Чему равен поток магнитной индукции через контур. Магнитный поток и потокосцепление

Для того чтобы уяснить смысл нового для нас понятия «магнитный поток», подробно разберем несколько опытов с наведением ЭДС, обращая внимание на количественную сторону производимых наблюдений.

В наших опытах будем пользоваться установкой, изображенной на рис. 2.24.

Она состоит из большой многовитковой катушки, намотанной, скажем, на трубу из плотного проклеенного картона. Питание катушки производится от аккумулятора через рубильник и регулировочный реостат. О величине тока, устанавливающегося в катушке, можно судить по амперметру (на рис. 2.24 не показан).

Внутри большой катушки может устанавливаться другая маленькая катушка, концы которой подведены к магнитоэлектрическому прибору - гальванометру.

Для наглядности рисунка часть катушки показана вырезанной - это позволяет увидеть расположение маленькой катушки.

При замыкании или размыкании рубильника в маленькой катушке наводится ЭДС и стрелка гальванометра на короткое время отбрасывается из нулевого положения.

По отклонению можно судить о том, в каком случае на веденная ЭДС больше, в каком меньше.

Рис. 2.24. Устройство, на котором можно изучать наведение ЭДС изменяющимся магнитным полем

Замечая число делений, на какое отбрасывается стрелка, можно количественно сравнивать действие, производимое наведенными ЭДС.

Первое наблюдение. Вставив внутрь большой катушки маленькую, закрепим ее и пока не будем ничего изменять в их расположении.

Включим рубильник и, меняя сопротивление реостата, включенного вслед за аккумулятором, установим определенное значение тока, например

Произведем теперь выключение рубильника, наблюдая за гальванометром. Пусть его отброс n окажется равным 5 делениям вправо:

Когда выключается ток 1 А.

Снова включим рубильник и, меняя сопротивление, увеличим ток большой катушки до 4 А.

Дадим гальванометру успокоиться, и снова выключим рубильник, наблюдая за гальванометром.

Если его отброс составлял 5 делений при выключении тока 1 А, то теперь при выключении 4 А заметим, что отброс увеличился в 4 раза:

Когда выключается ток 4 А.

Продолжая такие наблюдения, легко заключить, что отброс гальванометра, а значит, и наведенная ЭДС возрастают пропорционально росту отключаемого тока.

Но мы знаем, что изменение тока вызывает изменение магнитного поля (его индукции), поэтому правильный вывод из нашего наблюдения такой:

наводимая ЭДС пропорциональна скорости изменения магнитной индукции.

Более подробные наблюдения подтверждают правильность этого вывода.

Второе наблюдение. Продолжим наблюдение за отбросом гальванометра, производя выключение одного и того же тока, скажем, 1-4 А. Но будем изменять число витков N маленькой катушки, оставляя неизменными ее расположение и размеры.

Предположим, что отброс гальванометра

наблюдался при (100 витков на малой катушке).

Как изменится отброс гальванометра, если удвоить число витков?

Опыт показывает, что

Именно этого и следовало ожидать.

В самом деле, все витки маленькой катушки находятся под одинаковым воздействием магнитного поля, и в каждом витке должна наводиться, одинаковая ЭДС.

Обозначим ЭДС одного витка буквой Ей тогда ЭДС 100 витков, включенных последовательно один за другим, должна быть в 100 раз больше:

При 200 витках

При любом ином числе витков

Если ЭДС возрастает пропорционально числу витков, то само собой разумеется и то, что отброс гальванометра должен быть тоже пропорционален числу витков.

Это и показывает опыт. Итак,

наводимая ЭДС пропорциональна числу витков.

Еще раз подчеркиваем, что размеры маленькой катушки и ее расположение во время нашего опыта оставались неизменными. Само собой разумеется, что опыт проводился в одной и той же большой катушке при выключении того же тока.

Третье наблюдение. Проделав несколько опытов с одной и той же маленькой катушкой при неизменности включаемого тока, легко убедиться в том, что величина наводимой ЭДС зависит от того, как расположена маленькая катушка.

Для наблюдения зависимости наводимой ЭДС от положения маленькой катушки усовершенствуем несколько нашу установку (рис. 2.25).

К выходящему наружу концу оси маленькой катушки приделаем указательную стрелку и круг с делением (вроде

Рис. 2.25. Устройство для поворачивания маленькой катушки, закрепленной на стержне, пропущенном через стенки большой катушки. Стержень связан с указательной стрелкой. Положение стрелки на полукольце с делениями показывает, как расположена маленькая катушка тех, которые можно встретить на радиоприемниках).

