Что такое реакция нейтрализации. Конспект урока "реакция нейтрализации как пример реакции обмена"

Реакции нейтрализации (процесс взаимодействия кислоты и основания) сопровождаются тепловым эффектом. В результате получается соль и вода. Реакции нейтрализации протекают необратимо только в случае нейтрализации сильных кислот сильными основаниями.

например:

K + + OH - + H + + Cl - = K + + Cl - + H 2 O

Необратимость таких реакций обусловлена тем, что в образующихся системах единственным и весьма малодиссоциированным соединением является вода. Ионная форма уравнения в этом случае имеет вид.

Н + + ОН - = Н 2 О

Исключение составляют такие реакции, которые сопровождаются кроме воды образованием трудно растворимого соединения, например:

Ва 2+ + 2ОН - + 2Н + + SO 4 2- =  ВаSO 4 + 2H 2 O

При этом, если в реакции участвуют строго эквивалентные коли­чества сильной кислоты и сильной щелочи, то концентрации ионов Н + и ОН - сохраняют значения такие же как и в воде, т.е. среда становится нейтральной. Установлено, что при нейтрализации одного эквивалента сильной кислоты (щелочи) одним эквивалентом сильной щелочи (кислоты) выделяется всегда 57,22 кДж (13,7ккал). Например:

NаОН + НСl -= NаСl + Н 2 О, H= - 13,7 ккал

Это происходит потому, что реакция нейтрализации сильной кислоты (щелочи) сильной щелочью (кислотой) всегда будет сопровождаться реакцией образования воды, а теплота образования одного моля вода из ионов равна 57,22 кДж (13,7 ккал).

При нейтрализации слабой кислоты (щелочи) сильной щелочью (кислотой) будет выделяться больше или меньше,чем 57,22 кДж (13,7 ккал) количества тепла (приложение табл. I).

Примеры других типов реакции нейтрализации

    слабой кислоты сильным основанием:

СН 3 СООН + КОН  СН 3 СОOK +Н 2 О

СН 3 СООН + ОН -  СН 3 СОO - +Н 2 O

    слабого основания сильной кислотой:

NН 4 ОН + НNО 3  NH 4 NО 3 + Н 2 О

NН 4 ОН +Н +  NH 4 + +Н 2 О

3) слабого основания слабой кислотой:

NН 4 OН +СН 3 СООН  СН 3 СООNH 4 +Н 2 O

NН 4 OН +СН 3 СООН  NH 4 + + СН 3 СОО - + Н 2 O

В образующихся системах равновесие сильно смещено вправо, т.е. в сторону образования воды, но не до конца, так как вода в них не единственное малодиссоциированное вещество.

При строго эквивалентных количествах, первая система имеет слабощелочную, вторая - слабокислую, а третья - нейтраль­ную реакции. В последнем случае нейтральность системы не означает, что эта реакция протекает необратимо, а является следствием ра­венства констант диссоциации NН 4 OН и уксусной кислоты.

Задание

Опыт 1.

Нейтрализация серной кислоты едким натром в две стадии.

1) в калориметр отмерить 50мл одномолярного растворасер­ной кислоты Н 2 S0 4 ;

2) измерить температуру раствора кислоты t 1 в калоримет­ре;

3) быстро (и без потерь) влить в кислоту 25 мл двумолярного раствора щело­чи NaOH из сосуда и осторожно перемешать полученный раствор кислой соли NаHS0 4 (объем V1);

4) определить температуру t 2 раствора после реакции, которая протекает по уравнению:

H 2 SO 4 + NaOH = NaНSO 4 + H 2 O H 1 = ? (1)

где H 1 - теплота реакции;

5) определить разность температур t 1 = t 2 – t 1 и объем V 1 полученного раствора;

6) к полученному раствору NaНSO 4 быстро прилить оставшиеся 25 мл раствора щелочи, перемешать и определить температуру раствора t 3 . В данном случае кислая соль превращается в среднюю по реакции:

NaHSO 4 + NaOH = Na 2 SO 4 + H 2 O H 2 = ? (2)

где H 2 - теплота реакции;

7) определить разность температур t 2 = t 3 – t 2 и объем V 2 полученного раствора;

8) результаты опыта занести в табл. 1;

Таблица 1

________________________________________________________________

| 50 | 25 | t 1 | 1.09 (V1) | 5.02 (V1) | H 1 |

| | 25 | t 2 | 1.12 (V2) | 6.28 (V) | H 2 |

|________________________________________________________________|

Опыт 2.

