Своими руками ветрогенератор вертикальный. Ветрогенератор своими руками – руководство по постройке эко-генератора, его монтаж и подключение (105 фото)

Вы когда-нибудь думали о том, чтобы использовать дармовой и бесполезный, казалось бы, ветер для хозяйственных нужд? Ведь давно известно, что природная энергия дается нам даром и было бы странно, если бы мы не пытались использовать ее для себя! В этой статье автор не предлагает создавать старинные ветряные мельницы, или какой-нибудь фантастический двигатель на космическом ветре. Но вот построить ветрогенератор, причем необычный, с вертикальной осью вращения, который будет вырабатывать электричество, и с довольно с хорошей мощностью – дело достижимое своими руками. Идея вертикального ветрогенератора вполне реальная, ее могут реализовать даже начинающие мастера, живущие в деревне, или имеющие садовый дом за городом. А для школьной мастерской этот несложный ветряной генератор – настоящая находка, которая будет развивать технические умения у школьников и пробуждать таланты, которые стандартной школьной программы не всегда могут быть раскрыты. Такое устройство будет украшать школьный двор, а лопасти этого красивого ветрогенератора при ветре будут вращаться, привлекая внимание школьников и прохожих, пробуждая интерес к техническому творчеству.

Готовые китайские ветрогенераторы и детали для сборки в этом китайском магазине .

Мощность и конструкция вертикального ветряка

Электричество, которое можно получить с помощью этой ветроустановки с вертикальной осью, достаточно, чтобы питать насос для поливки огорода, дать освещение в школьном классе или в комнате жилого дома. Если бы была возможность хотя бы в 20 процентах домах иметь такую бесплатную маленькую ветряную электростанцию, вы можете себе представить, сколько можно было бы сэкономить киловатт-часов и разгрузить электрические сети нашей страны!

Вертикальный ветрогенератор состоит из двух частей, представляющих собой половины полого цилиндра, которые способны расходиться. Созданный таким образом объект имеет четкую аэродинамическую не симметричность. Воздух, который надвигается поперек оси вращения устройства, соскальзывает с наружной стороны первой половины цилиндра. А другая сторона, которая направлена в другую сторону, является для ветра препятствием. Такое соотношение приводит к тому, что барабан начинает вращаться на вертикальной оси, и по мере борьбы с ветром все более разгоняется.

Этот механизм был использован в модели ветряной электростанции, которую разработал юный изобретатель Сергей Корнев. Эта схема имеет выгодные отличия от ветроустановки с пропеллером. Здесь не требуется высокой точности, допустимо применять различные материалы для изготовления. Ее размеры также выгодно отличаются от пропеллерной модели.

Взгляните на самом деле. Мощность ветряка, основанного на барабанном принципе, требует использования ветроустановки диаметром приблизительно 1 метр, его мощность будет равна пропеллеру с тремя лопастями диаметром 2,5 метров. При этом пропеллер на вертушку необходимо поднимать на большую высоту, например на крышу дома, а барабанный пропеллер можно установить непосредственно на земле. Есть еще некоторые преимущества нового механизма: значительные крутящий момент, достигаемый при небольших оборотах. А это означает, что можно совсем не использовать редуктор, либо ограничиться одноступенчатым редуктором.

Сергей в первоначальной конструкции ограничился барабаном с двумя лопастями. Наиболее оптимальным может быть конструкция, в которой количество лопастей доведены до четырех. Это может значительно увеличить тягу.

Изготовление барабана

В качестве материала для создания лопастей можно взять фанеру, кровельное железо, лист дюралюминия, пластик нужного размера. Нужно учесть, что ротор не должен быть тяжелым, поэтому заготовки большой толщины здесь не подойдут. Это поможет снизить трение в подшипниках, ветроустановка будет лучше вращаться от энергии ветра.

Ниже чертеж вертикального ветряка

На рисунке 3:
1 – сопротивление;
2 – обмотка статора ;
3 – ротор;
4 – регулятор напряжения;
5 – реле обратного тока;
6 – прибор для измерения тока (амперметр);
7 – акб;
8 – предохранитель;
9 – выключатель.
Если в качестве материала применить кровельное железо, возникает необходимость укрепить вертикальные края лопастей. Для этого можно взять железный прут диаметром 5-6 миллиметров, установив его под отбортовкой. Фанеру, если используется она, нужно взять толщиной 5-6 миллиметров, этот материал требует обработки горячей олифой. Щеки барабана делаются из дерева, пластика, либо легкого металла. Стыки необходимо обработать масляной краской.

Крестовины в местах соединений лопастей ветрогенератора предпочтительно соединить сваркой или клепкой из остальных полосок размером 5 x 60 миллиметров. Если взять древесину, то толщина её должна быть не меньше 25 миллиметров, ширина 80 миллиметров.
Вертушки оптимально изготовить из куска стальной трубы длиной 2 метров, внешний диаметр 30 миллиметров. Предварительно, перед выбором заготовки для оси, нужно раздобыть 2 шарикоподшипника. Не стоит брать старые, так как это увеличение трения. Сопоставив размеры подшипников и трубы, вы сэкономите силы и время, вам не придется подстраивать трубу к обоймам подшипников.

Крестовины ротора ветрогенератора нужно приварить к оси вращения, крестовины из дерева присоединить эпоксидкой и металлическими штифтами 5- 6 миллиметров, они должны быть продеты через каждую крестовину и трубу. Для установки лопастей используйте болты М 12. Хорошо проконтролируйте промежуток от лопастей до оси вращения: здесь нужно соблюсти один размер – 140-150 мм. Сконструировав барабан, еще раз промажьте стыки масляной краской (желательно густой).