Поворачивая стерженек, мы теперь по положению указательной стрелки можем судить о том положении, которое занимает маленькая катушка внутри большой.

Наблюдения показывают, что

наибольшая ЭДС наводится тогда, когда ось маленькой катушки совпадает с направлением магнитного поля,

другими словами, когда оси большой и малой катушек раллельны.

Рис. 2.26. К выводу понятия «магнитный поток». Магнитное поле изображено линиями, проведенными из расчета две линии на 1 см2: а - катушка площадью 2 см2 расположена перпендикулярно направлению поля. С каждым витком катушки сцеплен магнитный поток Этот поток изображен четырьмя линиями, пересекающими катушку; б - катушка площадью 4 см2 расположена перпендикулярно направлению поля. С каждым витком катушки сцеплен магнитный поток Этот поток изображен восемью линиями, пересекающими катушку; в - катушка площадью 4 см2 расположена наклонно. Магнитный поток, сцепленный с каждым из ее витков, изображен четырьмя линиями. Он равен так как каждая линия изображает, как это видно из рис. 2.26, а и б, поток в . Поток, сцепленный с катушкой, уменьшается из-за ее наклона

Такое расположение маленькой катушки показано на рис. 2.26, а и б. По мере поворота катушки наводимая в ней ЭДС будет все меньше и меньше.

Наконец, если плоскость маленькой катушки станет параллельной линиям, поля, в ней не будет наводиться никакой ЭДС. Может возникнуть вопрос, что же будет при дальнейшем повороте маленькой катушки?

Если мы повернем катушку больше чем на 90° (относительно исходного положения), то изменится знак наводимой ЭДС. Линии поля будут входить в катушку с другой стороны.

Четвертое наблюдение. Важно провести еще одно, заключительное наблюдение.

Выберем определенное положение, в которое будем ставить маленькую катушку.

Условимся, например, ставить ее всегда в такое положение, чтобы наводимая ЭДС была возможно большой (конечно, при данном числе витков и данном значении отключаемого тока). Изготовим несколько маленьких катушек разного диаметра, но с одинаковым числом витков.

Будем ставить эти катушки в одно и то же положение и, выключая ток, будем наблюдать за отбросом гальванометра.

Опыт покажет нам, что

наводимая ЭДС пропорциональна площади поперечного сечения катушек.

Магнитный поток. Все наблюдения позволяют нам сделать вывод о том, что

наводимая ЭДС всегда пропорциональна изменению магнитного потока.

Но что такое магнитный поток?

Сначала будем говорить о магнитном потоке через плоскую площадку S, образующую прямой угол с направлением магнитного поля. В этом случае магнитный поток равен произведению площади на индукцию или

здесь S - площадь нашей площадки, м2;; В - индукция, Тл; Ф - магнитный поток, Вб.

Единицей потока служит вебер.

Изображая магнитное поле посредством линий, мы можем сказать, что магнитный поток пропорционален числу линий, пронизывающих площадку.

Если линии поля проведены так, что число их на перпендикулярно поставленной плоскости равняется индукции поля В, то поток равен числу таких линий.

На рис. 2.26 магнитное люле в изображено линиями, проведенными из расчета двух линий на Каждая линия, таким образом, соответствует магнитному потоку величиной

Теперь для того чтобы определить величину магнитного потока, достаточно просто сосчитать количество линий, пронизывающих площадку, и умножить это число на

В случае рис. 2.26, а магнитный поток через площадку в 2 см2, перпендикулярную направлению поля,

На рис. 2.26, а эта площадка пронизана четырьмя магнитными линиями. В случае рис. 2.26, б магнитный поток через поперечную площадку в 4 см2 при индукции 0,2 Тл

и мы видим, что площадка пронизана восемью магнитными линиями.

Магнитный поток, сцепленный с витком. Говоря о наведенной ЭДС, нам нужно иметь в виду поток, сцепленный с витком.

Поток, сцепленный с витком - это поток, пронизывающий поверхность, ограниченную витком.

На рис. 2.26 поток, сцепленный с каждым витком катушки, в случае рис. 2.26, а равен а в случае рис. 2.26, б поток равен

Если площадка не перпендикулярна, а наклонена к магнитным линиям, то уже нельзя определять поток просто произведением площади на индукцию. Поток в этом случае определяется как произведение индукции на площадь проекции нашей площадки. Речь идет о проекции на плоскость, перпендикулярную линиям поля, или как бы о тени, отбрасываемой площадкой (рис. 2.27).

