ako je koeficijent

x2+bx+c=0,

zatimx 1 x 2 =c

x1 +x2 =−b

Za potpunu kvadratnu jednadžbu u kojoj a≠1:

x 2 +bx+c=0,

podijelite cijelu jednadžbu sa a:

gdje x 1 i x 2 - korijeni jednadžbe.

Prijem treći. Ako vaša jednadžba ima frakcijske koeficijente, riješite se razlomaka! Pomnožiti

jednadžba za zajednički nazivnik.

Zaključak. Praktični savjeti:

1. Prije rješavanja dovodimo kvadratnu jednadžbu u standardni oblik, gradimo je pravo.

2. Ako je ispred x u kvadratu negativan koeficijent, eliminiramo ga tako da sve pomnožimo

jednadžbe za -1.

3. Ako su koeficijenti razlomki, razlomke eliminiramo množenjem cijele jednadžbe s odgovarajućim

faktor.

4. Ako je x na kvadrat čist, koeficijent za njega jednak je jedan, rješenje se lako može provjeriti pomoću

Formule za korijene kvadratne jednadžbe. Razmatraju se slučajevi realnih, višestrukih i složenih korijena. Faktorizacija kvadratnog trinoma. Geometrijska interpretacija. Primjeri određivanja korijena i faktorizacije.

Osnovne formule

Razmotrimo kvadratnu jednadžbu:
(1) .
Korijeni kvadratne jednadžbe(1) određuju se formulama:
; .
Ove formule mogu se kombinirati na sljedeći način:
.
Kada su korijeni kvadratne jednadžbe poznati, tada se polinom drugog stupnja može predstaviti kao proizvod faktora (faktoriziranih):
.

Nadalje, pretpostavljamo da su to realni brojevi.
Smatrati diskriminanta kvadratne jednadžbe:
.
Ako je diskriminant pozitivan, tada kvadratna jednadžba (1) ima dva različita realna korijena:
; .
Tada faktorizacija kvadratnog trinoma ima oblik:
.
Ako je diskriminant nula, tada kvadratna jednadžba (1) ima dva višestruka (jednaka) realna korijena:
.
Faktorizacija:
.
Ako je diskriminant negativan, tada kvadratna jednadžba (1) ima dva kompleksna konjugirana korijena:
;
.
Ovdje je imaginarna jedinica, ;
i su stvarni i imaginarni dijelovi korijena:
; .
Zatim

.

Grafička interpretacija

Ako grafički prikažemo funkciju
,
što je parabola, tada će točke presjeka grafa s osi biti korijeni jednadžbe
.
Kada je , graf siječe os apscise (os) u dvije točke.
Kada je , graf dodiruje x-os u jednoj točki.
Kada je , graf ne prelazi x-os.

U nastavku su primjeri takvih grafova.

Korisne formule povezane s kvadratnom jednadžbom

(f.1) ;
(f.2) ;
(f.3) .

Izvođenje formule za korijene kvadratne jednadžbe

Izvodimo transformacije i primjenjujemo formule (f.1) i (f.3):




,
gdje
; .

Dakle, dobili smo formulu za polinom drugog stupnja u obliku:
.
Iz ovoga se vidi da je jednadžba

izvedeno na
i .
To jest, i su korijeni kvadratne jednadžbe
.

Primjeri određivanja korijena kvadratne jednadžbe

Primjer 1


(1.1) .

Odluka


.
Uspoređujući s našom jednadžbom (1.1), nalazimo vrijednosti koeficijenata:
.
Pronalaženje diskriminanta:
.
Budući da je diskriminant pozitivan, jednadžba ima dva stvarna korijena:
;
;
.

Odavde dobivamo dekompoziciju kvadratnog trinoma na faktore:

.

Grafikon funkcije y = 2 x 2 + 7 x + 3 prelazi os x u dvije točke.

Nacrtajmo funkciju
.
Graf ove funkcije je parabola. Presijeca x-os (os) u dvije točke:
i .
Ove točke su korijeni izvorne jednadžbe (1.1).

Odgovor

;
;
.

Primjer 2

Pronađite korijene kvadratne jednadžbe:
(2.1) .

Odluka

Kvadratnu jednadžbu zapisujemo u općem obliku:
.
Uspoređujući s izvornom jednadžbom (2.1), nalazimo vrijednosti koeficijenata:
.
Pronalaženje diskriminanta:
.
Budući da je diskriminant nula, jednadžba ima dva višestruka (jednaka) korijena:
;
.

Tada faktorizacija trinoma ima oblik:
.

Grafikon funkcije y = x 2 - 4 x + 4 dodiruje x-os u jednoj točki.

Nacrtajmo funkciju
.
Graf ove funkcije je parabola. Dotiče x-os (os) u jednoj točki:
.
Ova točka je korijen izvorne jednadžbe (2.1). Budući da je ovaj korijen dvaput razložen na faktore:
,
onda se takav korijen naziva višekratnikom. To jest, oni smatraju da postoje dva jednaka korijena:
.

Odgovor

;
.

Primjer 3

Pronađite korijene kvadratne jednadžbe:
(3.1) .