Базовая часть ветроустановки с вертикальной осью вращения завершена, теперь нужно сделать станину, сварив её или используя клепку, из уголка (можно как металл, так и дерево). На сделанную станину поставьте подшипники. Смотрите за тем, чтобы не возник перекос, так как в этом случае ротор не будет хорошо вращаться. Все элементы ветроустановки 2 раза покрасьте масляной краской, на нижнем месте оси вращения установите шкивы разного диаметра. Ремень, который переброшен через шкив вертушки, присоедините к электрогенератором, здесь подойдет, к примеру, автогенератор. Созданная по представленной технологии модель ветровой установки при ветре 9-10 метров в секунду способно дать мощность в 800 ватт.

Если ветра на улице нет, либо ветер очень слабый для вращения лопастей, то нужно передать вырабатываемую электроэнергию ветра для накопления на акб. Дует ветер – подавайте ток на потребителей, погода безветренная – подключайте аккумуляторы.

Если ветроустановка с вертикальным планируется для питания насоса огорода или сада, ее следует установить над источником воды.

Ниже – попытка сделать ветряк для садового насоса

Построение ветрогенератора с вертикальной осью


Расходные материалы:

Шаг 1: Запчасти

– Труба ПВХ
– Водостойкая древесина
– 2 подшипника (нижняя должна выдерживать нагрузку)
– Катанка (2 размера) (1 большая и 4 маленьких) (нержавеющая сталь, если возможно)
– Болты и шайбы (2 размера) (нержавеющая сталь, если возможно)
– кусок 40 мм круглого алюминия (сплав) (он удержит нижний подшипник)
– 3 винта с ушком

Шаг 2: Давайте начнем



Первое, что вы должны сделать, это измерить вашу трубу ПВХ и разрезать ее на 4 равных части. (у меня было 2 метра в длину, так что было 50 см за штуку).
Когда вы это сделаете, вы обрежете его по длине отверстия.
Теперь у вас должно быть 8 штук (они должны быть точно одинакового размера!

Шаг 3: Изготовление двух дисков турбины


Возьмите 2 куска водостойкой фанеры (12 мм).
Измерьте в 2 направлениях, чтобы получить середину пластины и отметьте эту точку.
Возьми свой компас и сделай круг диаметром 40 см.
Возьмите свою головоломку и вырежьте ее.

Шаг 4: Разделите круг на 8 частей

Вы должны сделать это только на одной доске.
На следующем шаге я объясню почему.

Шаг 5: Вырезание слотов для турбинных лопаток


Я сделал так, чтобы нарисовал линии на двух досках, а затем пометил все дуги, которые мне пришлось разрезать.
Это я бы не стал делать снова! Я думаю, что лучше отметить только один.
Дуги рисуйте так: возьмите одну половину трубы и держите ее напротив одной из 8 линий, которые вы нарисовали ранее. Нарисуйте линию внутри и снаружи трубы. Тот, где вы отметили луки, надеваете сверху, а затем вы зажимаете их вместе. Когда вы порежете их, они будут точно такими же. Я использовал лезвие, которое обычно предназначалось для резки металла. Этот пильный диск чуть тоньше, чем лезвия.
На стороне двух дисков вы делаете маркировку, которая проходит над ними обоими. Таким образом, при сборке турбины диски будут идеально выровнены.
То, что вы также должны делать, когда все еще зажато, это просверлить центральное отверстие до размера вашей большой катанки и 4 отверстия для маленьких стержней. Разделите 4 стержня на турбину, как показано на рисунке ниже. Держитесь на расстоянии около 2 см от луков. Таким образом, вы все еще можете поместить несколько шайб на свои стержни, не касаясь их лезвий. Возьмите зажимы и установите лопасти турбины и 4 меньших стержня, как показано на последнем рисунке. Это должно плотно облегать!

Шаг 6: Приспособление центральной проволочной катушки к размеру


Сначала вы устанавливаете верхнюю часть турбины так же, как вы делали нижнюю часть на предыдущем шаге.
Обратите внимание на маркировку, которую вы сделали на боковых сторонах дисков, когда они все еще были зажаты.
Таким образом, те же самые разрезы будут приятно накладываться друг на друга, и турбина будет меньше качаться после ее завершения. Возможно, вы захотите использовать молоток и маленький кусочек дерева, чтобы не повредить лезвия или диск при ударе по нему. Убедитесь, что лезвия плотно прилегают и 4 маленьких стержня находятся в нужном месте. Это была нелегкая работа. Успехов.
Теперь мы оснастим большую катанку необходимыми болтами и шайбами.
То, что собирались сделать сейчас, это отметка, где мы будем резать катанку.
Первая картинка – вид с нижнего диска.
Я положил 2 болта туда, и они будут опираться на нижний подшипник.
Я оставил там провод дольше, чтобы там можно было подключить какой-нибудь генератор.
Верхний диск – вторая картинка, и стержень будет обрезан короче.
На этой стороне у нас будет только подшипник для балансировки турбины, когда она установлена ​​на раме.

Шаг 7: Повернуть катанку вниз до нужного размера


Если у вас есть токарный станок, это довольно прямолинейная работа.
Я сделал стержень толщиной 10 мм с обеих сторон.
На фотографии показана нижняя сторона катанки.
Убедитесь, что он хорошо сидит, потому что это определит, насколько гладко будет работать ваша турбина.