Однако при любой форме площадки поток по-прежнему пропорционален числу линий, проходящих через нее, или равен числу единичных линий, пронизывающих площадку.

Рис. 2.27. К выводу проекции площадки. Проводя опыты более подробно и объединяя наши третье и четвертое наблюдения, можно было бы сделать такой вывод; наводимая ЭДС пропорциональна площади той тени, которую отбрасывает наша маленькая катушка на плоскость, перпендикулярную линиям поля, если бы она была освещена лучами света, параллельными линиями поля. Такая тень называется проекцией

Так, на рис. 2.26, в поток через площадку в 4 см2 при индукции 0,2 Тл равен всего (линии ценой по ). Изображение магнитного поля линиями очень помогает при определении потока.

Если с каждым из N витков катушки сцеплен поток Ф, можно назвать произведение ЫФ полным потокосцеплением катушки. Понятием потокосцепления можно особенно удобно пользоваться, когда с разными витками сцеплены разные потоки. В этом случае полным потокосцеплением называют сумму потоков, сцепленных с каждым из витков.

Несколько замечаний о слове «поток». Почему мы говорим о потоке? Связано ли с этим словом представление о каком-то течении чего-то магнитного? В самом деле, говоря «электрический ток», мы представляем себе движение (поток) электрических зарядов. Так же ли обстоит дело и в случае магнитного потока?

Нет, когда мы говорим «магнитный поток», мы имеем в виду только определенную меру магнитного поля (произведение силы поля на площадь), похожую на меру, которой пользуются инженеры и ученые, изучающие движение жидкостей. При движении воды они называют ее потоком произведения скорости воды на площадь поперечно расположенной площадки (поток воды в трубе равен ее скорости на площадь поперечного сечения трубы).

Конечно, само магнитное поле, представляющее собой один из видов материи, связано и с особой формой движения. У нас еще нет достаточно отчетливых представлений и знаний о характере этого движения, хотя о свойствах магнитного поля современным ученым известно многое: магнитное поле связано с существованием особой формы энергии, его основной мерой является индукция, другой очень важной мерой является магнитный поток.

На картинке показано однородное магнитное поле. Однородное означает одинаковое во всех точках в данном объеме. В поле помещена поверхность с площадью S. Линии поля пересекают поверхность.

Определение магнитного потока :

Магнитным потоком Ф через поверхность S называют количество линий вектора магнитной индукции B, проходящих через поверхность S.

Формула магнитного потока:

здесь α - угол между направлением вектора магнитной индукции B и нормалью к поверхности S.

Из формулы магнитного потока видно, что максимальным магнитный поток будет при cos α = 1, а это случится, когда вектор B параллелен нормали к поверхности S. Минимальным магнитный поток будет при cos α = 0, это будет, когда вектор B перпендикулярен нормали к поверхности S, ведь в этом случае линии вектора B будут скользить по поверхности S, не пересекая её.

А по определению магнитного потока учитываются только те линии вектора магнитной индукции, которые пересекают данную поверхность.

Измеряется магнитный поток в веберах (вольт-секундах): 1 вб = 1 в * с. Кроме того, для измерения магнитного потока применяют максвелл: 1 вб = 10 8 мкс. Соответственно 1 мкс = 10 -8 вб.

Магнитный поток является скалярной величиной.

ЭНЕРГИЯ МАГНИТНОГО ПОЛЯ ТОКА

Вокруг проводника с током существует магнитное поле, которое обладает энергией. Откуда она берется? Источник тока, включенный в эл.цепь, обладает запасом энергии. В момент замыкания эл.цепи источник тока расходует часть своей энергии на преодоление действия возникающей ЭДС самоиндукции. Эта часть энергии, называемая собственной энергией тока, и идет на образование магнитного поля. Энергия магнитного поля равна собственной энергии тока. Собственная энергия тока численно равна работе, которую должен совершить источник тока для преодоления ЭДС самоиндукции, чтобы создать ток в цепи.

Энергия магнитного поля, созданного током, прямо пропорциональна квадрату силы тока. Куда пропадает энергия магнитного поля после прекращения тока? - выделяется (при размыкании цепи с достаточно большой силой тока возможно возникновение искры или дуги)

4.1. Закон электромагнитной индукции. Самоиндукция. Индуктивность

Основные формулы

· Закон электромагнитной индукции (закон Фарадея):

, (39)

где – эдс индукции;– полный магнитный поток (потокосцепление).

· Магнитный поток, создаваемый током в контуре,

где – индуктивность контура;– сила тока.