Odluka

Kvadratnu jednadžbu zapisujemo u općem obliku:
(1) .
Prepišimo izvornu jednadžbu (3.1):
.
Uspoređujući s (1), nalazimo vrijednosti koeficijenata:
.
Pronalaženje diskriminanta:
.
Diskriminant je negativan, . Stoga nema pravih korijena.

Možete pronaći složene korijene:
;
;
.

Zatim


.

Graf funkcije ne prelazi os x. Nema pravih korijena.

Nacrtajmo funkciju
.
Graf ove funkcije je parabola. Ne prelazi apscisu (os). Stoga nema pravih korijena.

Odgovor

Nema pravih korijena. Složeni korijeni:
;
;
.

Kvadratna jednadžba - lako riješiti! *Dalje u tekstu "KU". Prijatelji, čini se da u matematici to može biti lakše od rješavanja takve jednadžbe. Ali nešto mi je govorilo da mnogi ljudi imaju problema s njim. Odlučio sam vidjeti koliko pojavljivanja Yandex daje po zahtjevu mjesečno. Evo što se dogodilo, pogledajte:


Što to znači? To znači da oko 70.000 ljudi mjesečno traži ovu informaciju, a ovo je ljeto, a što će biti tijekom školske godine - zahtjeva će biti duplo više. To i ne čudi, jer oni momci i djevojke koji su već odavno završili školu i spremaju se za ispit traže te podatke, a i školarci pokušavaju osvježiti pamćenje.

Unatoč činjenici da postoji mnogo stranica koje govore kako riješiti ovu jednadžbu, odlučio sam također doprinijeti i objaviti materijal. Prvo, želim da posjetitelji dođu na moju stranicu na ovaj zahtjev; drugo, u drugim člancima, kada se pojavi govor “KU”, dat ću poveznicu na ovaj članak; treće, reći ću vam nešto više o njegovom rješenju nego što se obično navodi na drugim stranicama. Započnimo! Sadržaj članka:

Kvadratna jednadžba je jednadžba oblika:

gdje su koeficijenti a,bi s proizvoljnim brojevima, s a≠0.

U školskom kolegiju gradivo se daje u sljedećem obliku - uvjetno se vrši podjela jednadžbi u tri razreda:

1. Imati dva korijena.

2. * Imati samo jedan korijen.

3. Nemati korijena. Ovdje je vrijedno napomenuti da oni nemaju prave korijene

Kako se izračunavaju korijeni? Samo!

Izračunavamo diskriminanta. Ispod ove "strašne" riječi krije se vrlo jednostavna formula:

Formule korijena su sljedeće:

*Ove formule moraju se znati napamet.

Možete odmah zapisati i riješiti:

Primjer:


1. Ako je D > 0, tada jednadžba ima dva korijena.

2. Ako je D = 0, tada jednadžba ima jedan korijen.

3. Ako je D< 0, то уравнение не имеет действительных корней.

Pogledajmo jednadžbu:


Ovom prilikom, kada je diskriminanta nula, školski tečaj kaže da se dobiva jedan korijen, ovdje je jednak devet. Tako je, tako je, ali...

Ovaj prikaz je donekle netočan. Zapravo, postoje dva korijena. Da, da, nemojte se iznenaditi, ispada dva jednaka korijena, a da budemo matematički točni, u odgovoru treba napisati dva korijena:

x 1 = 3 x 2 = 3

Ali ovo je tako - mala digresija. U školi možete zapisati i reći da postoji samo jedan korijen.

Sada sljedeći primjer:


Kao što znamo, korijen negativnog broja se ne izdvaja, pa u ovom slučaju nema rješenja.

To je cijeli proces odlučivanja.

Kvadratna funkcija.

Evo kako rješenje izgleda geometrijski. To je iznimno važno razumjeti (u budućnosti ćemo, u jednom od članaka, detaljno analizirati rješenje kvadratne nejednadžbe).

Ovo je funkcija oblika:

gdje su x i y varijable

a, b, c su dati brojevi, gdje je a ≠ 0

Graf je parabola:

Odnosno, ispada da rješavanjem kvadratne jednadžbe s "y" jednakim nuli, nalazimo točke presjeka parabole s x-osi. Mogu postojati dvije od ovih točaka (diskriminanta je pozitivna), jedna (diskriminanta je nula) ili nijedna (diskriminanta je negativna). Više o kvadratnoj funkciji Možete pogledatičlanak Inna Feldman.

Razmotrimo primjere:

Primjer 1: Odlučite se 2x 2 +8 x–192=0

a=2 b=8 c= -192

D = b 2 –4ac = 8 2 –4∙2∙(–192) = 64+1536 = 1600

Odgovor: x 1 = 8 x 2 = -12

* Mogli biste odmah podijeliti lijevu i desnu stranu jednadžbe s 2, odnosno pojednostaviti je. Izračuni će biti lakši.

Primjer 2: Odlučiti x2–22 x+121 = 0

a=1 b=-22 c=121

D = b 2 –4ac =(–22) 2 –4∙1∙121 = 484–484 = 0

Dobili smo da je x 1 = 11 i x 2 = 11

U odgovoru je dopušteno napisati x = 11.