Шаг 8: Изготовление держателя для нижнего подшипника







Подшипник, который я использовал, состоит из 3 частей, как показано на первом рисунке.
Этот подшипник сделан, чтобы справиться с вертикальным весом.
Если вы внимательно посмотрите, то увидите, что 2 диска не имеют отверстия одинакового внутреннего размера.
Диск с самым большим отверстием (тот, что справа) – это верхняя часть подшипника, на которой будет стоять турбина.
Я вырезал отверстие на токарном станке только диаметром подшипника. Делайте это в зависимости от размера подшипника, который вы будете использовать .
Не делайте дыру глубоко!
Убедитесь, что верхняя часть подшипника просто торчит из держателя.
Причина этого заключается в том, что верхнее кольцо будет вращаться вместе с турбиной и в противном случае трутся о внутреннюю часть держателя, что приведет к замедлению работы турбины и ее быстрому износу.
Вам также придется просверлить отверстие в нижней части держателя, чтобы катанка могла проходить сквозь него.
Сделайте его немного больше, чем размер стержня, чтобы его крепление не касалось боков.
Вы видели, что в этом подшипнике нет смазки, поэтому нам нужно будет установить смазочный ниппель.
Для этого используйте инструмент для нарезания резьбы.
Сначала просверлите отверстие в соответствии с протектором и размером соска, который вы будете использовать. Мой был М6.
Используйте немного смазочно-охлаждающей жидкости, потому что вы режете алюминий, и в противном случае он станет грубым внутри. Запустите режущий инструмент примерно на 1 оборот, а затем верните его назад на пол-оборота. Таким образом, металл режется внутри, и вы не будете тормозить инструмент. Используйте 3 этапа резки, пока не достигнете нужного протектора.

Шаг 9: Создание рамы вокруг турбины



Сначала вы получаете два куска дерева одинаковой длины.
Убедитесь, что они достаточно широкие, чтобы вы могли создать прочную структуру.
Посмотрите на центр их обоих и сделайте отверстие размером с держатель подшипника для нижнего и размер верхнего подшипника для верхнего.
Мне повезло, у меня была большая тренировка, чтобы сделать это. Если нет, возьмите свое самое большое сверло и просверлите его, а затем вырежьте остальное круглым топором.
Для нижнего вы должны просверлить центр желоба с помощью сверла на один размер больше, чем размер большого катанки, которая будет вставляться в подшипник. В нижней части вы должны будете вырезать маленький паз, чтобы ниппель мог поместиться внутрь и чтобы у вас было достаточно места, чтобы вставить смазочный насос. Вы можете видеть, как это должно выглядеть на фотографиях.
Возьмите еще два куска дерева по бокам. (У меня было немного фанеры, поэтому я использовал это)
Возьмите нижнюю часть с держателем подшипника внутри и положите ее на плоскую поверхность.
Используйте одну из боковых частей и прикрутите ее туда. Сначала просверлите несколько отверстий сбоку, чтобы винты лучше вошли. Убедитесь, что он идеально квадратный. (Угол 90 градусов).
Сделайте то же самое для другой стороны.
Теперь возьмите турбину, которая полностью собрана, и опустите ее в нижний подшипник.
Теперь возьмите верхнюю часть и наденьте подшипник на большой стержень. Измерьте по обе стороны турбины и убедитесь, что вы измеряете одинаковое расстояние, чтобы рама была идеально квадратной.
Фильм показывает, как хорошо он крутится.

Вложения

Шаг 10: Создание поддержки турбины






Этот материал я на самом деле не измерял.
Я позаботился о том, чтобы все было в идеальном соответствии с осью турбины.
Просто создайте его, как вы можете видеть на фотографиях.
Просто убедитесь, что его сильная причина будет в нем много силы.
Я еще не подключил ни одного генератора.
Понятия не имел, что с этим связано.
Я думал о другом генераторе энергии. (катушки и нео магниты)
Идеи приветствуются.
Надеюсь, вам понравилась эта турбина.
Держите меня в курсе вашего дела.

Шаг 11:


Как вы можете видеть в маленьких фильмах, я подключил некоторые веревки к турбине, чтобы она была устойчивой.
Я использовал несколько старых штифтов из палатки, чтобы соединить веревки с землей, а со стороны турбины я использовал 3 винта с ушком. Работает хорошо.
Когда вы устанавливаете турбину, убедитесь, что у вас есть кто-то, кто может удерживать турбину, пока вы подключаете провода к земле.



Источник

Расчет вертикального ветряка по сути ни чем не отличается от расчета обычного горизонтального. Но в расчете есть свои особенности так-как вертикальные ветряки типа "Бочка" работают не за счет подъемной силы, а за счет давления ветра на лопасти. Далее я приведу пример расчета ветряка в общих чертах. Расчет хоть и довольно точный, но он дает общее представление о мощности ветрогенератора, но не учитываются многие факторы, которые могут значительно влиять на реальный результат.

Самодельный вертикальный ветрогенератор

Для примера фото вертикального ветряка типа "Бочка"

К примеру мы хотим сделать ветрогенератор типа "Бочка" размером по ширине 2 метра, и высотой 3 метра. Количество лопастей не имеет особого значения, и скажем у нас 4 полукруглых лопасти. Для начала нам нужно узнать сколько энергии мы вообще можем получить с этого ротора.

Для расчета есть простая формула:

P=0.6*S*V^3

P - мощность Ватт

S - площадь ометания лопастей кв.м.

V^3 - Скорость ветра в кубе м/с

0.6 - это скорость ветра. Ветер движущийся в пространстве принимается за единицу, но ветер при подходе к любому препятствию теряет свою скорость и мощность. Так-как потери в скорости нам не известны, то будем брать 0.6, это с учетом того что ветер потеряет скорость на 33%.

Дополнительно формула расчета площади круга S=πr2 , где

π - 3,14

r - радиус окружности в квадрате

Вообще вертикальные ветряки подобно рекламным щитам ветер тормозят очень сильно, и перед препятствием образуется воздушная подушка, натыкаясь на которую новые порции ветра расходятся по сторонам и 30-40% энергии ветра уходит не принимая участия в давлении на лопасти. По-этому общий КПД, или по правильному КИЭВ ветроколеса у вертикальных ветряков достаточно низкий и составляет всего 10-20% от энергии ветра.

Из анализа самодельных вертикальных ветряков КИЭВ в основном 10% всего, но мы-же оптимисты, по-этому я буду брать КИЭВ 0.2, хотя здесь еще не учитывается КПД генератора и трансмиссии.