· Закон Фарадея применительно к самоиндукции

· Эдс индукции, возникающая при вращении рамки с током в магнитном поле,

где – индукция магнитного поля;– площадь рамки;– угловая скорость вращения.

· Индуктивность соленоида

, (43)

где – магнитная постоянная;– магнитная проницаемость вещества;– число витков соленоида;– площадь сечения витка;– длина соленоида.

· Сила тока при размыкании цепи

где – установившаяся в цепи сила тока;– индуктивность контура,– сопротивление контура;– время размыкания.

· Сила тока при замыкании цепи

. (45)

· Время релаксации

Примеры решения задач

Пример 1.

Магнитное поле изменяется по закону , где= 15 мТл,. В магнитное поле помещен круговой проводящий виток радиусом = 20 см под угломк направлению поля (в начальный момент времени). Найти эдс индукции, возникающую в витке в момент времени= 5 с.

Решение

По закону электромагнитной индукции возникающая в витке эдс индукции , где– магнитный поток, сцепленный в витке.

где – площадь витка,;– угол между направлением вектора магнитной индукциии нормалью к контуру:.

Подставим числовые значения: = 15 мТл,,= 20 см = = 0,2 м,.

Вычисления дают .

Пример 2

В однородном магнитном поле с индукцией = 0,2 Тл расположена прямоугольная рамка, подвижная сторона которой длиной= 0,2 м перемещается со скоростью= 25 м/с перпендикулярно линиям индукции поля (рис. 42). Определить эдс индукции, возникающую в контуре.

Решение

При движении проводника АВ в магнитном поле площадь рамки увеличивается, следовательно, возрастает магнитный поток сквозь рамку и возникает эдс индукции.

По закону Фарадея , где, тогда, но, поэтому.

Знак «–» показывает, что эдс индукции и индукционный ток направлены против часовой стрелки.

САМОИНДУКЦИЯ

Каждый проводник, по которому протекает эл.ток, находится в собственном магнитном поле.

При изменении силы тока в проводнике меняется м.поле, т.е. изменяется магнитный поток, создаваемый этим током. Изменение магнитного потока ведет в возникновению вихревого эл.поля и в цепи появляется ЭДС индукции. Это явление называется самоиндукцией.Самоиндукция - явление возникновения ЭДС индукции в эл.цепи в результате изменения силы тока. Возникающая при этом ЭДС называется ЭДС самоиндукции

Проявление явления самоиндукции

Замыкание цепи При замыкании в эл.цепи нарастает ток, что вызывает в катушке увеличение магнитного потока, возникает вихревое эл.поле, направленное против тока, т.е. в катушке возникает ЭДС самоиндукции, препятствующая нарастанию тока в цепи (вихревое поле тормозит электроны). В результатеЛ1 загорается позже, чем Л2.

Размыкание цепи При размыкании эл.цепи ток убывает, возникает уменьшение м.потока в катушке, возникает вихревое эл.поле, направленное как ток (стремящееся сохранить прежнюю силу тока) , т.е. в катушке возникает ЭДС самоиндукции, поддерживающая ток в цепи. В результате Л при выключении ярко вспыхивает. Вывод в электротехнике явление самоиндукции проявляется при замыкании цепи (эл.ток нарастает постепенно) и при размыкании цепи (эл.ток пропадает не сразу).

ИНДУКТИВНОСТЬ

От чего зависит ЭДС самоиндукции? Эл.ток создает собственное магнитное поле. Магнитный поток через контур пропорционален индукции магнитного поля (Ф ~ B), индукция пропорциональна силе тока в проводнике (B ~ I), следовательно магнитный поток пропорционален силе тока (Ф ~ I). ЭДС самоиндукции зависит от скорости изменения силы тока в эл.цепи, от свойств проводника (размеров и формы) и от относительной магнитной проницаемости среды, в которой находится проводник. Физическая величина, показывающая зависимость ЭДС самоиндукции от размеров и формы проводника и от среды, в которой находится проводник, называется коэффициентом самоиндукции или индуктивностью. Индуктивность - физ. величина, численно равная ЭДС самоиндукции, возникающей в контуре при изменении силы тока на 1Ампер за 1 секунду. Также индуктивность можно рассчитать по формуле:

где Ф - магнитный поток через контур, I - сила тока в контуре.

Единицы измерения индуктивности в системе СИ:

Индуктивность катушки зависит от: числа витков, размеров и формы катушки и от относительной магнитной проницаемости среды (возможен сердечник).

ЭДС САМОИНДУКЦИИ

ЭДС самоиндукции препятствует нарастанию силы тока при включении цепи и убыванию силы тока при размыкании цепи.