Odgovor: x = 11

Primjer 3: Odlučiti x 2 –8x+72 = 0

a=1 b= -8 c=72

D = b 2 –4ac =(–8) 2 –4∙1∙72 = 64–288 = –224

Diskriminant je negativan, nema rješenja u realnim brojevima.

Odgovor: nema rješenja

Diskriminant je negativan. Postoji rješenje!

Ovdje ćemo govoriti o rješavanju jednadžbe u slučaju kada se dobije negativan diskriminant. Znate li išta o kompleksnim brojevima? Neću ovdje ulaziti u detalje zašto i gdje su nastali i koja je njihova specifična uloga i nužnost u matematici, to je tema za veliki poseban članak.

Pojam kompleksnog broja.

Malo teorije.

Kompleksni broj z je broj oblika

z = a + bi

gdje su a i b realni brojevi, i je takozvana imaginarna jedinica.

a+bi je JEDAN BROJ, a ne zbrajanje.

Imaginarna jedinica jednaka je korijenu minus jedan:

Sada razmotrite jednadžbu:


Dobiti dva konjugirana korijena.

Nepotpuna kvadratna jednadžba.

Razmotrimo posebne slučajeve, to je kada je koeficijent "b" ili "c" jednak nuli (ili su oba jednaka nuli). Lako se rješavaju bez ikakvih diskriminanata.

Slučaj 1. Koeficijent b = 0.

Jednadžba ima oblik:

transformirajmo:

Primjer:

4x 2 -16 = 0 => 4x 2 =16 => x 2 = 4 => x 1 = 2 x 2 = -2

Slučaj 2. Koeficijent c = 0.

Jednadžba ima oblik:

Transformiraj, faktoriziraj:

*Umnožak je jednak nuli kada je barem jedan od faktora jednak nuli.

Primjer:

9x 2 –45x = 0 => 9x (x–5) =0 => x = 0 ili x–5 =0

x 1 = 0 x 2 = 5

Slučaj 3. Koeficijenti b = 0 i c = 0.

Ovdje je jasno da će rješenje jednadžbe uvijek biti x = 0.

Korisna svojstva i obrasci koeficijenata.

Postoje svojstva koja omogućuju rješavanje jednadžbi s velikim koeficijentima.

ax 2 + bx+ c=0 jednakost

a + b+ c = 0, zatim

— ako za koeficijente jednadžbe ax 2 + bx+ c=0 jednakost

a+ sa =b, zatim

Ova svojstva pomažu u rješavanju određene vrste jednadžbe.

Primjer 1: 5001 x 2 –4995 x – 6=0

Zbroj koeficijenata je 5001+( 4995)+( 6) = 0, dakle

Primjer 2: 2501 x 2 +2507 x+6=0

Jednakost a+ sa =b, sredstva

Pravilnosti koeficijenata.

1. Ako je u jednadžbi ax 2 + bx + c \u003d 0 koeficijent "b" (a 2 +1), a koeficijent "c" je brojčano jednak koeficijentu "a", tada su njegovi korijeni

sjekira 2 + (a 2 +1) ∙ x + a \u003d 0 \u003d\u003e x 1 \u003d -a x 2 \u003d -1 / a.

Primjer. Razmotrimo jednadžbu 6x 2 +37x+6 = 0.

x 1 \u003d -6 x 2 \u003d -1/6.

2. Ako je u jednadžbi ax 2 - bx + c \u003d 0 koeficijent "b" (a 2 +1), a koeficijent "c" je brojčano jednak koeficijentu "a", tada su njegovi korijeni

sjekira 2 - (a 2 + 1) ∙ x + a \u003d 0 \u003d\u003e x 1 \u003d a x 2 \u003d 1 / a.

Primjer. Razmotrimo jednadžbu 15x 2 –226x +15 = 0.

x 1 = 15 x 2 = 1/15.

3. Ako je u jednadžbi ax 2 + bx - c = 0 koeficijent "b" jednako (a 2 – 1), i koeficijent “c” brojčano jednak koeficijentu "a", tada su mu korijeni jednaki

sjekira 2 + (a 2 -1) ∙ x - a \u003d 0 \u003d\u003e x 1 \u003d - a x 2 \u003d 1 / a.

Primjer. Razmotrimo jednadžbu 17x 2 + 288x - 17 = 0.

x 1 \u003d - 17 x 2 \u003d 1/17.

4. Ako je u jednadžbi ax 2 - bx - c \u003d 0 koeficijent "b" jednak (a 2 - 1), a koeficijent c je numerički jednak koeficijentu "a", tada su njegovi korijeni jednaki

sjekira 2 - (a 2 -1) ∙ x - a \u003d 0 \u003d\u003e x 1 \u003d a x 2 \u003d - 1 / a.

Primjer. Razmotrimo jednadžbu 10x2 - 99x -10 = 0.

x 1 \u003d 10 x 2 \u003d - 1/10

Vietin teorem.

Vietin teorem je dobio ime po slavnom francuskom matematičaru Francoisu Vieti. Koristeći Vietin teorem, može se izraziti zbroj i umnožak korijena proizvoljnog KU u terminima njegovih koeficijenata.

45 = 1∙45 45 = 3∙15 45 = 5∙9.