0.6*6*2*2*2*0.2=5,76 ватт при 2м/с

0.6*6*3*3*3*0.2=19,44 ватт при 3м/с

0.6*6*4*4*4*0.2=46,08 ватт при 4м/с

0.6*6*5*5*5*0.2=90 ватт при 5м/с

0.6*6*7*7*7*0.2=246 ватт при 7м/с

0.6*6*10*10*10*0.2=720 ватт при 10м/с

Теперь понятно на что способен данный ротор. Далее нам нужно подогнать генератор к этому ротору чтобы генератор смог вырабатывать максимально возможную мощность, которая имеется на роторе, и при этом не перегружать ротор - чтобы он мог вращаться и его обороты сильно не падали. Иначе толку не будет, выработка энергии сильно упадет. Чтобы подогнать генератор нам нужно узнать обороты ветроколеса на каждой скорости ветра.

В отличие от горизонтальных ветряков, где скорость вращения кончиков лопастей обычно в 5 раз быстрее скорости ветра, вертикальный ветрогенератор не может вращаться быстрее скорости ветра. Это связано с тем что тут ветер просто толкает лопасть, и она начинает двигаться с потоком проходящего ветра. А горизонтальный винт работает за счет подъемной силы, которая образуется у тыльной части лопасти, и она выдавливает лопасть вперед, и тут обороты ограничиваются только аэродинамическими свойствами лопасти и подъемной силой.

Вдаваться в подробности не будем, и вернемся к нашему ветроколесу. Чтобы высчитать обороты ротора размером 2*3 метра, где ширина ротора 2 метра, нужно узнать длину окружности ротора. 2*3,14=6.28 метра, то-есть за один оборот кончик лопасти проходит путь в 6.28 метра. Это значит что в идеале полный оборот ротор сделает за проходящий поток ветра длинной 6.28 метра. Но так-как энергия тратится на вращение, на трансмиссию, да еще и на вращение генератора - который нагружен аккумулятором, то обороты упадут в среднем в два раза. И того полный оборот ротор сделает за 12 метров потока ветра.

Тогда получается так, если ветер 3м/с, то при этом ветре за секунду ротор сделает 0,4 оборота, а за 4 секунды полный оборот. А за минуту при ветре 3м/с будет 60:4=15об/м.

При 3м/с 12:3=4, 60:4=15об/м

При 4м/с будет 12:4=3, 60:3=20об/м.

При ветре 5м/с 12:5=2.4, 60:2.4=25об/м.

При 7м/с 12:7=1.71, 60:1,71=35об/м

При 10м/с 12:10=1.2, 60:1.2=50об/м

С оборотами ветроколеса я думаю теперь понятно, и они известны. Чем больше в диаметре ветроколесо, тем меньше его обороты относительно скорости ветра. Так к примеру ветроколесо диаметром 1 метр будет крутится в два раза быстрее чем ветроколесо 2м в диаметре.

Теперь нужен генератор, который на этих оборотах должен вырабатывать мощность не более чем может выдать ветроколесо. А если генератор будет мощнее, то он перегрузит ротор, и тот не сможет раскрутится до своих оборотов, и в итоге обороты будут низкие и общая мощность. При ветре 3м/с у нас 15 об/м, и мощность ветроколеса 19 ватт , вот нужно чтобы генератор нагружал ротор не более 19ватт. Это с учетом КПД редуктора (если он имеется) и КПД самого генератора. КПД редуктора и генератора обычно не известны, но на них тоже значительные потери, и в общем на этом теряется 20-50% энергии, и на выходе на аккумулятор уже поступает всего 50%, это в нашем случае 10ватт примерно.

Если генератор перегрузит ветроколесо, то его обороты не выйдут на номинальные, и будут значительно ниже скорости ветра. От этого упадут обороты генератора и его мощность. Плюс еще значительно медленные по скорости лопасти относительно ветра, будут его сильно тормозить и ветер будет разбегаться в стороны, в итоге мощность ветроколеса упадет еще больше. Так со слишком мощным генератором энергии на аккумулятор будет в разы меньше чем могло бы быть. Или наоборот, когда генератор слишком слабый и при 15об/м ветроколеса не может на полную нагрузить ветроколесо, то то-же получается что мы берем гораздо меньше энергии от возможной.

В итоге генератор должен соответствовать по мощности ветроколесу, только так мы можем снять максимально возможную мощность ветроколеса. Это можно сказать самая сложная задача так-как генератор может абсолютно разных характеристик напряжения и тока к оборотам. Чтобы подобрать генератор его нужно покрутить на аккумулятор и измерить отдаваемую энергию, или просчитать по формулам. А далее уже пробовать подгонять к ветроколесу.

К примеру у вашего генератора при 300об/м 1Ампет на АКБ 14вольт, это примерно 14ватт, а ветроколесо выдает 19ватт при 15об/м. Значит мультипликатор нужен 1:20 чтобы генератор крутился при этом на 300об/м. При 5м/с обороты ветроколеса 25об/м, а генератор значит будет вращаться со скоростью 500об/м. Мощность ветроколеса у нас при этом всего 90ватт, а генератор превышает по мощности и дает 200ватт. Так не пойдет ветроколесо просто будет медленно вращаться и свои 90ватт не выдаст - а 200ватт тем-более. Выход - или жертвовать началом зарядки и делать редуктор 1:15, или увеличивать по высоте ветроколесо в два раза чтобы ветроколесо потянуло генератор.

Так нужно чтобы генератор соответствовал по мощности и оборотам на всем диапазоне вращения ветроколеса. А если генератор не-дотягивает по мощности, то нужно или увеличивать передаточное число мультипликатора, или уменьшать ротор чтобы добиться баланса между оборотами и мощностью ветроколеса и генератора. Часто люди вообще без всяких расчетов ставят генераторы от чего найдут, и строят ветроколесо насмотревшись видео с ютюба, а в итоге получается что ветрогенератор не работает на малом ветру и по мощности просто мизер совсем.