Для характеристики намагниченности вещества в магнитном поле используетсямагнитный момент (Р м ). Он численно равен механическому моменту, испытываемому веществом в магнитном поле с индукцией в 1 Тл.

Магнитный момент единицы объема вещества характеризует его намагниченность - I , определяется по формуле:

I = Р м /V , (2.4)

где V - объем вещества.

Намагниченность в системе СИ измеряется, как и напряженность, в А/м , величина векторная.

Магнитные свойства веществ характеризуются объемной магнитной восприимчивостью - c о , величина безразмерная.

Если какое-либо тело поместить в магнитное поле с индукцией В 0 , то происходит его намагничивание. Вследствие этого тело создает свое собственное магнитное поле с индукцией В " , которое взаимодействует с намагничивающим полем.

В этом случае вектор индукции в среде (В) будет слагаться из векторов:

В = В 0 + В " (знак вектора опущен), (2.5)

где В " - индукция собственного магнитного поля намагнитившегося вещества.

Индукция собственного поля определяется магнитными свойствами вещества, которые характеризуются объемной магнитной восприимчивостью - c о , справедливо выражение:В " = c о В 0 (2.6)

Разделим на m 0 выражение (2.6):

В " / m о = c о В 0 /m 0

Получим: Н " = c о Н 0 , (2.7)

но Н " определяет намагниченность вещества I , т.е. Н " = I , тогда из (2.7):

I = c о Н 0 . (2.8)

Таким образом, если вещество находится во внешнем магнитном поле с напряженностьюН 0 , то внутри него индукция определяется выражением:

В=В 0 + В " = m 0 Н 0 +m 0 Н " = m 0 0 + I) (2.9)

Последнее выражение строго справедливо, когда сердечник (вещество) находится полностью во внешнем однородном магнитном поле (замкнутый тор, бесконечно длинный соленоид и т.д.).

Используя силовые линии, можно не только показывать направление магнитного поля, но также характеризовать величину его индукции.

Условились проводить силовые линии таким образом, чтобы через 1 см² площадки, перпендикулярно вектору индукции в определенной точке, проходило число линий, равное индукции поля в этой точке.

В том месте, где индукция поля будет больше, силовые линии будут гуще. И, наоборот, там, где индукция поля меньше, реже и силовые линии.

Магнитное поле с одинаковой индукцией во всех точках называется однородным полем. Графически магнитное однородное поле изображается силовыми линиями, представляющими собой равно отстоящие друг от друга

Примером однородного поля является поле, находящееся внутри длинного соленоида, а также поле между близко расположенными друг к другу параллельными плоскими полюсными наконечниками электромагнита.

Произведение индукции магнитного поля, пронизывающего данный контур, на площадь контура называется магнитным потоком магнитной индукции либо же просто магнитный поток.

Определение ему дал и изучил его свойства английский ученый-физик - Фарадей. Он открыл, что это понятие позволяет глубже рассмотреть единую природу магнитных и электрических явлений.

Обозначая магнитный поток буквой Ф, площадь контура S и угол между направленностью вектора индукции В и нормалью n к площади контура α, можно написать следующее равенство:

Ф = В S cos α.

Магнитный поток - это скалярная величина.

Так как густота силовых линий произвольного магнитного поля равняется его индукции, то магнитный поток равен всему числу силовых линий, которые пронизывают данный контур.

С изменением поля меняется и магнитный поток, который пронизывает контур: при усилении поля он возрастает, при ослаблении - уменьшается.

За единицу магнитного потока в принимается поток, который пронизывает площадку в 1 м², находящуюся в магнитном однородном поле, с индукцией 1 Вб/м², и расположенную перпендикулярно вектору индукции. Такая единица называется вебером:

1 Вб = 1 Вб/м² ˖ 1 м².

Переменяющийся магнитный поток порождает электрическое поле, имеющее замкнутые силовые линии (вихревое электрическое поле). Такое поле проявляется в проводнике как действие посторонних сил. Данное явление называют электромагнитной индукцией, а электродвижущую силу, возникающую при этом — ЭДС индукции.

Кроме того, следует отметить, что магнитный поток дает возможность характеризовать в целом весь магнит (или же любые другие источники магнитного поля). Следовательно, если дает возможность характеризовать его действие в любой отдельно взятой точке, то магнитный поток - целиком. Т.е., можно сказать о том, что это вторая важнейшая А значит, если магнитная индукция выступает в роли силовой характеристики магнитного поля, то магнитный поток - является его энергетической характеристикой.