U zbroju, broj 14 daje samo 5 i 9. Ovo su korijeni. Uz određenu vještinu, koristeći prikazani teorem, možete odmah usmeno riješiti mnoge kvadratne jednadžbe.

Štoviše, Vietin teorem. zgodno jer se nakon rješavanja kvadratne jednadžbe na uobičajen način (kroz diskriminanta) mogu provjeriti rezultirajući korijeni. Preporučam da to radite cijelo vrijeme.

NAČIN PRIJENOSA

Ovom metodom koeficijent "a" množi se slobodnim pojmom, kao da se "prenosi" na njega, zbog čega se naziva način prijenosa. Ova metoda se koristi kada je lako pronaći korijene jednadžbe pomoću Vietinog teorema i, što je najvažnije, kada je diskriminant točan kvadrat.

Ako je a a± b+c≠ 0, tada se koristi tehnika prijenosa, na primjer:

2x 2 – 11x+ 5 = 0 (1) => x 2 – 11x+ 10 = 0 (2)

Prema Vietinom teoremu u jednadžbi (2), lako je odrediti da je x 1 = 10 x 2 = 1

Dobiveni korijeni jednadžbe moraju se podijeliti s 2 (budući da su dva "izbačena" iz x 2), dobivamo

x 1 = 5 x 2 \u003d 0,5.

Što je obrazloženje? Vidi što se događa.

Diskriminante jednadžbi (1) i (2) su:

Ako pogledate korijene jednadžbi, onda se dobivaju samo različiti nazivnici, a rezultat ovisi upravo o koeficijentu na x 2:


Drugi (modificirani) korijeni su 2 puta veći.

Stoga, rezultat dijelimo sa 2.

*Ako bacamo trojku, onda rezultat dijelimo s 3 i tako dalje.

Odgovor: x 1 = 5 x 2 = 0,5

sq. ur-ie i ispit.

Reći ću ukratko o njegovoj važnosti – TREBA DA ODLUČITI brzo i bez razmišljanja, potrebno je napamet znati formule korijena i diskriminanta. Mnogi zadaci koji su dio zadataka USE svode se na rješavanje kvadratne jednadžbe (uključujući i geometrijske).

Što je vrijedno pažnje!

1. Oblik jednadžbe može biti "implicitan". Na primjer, moguć je sljedeći unos:

15+ 9x 2 - 45x = 0 ili 15x+42+9x 2 - 45x=0 ili 15 -5x+10x 2 = 0.

Morate ga dovesti u standardni oblik (kako se ne biste zbunili pri rješavanju).

2. Zapamtite da je x nepoznata vrijednost i može se označiti bilo kojim drugim slovom - t, q, p, h i drugim.

Ova se tema u početku može činiti kompliciranom zbog mnogih ne tako jednostavnih formula. Ne samo da same kvadratne jednadžbe imaju duge unose, već se korijeni također nalaze kroz diskriminant. Ukupno postoje tri nove formule. Nije baš lako zapamtiti. To je moguće tek nakon čestog rješavanja takvih jednadžbi. Tada će se sve formule pamtiti same.

Opći pogled na kvadratnu jednadžbu

Ovdje se predlaže njihova eksplicitna notacija, kada se najprije napiše najveći stupanj, a zatim - u silaznom redoslijedu. Često postoje situacije kada se pojmovi razlikuju. Tada je bolje jednadžbu prepisati silaznim redoslijedom stupnja varijable.

Uvedemo notaciju. Oni su prikazani u donjoj tablici.

Ako prihvatimo ove oznake, sve kvadratne jednadžbe se svode na sljedeći zapis.

Štoviše, koeficijent a ≠ 0. Neka je ova formula označena brojem jedan.

Kada je jednadžba data, nije jasno koliko će korijena biti u odgovoru. Jer uvijek je moguća jedna od tri opcije:

  • rješenje će imati dva korijena;
  • odgovor će biti jedan broj;
  • Jednadžba uopće nema korijen.

I dok odluka nije dovedena do kraja, teško je razumjeti koja će od opcija ispasti u pojedinom slučaju.

Vrste zapisa kvadratnih jednadžbi

Zadaci mogu imati različite unose. Neće uvijek izgledati kao opća formula kvadratne jednadžbe. Ponekad će nedostajati neki termini. Ono što je gore napisano je potpuna jednadžba. Ako u njemu uklonite drugi ili treći pojam, dobit ćete nešto drugačije. Ti se zapisi nazivaju i kvadratne jednadžbe, samo nepotpune.

Štoviše, mogu nestati samo pojmovi za koje koeficijenti "b" i "c". Broj "a" ni pod kojim okolnostima ne može biti jednak nuli. Budući da se u ovom slučaju formula pretvara u linearnu jednadžbu. Formule za nepotpuni oblik jednadžbi bit će sljedeće:

Dakle, postoje samo dvije vrste, osim potpunih, postoje i nepotpune kvadratne jednadžbe. Neka prva formula bude broj dva, a druga broj tri.

Diskriminant i ovisnost broja korijena o njegovoj vrijednosti

Ovaj broj mora biti poznat kako bi se izračunali korijeni jednadžbe. Uvijek se može izračunati, bez obzira koja je formula kvadratne jednadžbe. Da biste izračunali diskriminanta, trebate koristiti dolje napisanu jednakost, koja će imati broj četiri.