Нейтрализация серной кислоты едким натром в одну стадию.

Проводить опыт в следующем порядке:

1) в калориметр отмерить 50мл одномолярного растворасер­ной кислоты Н 2 S0 4 ;

2) измерить температуру раствора кислоты t 4 в калоримет­ре;

3) быстро (и без потерь) влить в кислоту 50 мл двумолярного раствора щело­чи NaOH из сосуда и осторожно перемешать полученный раствор средней соли Nа 2 S0 4 ;

4) определить температуру t 5 раствора реакции полной нейтрализации,

H 2 SO 4 + 2 NaOH = Na 2 SO 4 + 2 H 2 O: H 3 (3)

где H 3 - теплота реакции;

5) определить разность температур t 3 = t 5 – t 4 и объем V 3 полученного раствора;

6) результаты опыта занести в табл. 2;

Таблица 2 ___

_____________________________________________________________

| Объем раствора, мл | Разность | Плотность | Теплоемкость | Наблюдаемая |

|__________________|темпера- | раствора, | Дж/(г.К) | теплота, |

| H 2 SO 4 | NaOH | тур,  С | г/моль | | кДж/моль |

|________________________________________________________________|

| 50 | 50 | t 3 | 1.12 | C3 = 6.28 | H 3 |

|________________________________________________________________|

9) вычислить энтальпию (H 1 , H 2 ,H 3) реакции нейтра­лизации по формуле:

10) вычислить суммарную теплоту H 1 + H 2 реакции ней­трализации;

11) сравнить значение суммарной теплоты реакции H 1 + H 2 со значением H 3 и сделать соответствующие выводы;

12) вычислить абсолютную и относительную ошибки определения теплоты реакции (3);

13) записать уравнение реакции (1, 2 и 3) в виде термохимических уравнений.

Результаты работы

Проведем опыт нейтрализации серной кислоты едким натром в две стадии

Таблица 1

Проведем опыт нейтрализации серной кислоты едким натром в одну стадию

по схеме описанной выше, а результаты измерений занесем в таблицу.

Таблица 2

Вычислим энтальпию (H 1 , H 2 ,H 3) реакции нейтра­лизации по формуле:

H = V * d * C * t * 10 * 0.001,

где H - соответствующая теплота реакции; V - объем полученного раствора соли, мл; d - плотность данного раст­вора, г/см 3 ; С - удельная теплоемкость раствора, Дж(ккал); t - соответствующая разность наблюдаемых температур до реак­ции и после реакции, °С; 10 - коэффициент пересчета теплоты реак­ции на один эквивалент, взятой для нейтрализации кислоты; 0,001 - коэффициент пересчета, кДж (ккал);

H 1 = 75 * 1.09 * 5.02 * * 10 * 0.001 = 40.92 кДж

H 2 = 100 * 1.12 * 6.28 * * 10 * 0.001 = 19.06 кДж

H 3 = 100 * 1.12 * 6.28 * * 10 * 0.001 = 60.77 кДж

Вычислим суммарную теплоту H 1 + H 2 реакции ней­трализации:

H 1 H 2 = 59.98 кДж

Сравнивая значение суммарной теплоты реакции H 1 + H 2 со значением H 3 видим, что они практически равны. Этот говорит о том, что тепловой эффект химической реакции, протекающей при постоянном давлении или при постоянном объеме, не зависит от пути реакции, а зависит только от природы исходных и конечных веществ и их состояния (закон Гесса).

Вычислим абсолютную и относительную ошибки определения теплоты реакции (3).

Стандартная теплота образования моля воды составляет H 0 = 57,22 кДж.

Абсолютная погрешность определения теплоты реакции:

|H 3 -H 0 | = |60,77 – 57,22| = 3,55 кДж.

Относительная погрешность определения теплоты реакции:

|H 3 -H 0 | /H 0 = 3,55/57,22 = 6,2 %

Запишем уравнения реакций (1, 2 и 3) в виде термохимических уравнений:

H 2 SO 4 + NaOH = NaНSO 4 + H 2 O, H 1 = 41 кДж;

NaHSO 4 + NaOH = Na 2 SO 4 + H 2 O, H 2 = 19 кДж;

H 2 SO 4 + 2NaOH = Na 2 SO 4 + 2H 2 O, H 3 = 61 кДж.