Вернувшись к опытам, можно сказать также о том, что всякий виток катушки можно вообразить как отдельно взятый замкнутый виток. Тот же контур, сквозь который и будет проходить магнитный поток вектора магнитной индукции. В таком случае будет отмечаться индукционный электрический ток. Таким образом, именно под воздействием магнитного потока формируется электрополе в замкнутом проводнике. А затем уже это электрическое поле формирует электрический ток.

Пусть в некоторой малой области пространства существует магнитное поле, которое можно считать однородным, то есть в этой области вектор магнитной индукции постоянен, как по величине, так и по направлению.
 Выделим малую площадку площадью ΔS , ориентация которой задается единичным вектором нормали n (рис. 445).

рис. 445
 Магнитный поток через эту площадку ΔФ m определяется как произведение площади площадки на нормальную составляющую вектора индукции магнитного поля

Где

скалярное произведение векторов B и n ;
B n − нормальная к площадке компонента вектора магнитной индукции.
 В произвольном магнитном поле магнитный поток через произвольную поверхность, определяется следующим образом (рис. 446):

рис. 446
− поверхность разбивается на малые площадки ΔS i (которые можно считать плоскими);
− определяется вектор индукции B i на этой площадке (который в пределах площадки можно считать постоянным);
− вычисляется сумма потоков через все площадки, на которые разбита поверхность

 Эта сумма называется потоком вектора индукции магнитного поля через заданную поверхность (или магнитным потоком).
 Обратите внимание, что при вычислении потока суммирование проводится по точкам наблюдения поля, а не по источникам, как при использовании принципа суперпозиции. Поэтому магнитный поток является интегральной характеристикой поля, описывающей его усредненные свойства на всей рассматриваемой поверхности.
 Трудно найти физический смысл магнитного потока, как и для иных полей это полезная вспомогательная физическая величина. Но в отличие от других потоков, магнитный поток настолько часто встречается в приложениях, что в системе СИ удостоился «персональной» единицы измерения − Вебер 2 : 1 Вебер − магнитный поток однородного магнитного поля индукции 1 Тл через площадку площадью 1 м 2 ориентированную перпендикулярно вектору магнитной индукции.
 Теперь докажем простую, но чрезвычайно важную теорему о магнитном потоке через замкнутую поверхность.
 Ранее мы установили, что силовые любого магнитного поля являются замкнутыми, уже из этого следует, что магнитный поток, через любую замкнутую поверхность равен нулю.

Тем не менее, приведем более формальное доказательство этой теоремы.
 Прежде всего, отметим, что для магнитного потока справедлив принцип суперпозиции: если магнитное поле создано несколькими источниками, то для любой поверхности поток поля, созданного системой элементов тока, равен сумме потоков полей, созданных каждым элементом тока в отдельности. Это утверждение следует непосредственно из принципа суперпозиции для вектора индукции и прямо пропорциональной связью между магнитным потоком и вектором магнитной индукции. Следовательно достаточно доказать теорему для поля, созданного элементом тока, индукция которого определяется по закону Био-Саварра-Лапласа. Здесь для нас важна структура поля, обладающего осевой круговой симметрией, значение модуля вектора индукции несущественно.
 Выберем в качестве замкнутой поверхности поверхность бруска, вырезанного, как показано на рис. 447.

рис. 447
 Магнитный поток отличен от нуля только через его две боковые грани, но эти потоки имеют противоположные знаки. Вспомним, что для замкнутой поверхности выбирают внешнюю нормаль, поэтому на одной из указанных граней (передней) поток положительный, а на задней отрицательный. Причем модули этих потоков равны, так как распределение вектора индукции поля на этих гранях одинаково. Данный результат не зависит от положения рассмотренного бруска. Произвольное тело можно разбить на бесконечно малые части, каждая из которых подобна рассмотренному бруску.
 Наконец, сформулируем еще одно важное свойство потока любого векторного поля. Пусть произвольная замкнутая поверхность ограничивает некоторое тело (рис. 448).