Nakon zamjene vrijednosti koeficijenata u ovu formulu, možete dobiti brojeve s različitim predznacima. Ako je odgovor potvrdan, tada će odgovor na jednadžbu biti dva različita korijena. S negativnim brojem, korijeni kvadratne jednadžbe će biti odsutni. Ako je jednako nuli, odgovor će biti jedan.

Kako se rješava kompletna kvadratna jednadžba?

Zapravo, razmatranje ovog pitanja je već počelo. Jer prvo morate pronaći diskriminant. Nakon što je pojašnjeno da postoje korijeni kvadratne jednadžbe i njihov broj je poznat, trebate koristiti formule za varijable. Ako postoje dva korijena, onda morate primijeniti takvu formulu.

Budući da sadrži znak "±", bit će dvije vrijednosti. Izraz pod znakom kvadratnog korijena je diskriminant. Stoga se formula može prepisati na drugačiji način.

Formula pet. Iz istog zapisa može se vidjeti da ako je diskriminant nula, tada će oba korijena imati iste vrijednosti.

Ako rješenje kvadratnih jednadžbi još nije razrađeno, tada je bolje zapisati vrijednosti svih koeficijenata prije primjene diskriminantne i varijabilne formule. Kasnije ovaj trenutak neće uzrokovati poteškoće. Ali na samom početku dolazi do zabune.

Kako se rješava nepotpuna kvadratna jednadžba?

Ovdje je sve puno jednostavnije. Čak i nema potrebe za dodatnim formulama. I neće vam trebati one koje su već napisane za diskriminatorno i nepoznato.

Prvo, razmotrimo nepotpunu jednadžbu broj dva. U ovoj jednadžbi treba izvući nepoznatu vrijednost iz zagrade i riješiti linearnu jednadžbu koja će ostati u zagradi. Odgovor će imati dva korijena. Prvi je nužno jednak nuli, jer postoji faktor koji se sastoji od same varijable. Drugi se dobiva rješavanjem linearne jednadžbe.

Nepotpuna jednadžba na broju tri rješava se prijenosom broja s lijeve strane jednadžbe na desnu. Zatim trebate podijeliti s koeficijentom ispred nepoznatog. Ostaje samo izdvojiti kvadratni korijen i ne zaboravite ga dvaput zapisati s suprotnim predznacima.

Sljedeće su neke radnje koje vam pomažu naučiti kako riješiti sve vrste jednakosti koje se pretvaraju u kvadratne jednadžbe. Oni će pomoći učeniku da izbjegne pogreške zbog nepažnje. Ovi nedostaci uzrok su loših ocjena pri proučavanju opsežne teme „Kvadrične jednadžbe (8. razred)“. Nakon toga, ove radnje neće trebati stalno izvoditi. Jer će postojati stabilna navika.

  • Najprije trebate napisati jednadžbu u standardnom obliku. Odnosno, prvo izraz s najvećim stupnjem varijable, a zatim - bez stupnja i zadnji - samo broj.
  • Ako se ispred koeficijenta "a" pojavi minus, onda to može zakomplicirati rad početniku u proučavanju kvadratnih jednadžbi. Bolje ga se riješiti. U tu svrhu, sve jednakosti moraju se pomnožiti s "-1". To znači da će svi pojmovi promijeniti predznak u suprotan.
  • Na isti način, preporuča se riješiti frakcija. Jednostavno pomnožite jednadžbu s odgovarajućim faktorom tako da se nazivnici ponište.

Primjeri

Potrebno je riješiti sljedeće kvadratne jednadžbe:

x 2 - 7x \u003d 0;

15 - 2x - x 2 \u003d 0;

x 2 + 8 + 3x = 0;

12x + x 2 + 36 = 0;

(x+1) 2 + x + 1 = (x+1)(x+2).

Prva jednadžba: x 2 - 7x \u003d 0. Nepotpuna je, stoga je riješena kako je opisano za formulu broj dva.

Nakon zagrada, ispada: x (x - 7) = 0.

Prvi korijen poprima vrijednost: x 1 \u003d 0. Drugi će se naći iz linearne jednadžbe: x - 7 = 0. Lako je vidjeti da je x 2 = 7.

Druga jednadžba: 5x2 + 30 = 0. Opet nepotpuna. Samo se to rješava kao što je opisano za treću formulu.

Nakon prijenosa 30 na desnu stranu jednadžbe: 5x 2 = 30. Sada trebate podijeliti s 5. Ispada: x 2 = 6. Odgovori će biti brojevi: x 1 = √6, x 2 = - √ 6.

Treća jednadžba: 15 - 2x - x 2 \u003d 0. Ovdje i ispod, rješenje kvadratnih jednadžbi počet će prepisivanjem u standardni oblik: - x 2 - 2x + 15 \u003d 0. Sada je vrijeme za korištenje drugog koristan savjet i sve pomnoži s minus jedan . Ispada x 2 + 2x - 15 \u003d 0. Prema četvrtoj formuli, morate izračunati diskriminant: D \u003d 2 2 - 4 * (- 15) \u003d 4 + 60 \u003d 64. To je pozitivan broj. Iz onoga što je gore rečeno, ispada da jednadžba ima dva korijena. Treba ih izračunati prema petoj formuli. Prema tome, ispada da je x = (-2 ± √64) / 2 = (-2 ± 8) / 2. Tada je x 1 = 3, x 2 = - 5.