Вывод по работе

Основной принцип, на котором основываются все термохимические расчеты, установлен в 1840г русским химиком, академиком Г И Гессом. Этот принцип, известный под названием закона Гесса и являющейся частным случаем закона сохранения энергии, можно сформулировать так «Тепловой эффект реакции за- висит только от начального и конечного состояния веществ и не зависит от промежуточных стадий процесса. И это мы доказали при приготовлении раствора сульфата натрия из растворов серной кислоты гидроксида натрия двумя способами.

Итог:

Согласно закону Гесса, тепловой эффект в обоих случаях один и тот же.

И вода , например:

Примеры

Применение

Нейтрализация лежит в основе ряда важнейших методов титриметрического анализа .


Wikimedia Foundation . 2010 .

Смотреть что такое "Реакция нейтрализации" в других словарях:

    реакция нейтрализации - – реакция между кислотой и основанием, при которой компоненты реагируют друг с другом в эквивалентных стехиометрических количествах, а продуктами являются соль и вода. Общая химия: учебник / А. В. Жолнин Реакция нейтрализации – реакция, в… … Химические термины

    реакция нейтрализации - РН — [Англо русский глоссарий основных терминов по вакцинологии и иммунизации. Всемирная организация здравоохранения, 2009 г.] Тематики вакцинология, иммунизация Синонимы РН EN neutralization testNT …

    реакция нейтрализации (РН) вируса - Лабораторный метод. [Англо русский глоссарий основных терминов по вакцинологии и иммунизации. Всемирная организация здравоохранения, 2009 г.] Тематики вакцинология, иммунизация EN viral neutralization testNT … Справочник технического переводчика

    - (син. реакция токсин антитоксин) взаимодействие токсина со специфическим антитоксином, приводящее к образованию комплекса, не обладающего токсичностью … Большой медицинский словарь

    Метод идентификации вируса, основанный на феномене потери им инфекционности в результате взаимодействия со специфическими антителами … Большой медицинский словарь

    реакция - – процесс взаимодействия. Словарь по аналитической химии реакция нейтрализации реакция обмена окислительно восстановительные реакцииХимические термины

    См. Реакция нейтрализации токсина … Большой медицинский словарь

    - (РН) лабораторный тест, в к ром Ат иммунной с ки нейтрализуют, обезвреживают, тормозят биол. активность (летальную, инфекц., токсическую, ферментативную и др.) микроорганизмов, их токсинов и ферментов. РН применяют: 1) для качественного и… … Словарь микробиологии

    Реакция Соногашира именная реакция в органической химии, присоединение галогеналканов к терминальным алкинам. Данная реакция была впервые проведена Кенкичи Соногашира и Нобуе Хогихара в 1975 году. Катализаторы Для проведения реакции… … Википедия

    РЕАКЦИЯ СРЕДЫ - РЕАКЦИЯ СРЕДЫ, термин, употребляемый в химии и характеризующийся соотношением водородных и гидроксильных ионов. Р. с. является кислой, если в растворе преобладают водородные ионы; раствор обнаруживает в атом случае свойства к^гы. В случае… … Большая медицинская энциклопедия

В уроке 17 «» из курса «Химия для чайников » рассмотрим процесс нейтрализации, а также понятия химический эквивалент вещества и грамм-эквивалент; кроме того научимся вычислять нормальную концентрацию раствора. С реакцией нейтрализации тесно связаны понятия «кислота» и «основание», поэтому настоятельно рекомендую подробно изучить урок 16 «Кислоты и основания»

Важным свойством кислот и оснований является их способность образовывать в растворе ионы H+ и OH-, которые могут атаковать другие имеющиеся там молекулы и вызывать химические превращения, с трудом или медленно протекающие в их отсутствии. Когда кислоты и основания реагируют друг с другом, ионы H + и OH — соединяются, образуя молекулы воды. Этот процесс называется нейтрализацией :

  • H + + OH — → H 2 O

С реакцией нейтрализации тесно связано процедура кислотно-основного титрования. Грубо говоря, титрование — это способ определения имеющегося количества кислоты или основания в растворе, путем измерения количества основания или кислоты с заданной концентрацией необходимого для полной нейтрализации имеющегося реагента. При титровании пользуются понятием химический эквивалент .

Химический эквивалент кислоты — количество кислоты, которое при нейтрализации основания высвобождает 1 моль ионов H+ .

Химический эквивалент основания — количество основания, которое при нейтрализации основания высвобождает 1 моль ионов OH— .