У меня всегда была слабость к ветродвигателям с Вертикальной осью вращения из-за преимуществ, которые они предлагают. К сожалению, большинство из них, такое как Savonius не очень эффективны, но могут работать при низких характеристиках ветра.Я запускал искать любых другие, которые использовали принцип Савониуса. Я закончил тем, что строил этого также и нашел подобные характеристики, но этот также казался немного низко по КПД, тем не менее оно действительно выигрывало у Savinous снова.

Я запускал играть вокруг с малыми блоками и строил из кофейных банок, может смоделировать, который заканчивал тем, что достиг 700 оборотов в минуту и был назван, «Кофе на 700 ОБОРОТОВ В МИНУТУ возможно». Это действительно не делало много энергии, являющейся столь же малым, как это было и было в основном сокращено. Ниже представлено изображение с помощью кофейной банки можно проводить эксперименты самодельного ветрогенератора с вертикальной осью вращения … Если Вы решите попробовать, я вам посоветую, металл является очень острым, и Вы должны надеть перчатки соблюдая все меры безопасности…

В основания я разделил это на 4 сечения, выключился два и заклеил липкой лентой их назад в можение на двух остающихся сечениях. Это достигало 700 оборотов в минуту в ветре на 12.5 миль в час.

Я решил строить большие ветрогенераторы , используя пластиковые ведра и подобные методы использовались в строительстве. Это было реальная лажа! Это не работало вообще. После некоторой мысли относительно того, почему это не работало, я решил попробовать круглый барабан в центре. Я ставил пару друг на друга больших кофейных канистр внутри и заклеил липкой лентой их по диаметру. Изменяя воздушный поток через блок это работало хотя не очень хорошо.

После попытки связки различных барабанов и форм я решил получить немного более научным в своем испытании вместо моего способа моделирования ветрогенераторов.

Я был заинтригован относительно точно, что продолжалось. Я запускал делать некоторые статические испытания потока воздуха через с вертикальной осью вращения в то как в различных положениях, но не прядении. Используя ручной анемометр я проверял скорость ветра впереди и позади блока так же как внутри. Воздух, текущий посредством вращения, был фактически более быстрым чем воздух, входящий в торможение. Я нашел некоторую формулу Вентури и запустил проверять формы лопастей самодельного ветродвигателя. Я полагал, что у меня была достаточная информация, чтобы проектировать что-то немного большее, и получить некоторые лучшие результаты испытаний.

Используя комбинацию дизайнерских идей ветродвигателя Savinous наряду с теорией трубки Вентури я придумал дизайн, который немного отличается от привычных.

Хотя подобный Darrieus лопасти, подобные Savonius, и треугольному барабану в середине, чтобы вести поток воздуха, конструкция была установлена. Я строил несколько уменьшенных вариантов для испытания, и результаты выглядели перспективными и показали, что я казался на верном пути. Должен был строиться больший. Ниже последний, строивший к этой идеи… Простое изготовление используя фанеру и алюминий.

Другая конструкция ветрогенератора Lenz сделанный своими руками

Ниже выставок начало второй версии. Используя части от первого и некоторой беглой фальсификации для крыльев я начал проверять блок. Генератор переменного тока — 12 полюсовая машина, которую я составлял только для этого проекта.

Потребовалось некоторое лужение, чтобы получить это, где я думал, что это должно быть с хорошим и не так хорошие результаты.

Так как блок немного отличался чем оригинал, мои лопасти не развивали реальную скорость. Я играл с одним крылом на машине, чтобы узнать, где вращающий момент был, в то время как это прогрессировало вокруг 360 измерений каждых 10 градусов. Я понял в той точке, которой не был вращающий момент то, где я думал и запустил играть с углами крыла снова. Наконец это было набрано по номеру в в 9 градусах и работавшее идеально с максимальным кпд!

Пришло время взять на вооружение для реальных испытаний.

Я крепил это на переднем погрузчике моего устройства подачи, и протестировал его на ветре.

Ниже некоторое экспериментальные цифры…

5.5 миля в час запускает наполнять

7.1 миля в час 3.32 ватта

8.5 миля в час 5.12 ватт

9 миль в час 5.63 ватт

9.5 миля в час 6.78 ватт

Не плохо для малой величины 2 фута 2-футового ветрогенератора.

Пришло время строить больший, чтобы видеть, могло ли бы это быть расширено и все еще сохранить свой эффективный кпд.

Я создавал больший диаметр 3 футов x 4-футовый высокий блок, показанный ниже..

Я не собираюсь входить в большое количество деталей, но это делает 52 потребляемых мощности ветра на 12.5 миль в час. Я не, чтобы быть отпечатанным легко, эта машина определенно отпечатала меня. Теперь, Его время, чтобы взять это к другому уровню….

Строение лопастей ветрогенератора Lenz размер 3 на 4 фута

Некоторые детали для строительства 3 фута диаметр х 4 фута высокий Lenz2 турбины…

Ниже приведен чертеж крыла ребра вырезаны из 3/4 «фанера.

Примечание: выше рисунок показывает, что только 6 ребра требуется, чтобы на самом деле должно быть 9 ребер. Первоначально я проектировал это только с конца ребра на месте с помощью кронштейна жесткости в центре. 3-го ребра на самом деле делает их гораздо крепче.

Лопасти самодельного ветрогенератора в основном построены из 3/4 «фанера для ребер и стрингеры были вырезаны из обработанных 2×4 . Стрингеров склеиваются в слот, а затем пробурили для шурупами. Просто зажмите стрингеров в пазы и нанесите клей для установки. После того как клей установить Вы можете покрыть крылья алюминиевым листом. Я также использовал ПВХ листа в 1/8 «толщина которого может быть дешевле, чем алюминий. Алюминиевого листа толщиной 0,025 было и на самом деле легче, чем лист ПВХ. Другие легких материалы тоже можно использовать для изготовления лопастей для ветрогенератора.