Četvrta jednadžba x 2 + 8 + 3x \u003d 0 pretvara se u ovo: x 2 + 3x + 8 \u003d 0. Njen diskriminant jednak je ovoj vrijednosti: -23. Budući da je ovaj broj negativan, odgovor na ovaj zadatak bit će sljedeći unos: "Nema korijena."

Petu jednadžbu 12x + x 2 + 36 = 0 treba prepisati na sljedeći način: x 2 + 12x + 36 = 0. Nakon primjene formule za diskriminant, dobiva se broj nula. To znači da će imati jedan korijen, i to: x \u003d -12 / (2 * 1) \u003d -6.

Šesta jednadžba (x + 1) 2 + x + 1 = (x + 1) (x + 2) zahtijeva transformacije, koje se sastoje u tome da morate donijeti slične članove prije otvaranja zagrada. Umjesto prvog bit će izraz: x 2 + 2x + 1. Nakon jednakosti pojavit će se ovaj unos: x 2 + 3x + 2. Nakon što se prebroje slični članovi, jednadžba će poprimiti oblik: x 2 - x \u003d 0. Postalo je nepotpuno. Slično je već smatrano malo višim. Korijeni ovoga bit će brojevi 0 i 1.

U suvremenom društvu, sposobnost rada s jednadžbama koje sadrže kvadratnu varijablu može biti korisna u mnogim područjima aktivnosti i široko se koristi u praksi u znanstvenom i tehničkom razvoju. To se može dokazati projektiranjem morskih i riječnih plovila, zrakoplova i projektila. Uz pomoć takvih proračuna određuju se putanje kretanja različitih tijela, uključujući svemirske objekte. Primjeri s rješenjem kvadratnih jednadžbi koriste se ne samo u ekonomskom predviđanju, u projektiranju i gradnji zgrada, već iu najobičnijim svakodnevnim okolnostima. Možda će biti potrebni na kampiranju, na sportskim događanjima, u trgovinama pri kupovini i u drugim vrlo čestim situacijama.

Razbijmo izraz na sastavne faktore

Stupanj jednadžbe određen je maksimalnom vrijednošću stupnja varijable koju dati izraz sadrži. Ako je jednako 2, tada se takva jednadžba naziva kvadratna jednadžba.

Ako govorimo jezikom formula, onda se ti izrazi, ma kako izgledali, uvijek mogu dovesti do oblika kada se lijeva strana izraza sastoji od tri pojma. Među njima: ax 2 (tj. varijabla na kvadrat sa svojim koeficijentom), bx (nepoznata bez kvadrata sa svojim koeficijentom) i c (slobodna komponenta, odnosno običan broj). Sve ovo na desnoj strani jednako je 0. U slučaju kada takav polinom nema jedan od svojih sastavnih članova, s izuzetkom osi 2, naziva se nepotpuna kvadratna jednadžba. Najprije treba razmotriti primjere s rješavanjem takvih zadataka, u kojima nije teško pronaći vrijednost varijabli.

Ako izraz izgleda tako da se na desnoj strani izraza nalaze dva člana, točnije ax 2 i bx, najlakše je pronaći x stavljanjem varijable u zagrade. Sada će naša jednadžba izgledati ovako: x(ax+b). Nadalje, postaje očito da je ili x=0, ili se zadatak svodi na pronalaženje varijable iz sljedećeg izraza: ax+b=0. To diktira jedno od svojstava množenja. Pravilo kaže da umnožak dva faktora rezultira 0 samo ako je jedan od njih nula.

Primjer

x=0 ili 8x - 3 = 0

Kao rezultat, dobivamo dva korijena jednadžbe: 0 i 0,375.

Jednadžbe ove vrste mogu opisati kretanje tijela pod djelovanjem gravitacije, koja su se počela kretati iz određene točke, uzete kao ishodište. Ovdje matematički zapis ima sljedeći oblik: y = v 0 t + gt 2 /2. Zamjenom potrebnih vrijednosti, izjednačavanjem desne strane s 0 i pronalaženjem mogućih nepoznanica, možete saznati vrijeme koje je proteklo od trenutka kada se tijelo diže do trenutka kada pada, kao i mnoge druge veličine. Ali o tome ćemo kasnije.

Faktoriranje izraza

Gore opisano pravilo omogućuje rješavanje ovih problema u složenijim slučajevima. Razmotrimo primjere s rješenjem kvadratnih jednadžbi ovog tipa.

X2 - 33x + 200 = 0

Ovaj kvadratni trinom je potpun. Prvo transformiramo izraz i rastavljamo ga na faktore. Dva su od njih: (x-8) i (x-25) = 0. Kao rezultat, imamo dva korijena 8 i 25.

Primjeri s rješenjem kvadratnih jednadžbi u 9. razredu omogućuju ovoj metodi da pronađe varijablu u izrazima ne samo drugog, nego čak i trećeg i četvrtog reda.