Полная нейтрализация происходит в том случае, если в реакцию вступают одинаковые количества химических эквивалентов кислоты и основания.

Грамм-эквивалент — это масса кислоты (или основания) в граммах, которая образует 1 моль ионов H + (или OH —)

Для кислот, способных высвобождать 1 ион H + на молекулу, как, например, HCl или HNO 3 , химический эквивалент представляет собой то же самое количество вещества, что и моль, а 1 грамм-эквивалент — то же самое, что и молекулярная масса. Однако поскольку H 2 SO 4 способна высвобождать два иона H + на молекулу, 1 молю H 2 SO 4 соответствуют два эквивалента, и поэтому в реакциях кислотно-основной нейтрализации грамм-эквивалент серной кислоты равен половине ее молекулярной массы. Грамм-эквивалент фосфорной кислоты H 3 PO 4 , т.е. такая ее масса в граммах, которая образует 1 моль ионов H + , равен 1/3 молекулярной массы этой кислоты. Точно так же для NaOH, KOH и NH 3 , молекулярные массы совпадают с грамм-эквивалентами этих веществ, но грамм-эквивалент Ca(OH) 2 равен половине его молекулярной массы.

В удобстве использования понятий химического эквивалента и грамм-эквивалента можно убедиться при рассмотрении нейтрализации фосфорной кислоты гидроксидом магния:

Рассмотрим решение конкретной задачи по химическим эквивалентам и грамм-эквивалентам:

Пример 1. Используя метод эквивалентов, найдите число граммов HNO 3 необходимо для нейтрализации 100,0 г Ba(OH) 2 .

Первым делом выпишем молекулярные массы и грамм-эквиваленты для HNO3 и Ba(OH)2 :

Отлично! Теперь найдем сколько химических эквивалентов гидроксида бария содержится в 100,0 г:

  • 100,0 г / 85,67 г/экв = 1,167 экв Ba(OH) 2

В начале урока мы говорили, что полная нейтрализация получается, когда в реакцию вступают одинаковые количества химических эквивалентов кислоты и основания. Поэтому для нейтрализации 1,167 экв Ba(OH) 2 потребуется 1,167 экв HNO 3:

  • 1,167 экв × 63,01 г/экв = 73,53 г HNO 3

Ответ получен! Кстати, данную задачу можно решить по другому, используя полное уравнение реакции :

  • 2HNO 3 + Ba(OH) 2 → Ba(NO 3) 2 + 2H 2 O

Число моль Ba(OH) 2 , вступающего в реакцию, равно:

  • 100,0 г / 171,3 г/моль = 0,5838 моля Ba(OH) 2

Из полного уравнения реакции следует, что в ней должно принять участие вдвое большее молярное количество азотной кислоты, чем гидроксида бария:

  • 0,5838 моля × 2 = 1,167 моля HNO 3

А в граммах это составит:

  • 1,167 моля × 63,01 г/моль = 73,53 г HNO 3

Ответы совпадают, т.е оба метода решения верны, однако метод эквивалентов позволяет обойтись без использования полного уравнения реакции.

Или нормальность раствора (н. ) показывает, сколько эквивалентов вещества содержится в 1 л его раствора. Например, по аналогии с молярной концентрацией, 1,00 М раствор H 3 PO 4 имеет нормальность 3,00 н, а 0,010 М раствор Mg(OH) 2 имеет нормальность 0,020 н.

Пример 2. Определите молярность и нормальность 500 мл раствора, полученного при растворении в воде 4,00 г NaOH.

По таблице Менделеева находим молекулярную массу гидроксида натрия, она равна 40,0 г/моль. В нашем распоряжении ровно 4,00 г NaOH, и в них содержится:

  • 4,00 г / 40,0 г/моль = 0,100 моля NaOH

Нам уже известно, что молярная концентрация представляет собой отношение числа моль растворенного вещества на общий объем раствора, следовательно молярность раствора гидроксида натрия равна:

  • 0,100 моля NaOH / 0,500 л раствора = 0,200 моль/л, или 0,2 М NaOH

В данном случае молярность раствора совпадает с его нормальностью, поскольку каждый моль гидроксида натрия дает 1 эквивалент OH— ионов. Следовательно нормальность полученного раствора равна также 0,200 н.

Пример 3. В 750 мл раствора содержится 10,0 г серной кислоты H 2 SO 4 . Определите молярность и нормальность данного раствора.