Выше еще один снимок лопасти ветрогенератора

Заклепки алюминиевые 1/8 «и 3/4 до 1 дюйма в длину.

Я начинаю изгиб под углом 90 градусов по передней кромке и алюминиевой заклепки на вершину внешней передней кромке крыла кадра. Переверните лист алюминия по кромке рамки. Зажмите его к задней кромке. Начните ставить заклепки равномерно распределяя вокруг убедившись, что алюминий плотно натягивается на ребро, как вы идете.

Когда алюминий прикреплен к раме согнуть заднюю кромку, чтобы сформировать изгиб на задние стрингера.

Ниже приводится изображение генератора конце турбины установлен на 1 квадратный дюйм труб рамы…

Рамка для турбины был сделан из стандартного 1х1 квадратных стальных труб сварных вместе, чтобы сформировать «ящик» форму с большим количеством оформление по бокам. В приведенной выше картинке вы можете видеть две стальные пластины чуть выше, свидетельствующий, что приварена к раме провести статора на месте. Верхний и нижний дисков вращаются и статора просто сидит по центру воздушный зазор между ними.

Самодельный ветрогенератор будет работать гораздо лучше на высоких платформ в чистой не турбулентном воздухе.

Это работает очень хорошо, где она расположена, но это будет работать гораздо лучше и обеспечить более высокий более длительный выход в лучшее место.

Масштабирование самодельного ветрогенератора и установка крыла показано на рисунке ниже…

Ниже приведены некоторые формулы, чтобы помочь найти оборотов в минуту он может работать на данной ветра, а также, сколько энергии можно было бы ожидать от устройства….

Вт выходной = 0,00508 х площадь х скорость ветра ~ 3 Эффективность Площадь в квадратных футах (высота х ширина)

Скорость ветра в миль / ч

Пример: 3 х 4, описанные выше в 15 миль / ч ветра и генератор переменного тока на 75 % эффективнее будет иметь выходную мощность;

0,00508 х (3х4) х 15 ^ 3 х (0,41 X.75) = 63,26 Вт

Эффективность будет зависеть от переменного тока и строительной техники. Турбина, как проверенный будет функционировать на 41 % эффективности на валу. Генераторы эффективность будет меняться в зависимости от нагрузки. Если у вас есть генератор выступая на 90 %, турбины на 40 %, то общая производительность машины будет 0,9 х 0,4 = 0,36 или 36 % эффективнее. Если генератор лишь на 50 % эффективнее, то общий КПД будет 0,5 х 0,4 = 20 %. Как вы можете видеть генератора эффективность играет большую роль в общей эффективности или то, что вы видите для зарядки.

Насколько велика будет его должна быть, чтобы удельная мощнос

ть в данном ветер…

Вт / (0,00508 х скорость ветра ^ 3 х КПД) = общая квадратных метров площадь

Пример: Допустим, мы хотим 63 ватт в 15 миль / ч ветра с помощью цифровых сверху;

63 Вт / (0,00508 х 15 ^ 3 х (0,75 x.41)) = 11,94 кв.м (или 3 фута диаметр х 4 фута в высоту)

Как быстро он будет работать в той или иной скоростью ветра…

Скорость ветра х 88 / (диаметр х 3,14) х TSR

Скорость ветра в миль / ч

«88» просто конвертировать миль / ч в футах в минуту

TSR (окружная скорость отношение) для этой машины для пиковая мощность составляет 0,8. Потому что он представляет собой гибрид лифта / сопротивления машины для того, чтобы извлечь энергию из обоих против ветра и по ветру крыльями она должна работать немного медленнее, чем на ветру. 0,8-видимому, оптимальное время загрузки, хотя он будет работать на 1,6 выгружен.

Пример: тот же турбины 15 миль в час ветер загружены до 0,8 TSR…

15 миль в час х 88 / (3 х 3,14) х 0,8 = 112 оборотов в минуту

или патронов — 15 х 88 / (3 х 3,14) х 1,6 = 224
Некоторые вещи, которые необходимо учитывать при проектировании… если генератор слабый турбина будет «убегать» или превышения скорости при сильном ветре. Он должен быть хорошо сбалансирован, чтобы справиться с этими условиями или она может вибрировать и вызывать что-то сломать, а также сжечь генератор. Лучше надстраивать генератора немного. Вы должны включать в себя способ контроля скорости, таких как короткое замыкание переключателя или перерыв, чтобы замедлить и даже остановить его при сильном ветре. Короткое замыкание переключателя просто подключить к вашей провода выходе из генератора и шорты переменного тока. Это загружает турбин значительно, это не остановит его от поворота, но получится очень медленно, с высокой нагрузкой — здесь все зависит от генератора переменного тока используется. С VAWT не может быть «свернутым» от ветра они должны быть под контролем.

Я разработана турбина работает очень хорошо в слабом ветре, и работать на гораздо безопаснее скорость, чем некоторые из его коллег. Это крыло дизайн очень грязный в ветрах над 20 миль в час и эффективность падает значительно выше ветра, хотя он будет продолжать производить более высокой мощности при увеличении скорости ветра.

Суммы, которые приходится платить за коммунальные услуги, растут с каждым годом. Особенно это касается электроэнергии. Но не все знают, что добыть ее можно в буквальном смысле из воздуха, а точнее – с помощью силы ветра.

Благодаря которым это возможно, называются ветрогенераторами. Покупка такого оборудования обойдется недешево. Однако, можно сэкономить, сделав вертикальный ветряк своими руками.