рис. 448
 Разобьем это тело на две части, ограниченные частями исходной поверхности Ω 1 и Ω 2 , и замкнем их общей границей раздела тела. Сумма потоков через эти две замкнутые поверхности равна потоку через исходную поверхность! Действительно сумма потоков через границу (один раз для одного тела, другой раз для другого) равна нулю, так как в каждом случае надо брать разные, противоположные нормали (каждый раз внешнюю). Аналогично можно доказать утверждение для произвольного разбиения тела: если тело разбито на произвольное число частей, то поток через поверхность тела равен сумме потоков через поверхности всех частей разбиения тела. Это утверждение очевидно для потока жидкости.
 Фактически мы доказали, что если поток векторного поля равен нулю через некоторую поверхность ограничивающее малый объем, то этот поток равен нулю через любую замкнутую поверхность.
 Итак, для любого магнитного поля справедлива теорема о магнитном потоке: магнитный поток через любую замкнутую поверхность равен нулю Ф m = 0.
 Ранее мы рассматривали теоремы о потоке для поля скоростей жидкости и электростатического поля. В этих случаях поток через замкнутую поверхность полностью определялся точечными источниками поля (истоками и стоками жидкости, точечными зарядами). В общем случае наличие ненулевого потока через замкнутую поверхность свидетельствует о наличии точечных источников поля. Следовательно, физическим содержанием теоремы о магнитном потоке является утверждение об отсутствии магнитных зарядов.

Если вы хорошо разобрались в данном вопросе и сумеете объяснить и отстоять свою точку зрения, то можете формулировать теорему о магнитном потоке и так: «Еще никто не нашел монополя Дирака».

Следует особо подчеркнуть, что, говоря об отсутствии источников поля, мы имеем виду именно точечных источников, подобных электрическим зарядам. Если провести аналогию с полем движущейся жидкости, электрические заряды подобны точкам, из которых вытекает (или втекает) жидкость, увеличивая или уменьшая ее количество. Возникновение магнитного поля, благодаря движению электрических зарядов подобно движению тела в жидкости, которое приводит к появлению вихрей, не изменяющих общего количества жидкости.

Векторные поля, для которых поток через любую замкнутую поверхность равен нулю получили красивое, экзотическое название − соленоидальные . Соленоидом называется проволочная катушка, по которой можно пропускать электрический ток. Такая катушка может создавать сильные магнитные поля, поэтому термин соленоидальный означает «подобный полю соленоида», хотя можно было назвать такие поля попроще − «магнитоподобные». Наконец такие поля еще называют вихревыми , подобно полю скоростей жидкости, образующей в своем движении всевозможные турбулентные завихрения.

Теорема о магнитном потоке имеет большое значение, она часто используется при доказательстве различных свойств магнитных взаимодействий, с ней мы будем встречаться неоднократно. Так, например, теорема о магнитном потоке доказывает, что вектор индукции магнитного поля, создаваемого элементом, не может иметь радиальной составляющей, иначе поток через цилиндрическую поверхность коаксиальную с элементом тока был бы отличен от нуля.
 Теперь проиллюстрируем применение теоремы о магнитном потоке для расчета индукции магнитного поля. Пусть магнитное поле создается кольцом с током, которое характеризуется магнитным моментом p m . Рассмотрим поле вблизи оси кольца на расстоянии z от центра, значительно большем радиуса кольца (рис. 449).

рис. 449
 Ранее мы получили формулу для индукции магнитного поля на оси для больших расстояний от центра кольца

 Мы не допустим большой ошибки, если будем считать, что такое же значение имеет вертикальная (пусть ось кольца вертикальна) компонента поля в пределах небольшого кольца радиуса r , плоскость которого перпендикулярна оси кольца. Так как вертикальная компонента поля изменяется с изменением расстояния, то неизбежно должны присутствовать радиальные компоненты поля, иначе не будет выполняться теорема о магнитном потоке! Оказывается этой теоремы и формулы (3) достаточно, чтобы найти эту радиальную компоненту. Выделим тонкий цилиндр толщиной Δz и радиуса r , нижнее основание которого находится на расстоянии z от центра кольца, соосный с кольцом и применим теорему о магнитном потоке к поверхности этого цилиндра. Магнитный поток через нижнее основание равен (учтите, что вектора индукции и нормали здесь противоположны)

где B z (z) z ;
поток через верхнее основание равен

где B z (z + Δz) − значение вертикальной компоненты вектора индукции на высоте z + Δz ;
поток через боковую поверхность (из осевой симметрии следует, что модуль радиальной составляющей вектора индукции B r на этой поверхности постоянен):

 По доказанной теореме сумма этих потоков равна нулю, поэтому справедливо уравнение

из которого определим искомую величину

 Осталось использовать формулу (3) для вертикальной составляющей поля и провести необходимые вычисления 3


 Действительно, убывание вертикальной компоненты поля приводит к появлению горизонтальных компонент: уменьшение вытекания через основания приводит к «течи» через боковую поверхность.
 Таким образом, мы доказали «криминальную теорему»: если через один конец трубы вытекает меньше, чем вливают в нее с другого конца, то где-то воруют через боковую поверхность.