  • 10,0 г / 98,1 г/моль = 0,102 моля серной кислоты
  • 0,102 моля / 0,750 л = 0,136 М раствор серной кислоты

Поскольку каждый моль серной кислоты высвобождает 2 эквивалента ионов H + , полученный раствор серной кислоты имеет нормальность, равную 2·0,136=0,272 н., т.е. представляет собой 0,272 н. раствора H 2 SO 4 .

Надеюсь урок 17 «» был познавательным и понятным. Если у вас возникли вопросы, пишите их в комментарии.

Реакция нейтрализации считается одной из важнейших для кислот и оснований. Именно это взаимодействие предполагает образование воды в качестве одного из продуктов реакции.

Механизм

Проанализируем уравнение реакции нейтрализации на примере взаимодействия гидроксида натрия с соляной (хлороводородной) кислотой. Катионы водорода, образующиеся в результате диссоциации кислоты, связываются с гидроксид-ионами, которые образуются при распаде щелочи (гидроксида натрия). В итоге между ними протекает реакция нейтрализации

H+ + OH- → H 2 O

Характеристика химического эквивалента

Кислотно-основное титрование взаимосвязано с нейтрализацией. Что такое титрование? Это способ вычисления имеющейся массы основания либо кислоты. Он предполагает измерение количества щелочи либо кислоты с известной концентрацией, которое необходимо брать для полной нейтрализации второго реагента. Любая реакция нейтрализации предполагает применение такого термина как «химический эквивалент».

Для щелочи это то количество основания, которое в случае полной нейтрализации образует один моль гидроксид ионов. Для кислоты химический эквивалент определяется количеством, выделяемым при нейтрализации 1 моль катионов водорода.

Реакция нейтрализации протекает в полном объеме в том случае, если в исходной смеси находится равное количество химических эквивалентов основания и кислоты.

Грамм-эквивалентом считается масса основания (кислоты) в граммах, которые способны образовывать один моль гидроксид-ионов (катионов водорода). Для одноосновной кислоты (азотной, соляной), которые при распаде молекулы на ионы высвобождают по одному катиону водорода, химический эквивалент аналогичен количеству вещества, а 1 грамм-эквивалент соответствует молекулярной массе вещества. Для двухосновной серной кислоты, образующей в процессе электролитической диссоциации два катиона водорода, один моль соответствует двум эквивалентам. Поэтому в кислотно-основном взаимодействии ее грамм-эквивалент равен половине относительной молекулярной массы. Для трехосновной фосфорной кислоты при полной диссоциации, образующей три катиона водорода, один грамм-эквивалент будет равен трети относительной молекулярной массы.

Для оснований принцип определения аналогичен: грамм-эквивалент зависит от валентности металла. Так, для щелочных металлов: натрия, лития, калия - искомая величина совпадает с относительной молекулярной массой. В случае расчета грамм-эквивалента гидроксида кальция, данная величина будет равна половине относительной молекулярной массы гашеной извести.

Пояснение механизма

Попробуем понять, что представляет собой реакция нейтрализации. Примеры такого взаимодействия можно взять разные, остановимся на нейтрализации азотной кислоты гидроксидом бария. Попробуем определить массу кислоты, в которой нуждается реакция нейтрализации. Примеры расчетов приведем ниже. Относительная молекулярная масса азотной кислоты составляет 63, а гидроксида бария 86. Определяем число грамм-эквивалентов основания, содержащегося в 100 граммах. 100 г делим на 86 г/экв и получаем 1 эквивалент Ba(OH) 2 . Если рассматривать данную проблему через химическое уравнение, то можно составить взаимодействие следующим образом:

2HNO 3 + Ba(OH) 2 → Ba(NO 3) 2 + 2H 2 O

По уравнению отчетливо видна вся химия. Реакция нейтрализации здесь протекает полностью в том случае, когда два моль кислоты вступают в реакцию с одним моль основания.

Особенности нормальной концентрации

Ведя речь о нейтрализации, часто используют нормальную концентрацию основания или щелочи. Что представляет собой данная величина? Нормальность раствора демонстрирует то количество эквивалентов искомого вещества, которое существует в одном литре его раствора. С ее помощью проводят количественные вычисления в аналитической химии.