В отличие от других способов получения энергии, ветряки обладают массой преимуществ, таких как:

  • экологичность
  • работа без топлива
  • экономия электроэнергии
  • несложное обслуживание
  • использование неисчерпаемого источника энергии

Кроме того, хорошо ветряк позволит сделать дом автономной точкой по добыче электричества.

Минусов у ветряных генераторов практически нет, однако, у них есть незначительные недостатки:

  • высокая стоимость установок (заводские модели)
  • шумность
  • избыточная энергия требует дополнительных аккумуляторов
  • изменчивость мощности

Последний недостаток является наиболее существенным, однако, от него можно избавиться, дополнив установку батареями. Кроме того, эффект работы ветряных генераторов полностью зависит от переменчивости погодных условий.

Как видно, преимуществ у ветряного генератора больше, что говорит о выгодности его использования.

Кому это выгодно

Видов ветряных генераторов очень много, а подвидов тем более. То, какое устройство следует установить на том или ином , зависит от следующих факторов:

  • скорость ветров на местности
  • назначение устройства
  • предполагаемая сумма затрат

Перед непосредственной установкой ветряка нужно несколько раз обдумать: окупятся ли затраты. Для начала следует определить скорость и направление ветра на предполагаемой для установки местности.

Получить эту информацию можно двумя способами: самостоятельно или обратиться в местную метеослужбу. Для первого варианта потребуется портативная станция, которую можно взять в аренду или приобрести.

Плюс самостоятельных замеров в их точности, однако, на полноценное исследование потребуется не менее одного года. Данные, полученные в метеослужбе будут иметь приблизительные значения, но не потребуют затрат на и времени на дополнительные расчеты.

Для установки ветряка показатель скорости ветра за год должен быть не меньше 4,5 м/с-5м/с.

При значениях около 4-5 м/с вырабатываемая генератором средней мощности энергия будет равна 250 кВт-часов в месяц. Этого достаточно, чтобы обеспечить электричеством дом на 3-4 человек с отоплением и горячей . За год ветряк может вырабатывать до 3 тыс. кВт-часов. Стоимость установки такого ветрогенератора равняется примерно 180 тыс. рублей.

Создание собственной установки обходится в разы дешевле. При этом стоит учесть постоянный рост тарифов на электроэнергию. Таким образом, ветрогенератор может стать хорошим альтернативным источником электроэнергии.

Где устанавливать

Выбор места для установки ветряка – один из самых важных этапов. Наилучшим вариантом будет свободная возвышенная точка. Важно, чтобы ветрогенератор не располагался ниже уровня ближайших и построек, которые будут препятствовать потокам ветра.

Наиболее подходящие места для установки ветряных генераторов: степи, берега водоемов, пустыни и возвышенности. На подобных территориях чаще всего дуют сильные и постоянные ветра.

В многоквартирных или в городской среде поместить генератор можно на крыше. Данную процедуру стоит согласовать с соответствующими инстанциями. Для того чтобы убедиться, что вибрации ветряка не нанесут вреда крыше, стоит изучить ее конструкцию.

Чтобы шум от генератора не досаждал, следует устанавливать его на расстоянии 15-25 м от жилых зданий.

Один из главных параметров ветряка – расположение вращательного механизма (вала) относительно земной поверхности. По этому признаку устройства делятся на горизонтальные и вертикальные.

Первые работают по принципу ветряной мельницы: механизм вращается в поисках ветра и лопасти от малейших воздушных потоков приходят в движение.

Такой тип устройства вырабатывает большое количество электроэнергии, которой будет много для частного дома.

Ветряки с вертикальной осью вращения будут идеальным решением для обеспечения электроэнергией небольшого участка или частного производства.

Кроме того такое устройство обладает следующими преимуществами:

  • не зависимо от направления ветра
  • не подвержено воздействию погодных условий
  • работает даже на низких скоростях
  • площадь лопастей в 2 раза больше, чем у горизонтальных ветряков

У вертикального ветрогенератора есть и недостатки: низкий КПД и высокий уровень шума. Но, эти минусы незначительны, в сравнении с общей пользой устройства.

Итак, горизонтальный ветряк можно устанавливать прямо на крыше, а вертикальный следует держать на расстоянии.

Как превратить ветер в тепло

Даже от ветряка невысокой мощности можно получить тепло для целого дома. Одной из наиболее легких в исполнении является система отопления с естественной циркуляцией.

Установив вертикальный ветряк своими руками для обогрева, можно сэкономить приличную сумму. Кроме того, при использовании системы естественной циркуляции вместе с ветряным генератором не нужно тратиться на насос.

Схема отопления включает в себя:

  • Бойлер
  • Проводящая прямая труба (для доставки нагретой воды)
  • Радиаторы
  • Обратная труба (для доставки остывшей воды обратно)

Бойлер устанавливается ниже уровня всей системы. Это необходимо для обеспечения естественной подачи в него воды.

С помощью прямых и обратных труб радиаторы последовательно соединяются, соответственно, с верхней и нижней частью бойлера. Нагреваемая в нем вода будет выдавливаться вверх, попадая поочередно в радиаторы.

Такая система позволит существенно сэкономить на обогреве дома. Кроме того, она будет регулировать температуру в помещении.

Комплектующие ветряного генератора

Чтобы сконструировать даже самый простой вертикальный ветряк своими руками (220 В), нужно приобрести основные составляющие:

  • ротор – подвижная часть генератора
  • лопасти
  • мачта – может иметь различную конструкцию (тренога, пирамида)
  • статор – на нем расположены катушки с медной проволокой
  • аккумулятор
  • инвертор – переводит постоянный ток в переменный
  • контроллер – предназначен для «торможения» генератора, когда его мощность превысит установленное значение

Для изготовления лопастей лучше всего использовать листовой пластик. Другие материалы подвержены сильной деформации и повреждениям. Чем больше площадь предполагаемой детали, тем плотнее должен быть пластик.