1 Достаточно взять текст с определением потока вектора напряженности электрического поля и изменить обозначения (что здесь и сделано).
2 Названа в честь немецкого физика (члена Петербургской академии наук) Вильгельма Эдуарда Вебера (1804 – 1891)
3 Самые грамотные могут увидеть в последней дроби производную функции (3) и элементарно ее вычислить, нам же придется очередной раз воспользоваться приближенной формулой (1 + x) β ≈ 1 + βx.


Электрический дипольный момент
Электрический заряд
Электрическая индукция
Электрическое поле
Электростатический потенциал См. также: Портал:Физика

Магни́тный пото́к - физическая величина, равная произведению модуля вектора магнитной индукции \vec B на площадь S и косинус угла α между векторами \vec B и нормалью \mathbf{n}. Поток \Phi_B как интеграл вектора магнитной индукции \vec B через конечную поверхность S определяется через интеграл по поверхности:

{{{1}}}

При этом векторный элемент dS площади поверхности S определяется как

{{{1}}}

Квантование магнитного потока

Значения магнитного потока Φ , проходящего через

Напишите отзыв о статье "Магнитный поток"

Ссылки

Отрывок, характеризующий Магнитный поток

– C"est bien, mais ne demenagez pas de chez le prince Ваsile. Il est bon d"avoir un ami comme le prince, – сказала она, улыбаясь князю Василию. – J"en sais quelque chose. N"est ce pas? [Это хорошо, но не переезжайте от князя Василия. Хорошо иметь такого друга. Я кое что об этом знаю. Не правда ли?] А вы еще так молоды. Вам нужны советы. Вы не сердитесь на меня, что я пользуюсь правами старух. – Она замолчала, как молчат всегда женщины, чего то ожидая после того, как скажут про свои года. – Если вы женитесь, то другое дело. – И она соединила их в один взгляд. Пьер не смотрел на Элен, и она на него. Но она была всё так же страшно близка ему. Он промычал что то и покраснел.
Вернувшись домой, Пьер долго не мог заснуть, думая о том, что с ним случилось. Что же случилось с ним? Ничего. Он только понял, что женщина, которую он знал ребенком, про которую он рассеянно говорил: «да, хороша», когда ему говорили, что Элен красавица, он понял, что эта женщина может принадлежать ему.
«Но она глупа, я сам говорил, что она глупа, – думал он. – Что то гадкое есть в том чувстве, которое она возбудила во мне, что то запрещенное. Мне говорили, что ее брат Анатоль был влюблен в нее, и она влюблена в него, что была целая история, и что от этого услали Анатоля. Брат ее – Ипполит… Отец ее – князь Василий… Это нехорошо», думал он; и в то же время как он рассуждал так (еще рассуждения эти оставались неоконченными), он заставал себя улыбающимся и сознавал, что другой ряд рассуждений всплывал из за первых, что он в одно и то же время думал о ее ничтожестве и мечтал о том, как она будет его женой, как она может полюбить его, как она может быть совсем другою, и как всё то, что он об ней думал и слышал, может быть неправдою. И он опять видел ее не какою то дочерью князя Василья, а видел всё ее тело, только прикрытое серым платьем. «Но нет, отчего же прежде не приходила мне в голову эта мысль?» И опять он говорил себе, что это невозможно; что что то гадкое, противоестественное, как ему казалось, нечестное было бы в этом браке. Он вспоминал ее прежние слова, взгляды, и слова и взгляды тех, кто их видал вместе. Он вспомнил слова и взгляды Анны Павловны, когда она говорила ему о доме, вспомнил тысячи таких намеков со стороны князя Василья и других, и на него нашел ужас, не связал ли он уж себя чем нибудь в исполнении такого дела, которое, очевидно, нехорошо и которое он не должен делать. Но в то же время, как он сам себе выражал это решение, с другой стороны души всплывал ее образ со всею своею женственной красотою.

В ноябре месяце 1805 года князь Василий должен был ехать на ревизию в четыре губернии. Он устроил для себя это назначение с тем, чтобы побывать заодно в своих расстроенных имениях, и захватив с собой (в месте расположения его полка) сына Анатоля, с ним вместе заехать к князю Николаю Андреевичу Болконскому с тем, чтоб женить сына на дочери этого богатого старика. Но прежде отъезда и этих новых дел, князю Василью нужно было решить дела с Пьером, который, правда, последнее время проводил целые дни дома, т. е. у князя Василья, у которого он жил, был смешон, взволнован и глуп (как должен быть влюбленный) в присутствии Элен, но всё еще не делал предложения.

Loading...Loading...