Например, если нужно определить нормальность и молярность 0,5 литра раствора, полученного после растворения 4 граммов гидроксида натрия в воде, сначала необходимо определить относительную молекулярную массу гидроксида натрия. Она составит 40, молярная масса будет 40 г/моль. Далее определяем количественное содержание в 4 граммах вещества, для этого делим массу на молярную, то есть, 4 г:40 г/моль, получаем 0,1 моль. Поскольку молярная концентрация определяется отношением количества моль вещества к общему объему раствора, можно вычислить молярность щелочи. Для этого 0,1 моль делим на 0,5 литра, в итоге получаем 0,2 моль/л, то есть, 0,2 М щелочи. Так как основание является однокислотным, его молярность численно равна нормальности, то есть соответствует 0,2 н.

Заключение

В неорганической и органической химии реакция нейтрализации, протекающая между кислотой и основанием, имеет особое значение. Благодаря полной нейтрализации исходных компонентов происходит реакция ионного обмена, полноту которой можно проверить с помощью индикаторов на кислую и щелочную среду.

Нейтрализация – химическая реакция, происходящая между двумя составами, имеющими свойства кислоты и основания. В результате их взаимодействия происходит потеря свойств обоих веществ, что приводит к выделению соли и воды.

Сфера применения нейтрализации

Вычисления по этой реакции особенно часто используются:

  • в агрохимических лабораториях;
  • в химическом производстве;
  • при обработке отходов.

Метод нейтрализации применяется в клинических лабораториях для определения буферной емкости плазмы крови, кислотности желудочного сока. Активно используется и в фармакологии, когда нужно провести количественный анализ неорганических и органических кислот. Проводить этот процесс можно по всем правильно составленным уравнениям.

Внешние проявления нейтрализации

Процесс нейтрализации кислоты можно наблюдать, если вначале к раствору добавить несколько капель индикатора, который позволит изменить окраску раствора. Когда к этой смеси добавляется щелочь, то окраска полностью исчезает. Но стоит учитывать, что индикаторы меняют свою окраску не строго в эквивалентной точке, а с отклонением. Поэтому даже при правильном выборе индикатора допускается погрешность. Если же он был выбран неправильно, то все результаты оказываются искаженными.

В условиях школьной программы для этого применяют лимонную кислоту и нашатырный спирт. В качестве примера можно рассмотреть процесс реакции между соляной кислотой и едким натром. В результате их взаимодействия образовывается известный всем раствор пищевой соли в воде. Также в качестве индикаторов могут выступать:

  • метиловый оранжевый;
  • лакмус;
  • метиловый красный;
  • фенолфталеин.

Необходимо отметить, что реакция, обратная нейтрализации, называется гидролизом. Его результатом является образование слабой кислоты или основания.

При выборе нейтрализующего вещества обязательно учитываются:

  • промышленные свойства соединения;
  • доступность;
  • себестоимость.

Раньше в качестве нейтрализатора применяли окись магния. Сейчас она не пользуется популярностью, поскольку имеет высокую стоимость и вступает в реакцию достаточно медленно.

Виды реакции нейтрализации

В процессе взаимодействия сильного основания такой же сильной кислотой происходит смещение реакции в сторону образования воды. Вместе с тем этот процесс не доходит до конца, поскольку начинается гидролиз соли.

При нейтрализации слабой кислоты сильным основанием можно говорить об обратимой реакции. Как правило, в таких системах протекание реакции смещается в сторону образования соли, поскольку вода является более слабым электролитом, чем, например, синильная, уксусная кислота или аммиак.

Скорость процесса нейтрализации изменяется в зависимости от специфики используемых веществ. Например, при применении NaOH необходимая степень кислотности появляется практически сразу же. СаО приводит к возникновению нужной реакции только через 15-20 минут, а MgO – через 45 минут. При этом в последних двух случаях наиболее сильное понижение кислотности наблюдается в первые 5 минут после того как было внесено нейтрализующее вещество. Если скорость процесса не очень высокая, то еще больше его начинает тормозить вторичное окисление.

Выделение тепла в процессе нейтрализации

Часто это происходит под воздействием азотной кислоты. Чем выше ее количество, тем больше выделяется тепла. При получении поваренной соли воздействие тепла приводит к нежелательным последствиям, поскольку она начинает разлагаться с выделением хлора. Из-за выделения тепла можно говорить о том, что все реакции нейтрализации являются экзотермическими. Его выделение происходит из-за возникновения разницы между суммарной энергией ионов Н+ и ОН-, а также энергией образования молекул воды.

Loading...Loading...