Na primjer: 2x 3 + 2x 2 - 18x - 18 = 0. Kada se desna strana rastavlja na faktore s varijablom, postoje tri od njih, odnosno (x + 1), (x-3) i (x + 3).

Kao rezultat, postaje očito da ova jednadžba ima tri korijena: -3; -jedan; 3.

Izdvajanje kvadratnog korijena

Drugi slučaj nepotpune jednadžbe drugog reda je izraz napisan jezikom slova na način da se desna strana gradi od komponenti ax 2 i c. Ovdje se, da bi se dobila vrijednost varijable, slobodni član prenosi na desnu stranu, a nakon toga se iz obje strane jednakosti izdvaja kvadratni korijen. Treba napomenuti da u ovom slučaju obično postoje dva korijena jednadžbe. Jedina iznimka su jednakosti koje uopće ne sadrže pojam c, gdje je varijabla jednaka nuli, kao i varijante izraza kada se desna strana pokaže negativnom. U potonjem slučaju uopće nema rješenja, jer se gore navedene radnje ne mogu izvesti s korijenima. Treba razmotriti primjere rješenja kvadratnih jednadžbi ovog tipa.

U ovom slučaju, korijeni jednadžbe bit će brojevi -4 i 4.

Proračun površine zemljišta

Potreba za ovakvim proračunima pojavila se još u antičko doba, jer je razvoj matematike u tim dalekim vremenima uvelike bio posljedica potrebe da se s najvećom točnošću odrede površine i opseg zemljišnih parcela.

Također trebamo razmotriti primjere s rješenjem kvadratnih jednadžbi sastavljenih na temelju problema ove vrste.

Dakle, recimo da postoji pravokutni komad zemlje čija je dužina 16 metara veća od širine. Trebali biste pronaći duljinu, širinu i opseg mjesta, ako je poznato da je njegova površina 612 m 2.

Krenuvši na posao, prvo ćemo napraviti potrebnu jednadžbu. Označimo širinu presjeka kao x, tada će njegova duljina biti (x + 16). Iz napisanog proizlazi da je površina određena izrazom x (x + 16), koji je, prema uvjetu našeg zadatka, 612. To znači da je x (x + 16) = 612.

Rješenje potpunih kvadratnih jednadžbi, a ovaj izraz je upravo to, ne može se napraviti na isti način. Zašto? Iako njegova lijeva strana još uvijek sadrži dva faktora, njihov umnožak uopće nije 0, pa se ovdje koriste druge metode.

Diskriminirajući

Prije svega, napravit ćemo potrebne transformacije, a onda će izgled ovog izraza izgledati ovako: x 2 + 16x - 612 = 0. To znači da smo dobili izraz u obliku koji odgovara prethodno navedenom standardu, gdje a=1, b=16, c= -612.

Ovo može biti primjer rješavanja kvadratnih jednadžbi kroz diskriminant. Ovdje se izrađuju potrebni izračuni prema shemi: D = b 2 - 4ac. Ova pomoćna vrijednost ne samo da omogućuje pronalaženje željenih vrijednosti u jednadžbi drugog reda, već određuje i broj mogućih opcija. U slučaju D>0, dva su; za D=0 postoji jedan korijen. U slučaju D<0, никаких шансов для решения у уравнения вообще не имеется.

O korijenima i njihovoj formuli

U našem slučaju diskriminant je: 256 - 4(-612) = 2704. To ukazuje da naš problem ima odgovor. Ako znate, do, rješavanje kvadratnih jednadžbi mora se nastaviti pomoću formule u nastavku. Omogućuje vam izračunavanje korijena.

To znači da je u prikazanom slučaju: x 1 =18, x 2 =-34. Druga opcija u ovoj dilemi ne može biti rješenje, jer se veličina parcele ne može mjeriti u negativnim vrijednostima, što znači da je x (odnosno širina parcele) 18 m. Odavde izračunavamo duljinu: 18+16=34, a opseg 2(34+ 18) = 104 (m 2).

Primjeri i zadaci

Nastavljamo proučavanje kvadratnih jednadžbi. Primjeri i detaljno rješenje nekoliko njih bit će navedeni u nastavku.

1) 15x2 + 20x + 5 = 12x2 + 27x + 1

Prebacimo sve na lijevu stranu jednakosti, napravimo transformaciju, odnosno dobijemo oblik jednadžbe koji se obično naziva standardnim i izjednačimo ga s nulom.

15x 2 + 20x + 5 - 12x 2 - 27x - 1 = 0

Dodavanjem sličnih, određujemo diskriminant: D \u003d 49 - 48 \u003d 1. Dakle, naša će jednadžba imati dva korijena. Računamo ih prema gornjoj formuli, što znači da će prvi od njih biti jednak 4/3, a drugi 1.

2) Sada ćemo otkriti zagonetke druge vrste.

Hajdemo saznati ima li ovdje uopće korijena x 2 - 4x + 5 = 1? Da bismo dobili iscrpan odgovor, dovodimo polinom u odgovarajući poznati oblik i izračunavamo diskriminant. U ovom primjeru nije potrebno rješavati kvadratnu jednadžbu, jer bit problema uopće nije u tome. U ovom slučaju, D \u003d 16 - 20 \u003d -4, što znači da stvarno nema korijena.

Vietin teorem

Kvadratne je jednadžbe prikladno rješavati kroz gornje formule i diskriminant, kada se iz vrijednosti potonjeg izvuče kvadratni korijen. Ali to se ne događa uvijek. Međutim, u ovom slučaju postoji mnogo načina za dobivanje vrijednosti varijabli. Primjer: rješavanje kvadratnih jednadžbi pomoću Vietinog teorema. Ime je dobio po čovjeku koji je živio u Francuskoj u 16. stoljeću i imao briljantnu karijeru zahvaljujući svom matematičkom talentu i vezama na dvoru. Njegov portret se može vidjeti u članku.

Obrazac koji je slavni Francuz uočio bio je sljedeći. Dokazao je da je zbroj korijena jednadžbe jednak -p=b/a, a njihov umnožak odgovara q=c/a.

Pogledajmo sada konkretne zadatke.

3x2 + 21x - 54 = 0

Radi jednostavnosti, transformirajmo izraz:

x 2 + 7x - 18 = 0

Koristeći Vietin teorem, to će nam dati sljedeće: zbroj korijena je -7, a njihov umnožak je -18. Odavde dobivamo da su korijeni jednadžbe brojevi -9 i 2. Nakon provjere, uvjerit ćemo se da se ove vrijednosti varijabli stvarno uklapaju u izraz.

Graf i jednadžba parabole

Koncepti kvadratne funkcije i kvadratne jednadžbe usko su povezani. Primjeri za to su već navedeni ranije. Pogledajmo sada neke matematičke zagonetke malo detaljnije. Bilo koja jednadžba opisanog tipa može se vizualno prikazati. Takva ovisnost, nacrtana u obliku grafa, naziva se parabola. Njegove različite vrste prikazane su na donjoj slici.

Svaka parabola ima vrh, odnosno točku iz koje izlaze njezine grane. Ako je a>0, idu visoko do beskonačnosti, a kada je a<0, они рисуются вниз. Простейшим примером подобной зависимости является функция y = x 2 . В данном случае в уравнении x 2 =0 неизвестное может принимать только одно значение, то есть х=0, а значит существует только один корень. Это неудивительно, ведь здесь D=0, потому что a=1, b=0, c=0. Выходит формула корней (точнее одного корня) квадратного уравнения запишется так: x = -b/2a.

Vizualni prikazi funkcija pomažu u rješavanju svih jednadžbi, uključujući one kvadratne. Ova metoda se naziva grafička. A vrijednost varijable x je koordinata apscise u točkama gdje se crta grafikona siječe s 0x. Koordinate vrha mogu se pronaći po formuli koja je upravo data x 0 = -b / 2a. I, zamjenom rezultirajuće vrijednosti u izvornu jednadžbu funkcije, možete saznati y 0, odnosno drugu koordinatu vrha parabole koja pripada y-osi.

Sjecište grana parabole s osi apscise

Postoji puno primjera s rješenjem kvadratnih jednadžbi, ali postoje i opći obrasci. Razmotrimo ih. Jasno je da je presjek grafa s osi 0x za a>0 moguć samo ako y 0 ima negativne vrijednosti. I za a<0 координата у 0 должна быть положительна. Для указанных вариантов D>0. Inače D<0. А когда D=0, вершина параболы расположена непосредственно на оси 0х.

Iz grafa parabole možete odrediti i korijene. Vrijedi i obrnuto. Odnosno, ako nije lako dobiti vizualni prikaz kvadratne funkcije, možete izjednačiti desnu stranu izraza s 0 i riješiti rezultirajuću jednadžbu. A znajući točke presjeka s osi 0x, lakše je crtati.

Iz povijesti

Uz pomoć jednadžbi koje sadrže varijablu na kvadrat, u starim danima, nisu samo radili matematički izračuni i određivali se područje geometrijskih oblika. Drevnima su takvi izračuni bili potrebni za grandiozna otkrića na području fizike i astronomije, kao i za izradu astroloških prognoza.

Kao što sugeriraju moderni znanstvenici, stanovnici Babilona bili su među prvima koji su riješili kvadratne jednadžbe. To se dogodilo četiri stoljeća prije dolaska naše ere. Naravno, njihovi su se izračuni bitno razlikovali od onih koji su trenutno prihvaćeni i pokazali su se mnogo primitivnijima. Na primjer, mezopotamski matematičari nisu imali pojma o postojanju negativnih brojeva. Također nisu bili upoznati s drugim suptilnostima onih koje poznaje bilo koji student našeg vremena.

Možda čak i prije nego babilonski znanstvenici, mudrac iz Indije, Baudhayama, preuzeo je rješenje kvadratnih jednadžbi. To se dogodilo oko osam stoljeća prije dolaska Kristove ere. Istina, jednadžbe drugog reda, metode za rješavanje koje je dao, bile su najjednostavnije. Osim njega, slična su pitanja u stara vremena zanimala i kineske matematičare. U Europi su se kvadratne jednadžbe počele rješavati tek početkom 13. stoljeća, ali su ih kasnije u svom radu koristili veliki znanstvenici poput Newtona, Descartesa i mnogih drugih.

Učitavam...Učitavam...