Выбирая материал, важно убедиться, что это именно качественный ПВХ, иначе придется снова тратиться на новые составляющие и производить сложные расчеты.

Таким образом, для создания собственного ветряка не потребуется дорогих или редких деталей.

Вертикальный ветряк против горизонтального

Чтобы понять, какая конструкция ветряка работает эффективнее, стоит подробнее рассмотреть особенности каждой из них. Горизонтальный генератор имеет следующие достоинства:

  • эффективен при любом направлении воздушных потоков
  • занимает гораздо меньше места по сравнению с вертикальным
  • работает на высоких оборотах даже при незначительной скорости ветра
  • обладает простой конструкцией
  • не издает шума

К тому же ветрогенераторы горизонтального типа выполняются из легких материалов, и могут быть установлены даже на фонарный столб. При размещении вдоль дороги такие конструкции работают даже в безветренную погоду.

Срок службы ветрогенераторов обоих типов примерно одинаков. Правильный уход и обслуживание позволяют им эффективно работать на протяжении до 25 лет. В горизонтаьных ветряках основная нагрузка приходится на ступицу и подшипниковый узел. Вертикальные изделия испытывают большее давление на лопасти.

Самым большим различием между этими видами ветряков является их цена. Горизонтальные обходятся владельцам подобных конструкций гораздо дороже.
Такиой ветряк лучше использовать зонах с повышенной турбулентностью и частой сменой направления ветра. Вертикальные больше подходят для местности открытого типа с постоянной скоростью ветра выше 4,5 м/с.

Исходя из результатов сравнения, многие дачники выбирают вертикальный тип ветряного генератора.

Подготовка деталей вертикального ветряка

Лопасти выполняются из различных материалов. Главное условие – они должны быть легкими.

Наиболее простым вариантом станет изготовление лопастей из трубы ПВХ.

Они менее подвержены воздействию солнечных лучей и являются достаточно прочными.

Для вертикального ветряка создается 4 детали из ПВХ и 2 из жести. Последние вырезаются в форме полукругов и крепятся по обе стороны трубы.

Крепление лопастей происходит на каркас по кругу. Радиус вращения лопастей будет равен 690 мм. Высота каждой лопасти – 700 мм.

При сборке ротора потребуются следующие детали:

  • 6 неодимовых магнитов и 2 ферритовых
  • диски по диаметром 230 мм (2 штуки)

На одном диске следует разместить неодимовые магниты, при этом не забывая менять их полярность, чередуя при установке. Между ними требуется соблюсти угол в 60 градусов, при диаметре 165 мм. На 2 диск следует прикрепить по такой же схеме ферритовые магниты. Затем их нужно залить клеем.

Для того, чтобы начать изготовление статора, нужно намотать 9 катушек по 60 витков. Обычно для этого используется медный провод диаметром в 1 мм. Затем катушки спаивают друг с другом следующим образом:

  • начало 1 соединяется концом 4
  • 4 – с 7

Вторая фаза собирается точно так же, только спаивание происходит со второй катушки, и соответственно, третья фаза спивается с 3 катушкой. Из фанеры нужно изготовить специальную форму. В нее укладывается кусок стекловолокна, а затем катушки.

Завершающим этапом становится заливание конструкции клеем. Спустя сутки статор готов к работе.

Теперь, когда все части генератора сделаны, их нужно только соединить:

  • В верхнем впоследствии будут присутствовать шпильки. Для них нужно проделать отверстия (4 штуки). Они предназначены для плавной «посадки» ротора на место.
  • В статоре также проделываются отверстия – для кронштейна.
  • На него ложится нижний ротор (магнитами вверх).
  • Затем укладывается статор.
  • Сверху размещается второй ротор магнитами вниз. Детали фиксируются друг с другом с помощью гаек.

Подробного рассмотрения требует и конструкция вертикального генератора. К его основным недостаткам относится низкий КПД и большее количество деталей по сравнению с горизонтальным. С другой стороны, такое изделие может эффективно работать даже при малом ветре.

Горизонтальный генератор надежнее, поскольку способен выдерживать сильные порывы ветра. Бесшумность такого типа конструкции – также один из важнейших его преимуществ. Устанавливать горизонтальный ветряк можно даже на крыше жилого дома.

Таким образом, собрать основные детали ветряка не составляет большой сложности.

Конструкция ветрогенератора

Ветрогенератор представляет собой колесо с присоединенными к нему лопастями, редуктор (преобразует и передает крутящий момент), батарею и инвертор.
Сборка конструкции изделия осуществляется следующим образом:

  • Подготовка трехточечного армированного фундамента.
  • Мачта изготавливается из прочных труб (можно взять водопроводные). Она должна выносить ротор выше чердака.
  • Прикручивание генератора к готовой мачте.
  • Присоединение каркаса с лопастями к генератору.
  • Крепление мачты к фундаменту и дополнительная ее фиксация с помощью растяжки.

Сбор электрической сети также осуществляется в определенной последовательности.

Ветряк должен выдавать трехфазный переменный ток, преобразуемый в постоянный при помощи мостового выпрямителя. Для контроля уровня заряда используется стандартное автомобильное реле. К батарее подключается инвертор, который выдает 220 В переменного тока.

Таким образом, получаются следующие результаты работы готового ветряка при различной скорости ветра:

  • 5 м/с – 15Вт
  • 10,4 м/с – 45 Вт
  • 15,4 м/с – 75 Вт
  • 18 м/с – 163 Вт

Существует несколько способов повышения выработки энергии генератором. К примеру, если увеличить высоту мачты до 26 метров, среднегодовая скорость ветра повышается до 30%. При этом электричества вырабатывается в 1,5 раза больше. Это обеспечивается устранением влияния построек и деревьев на скорость воздушных потоков.

Итак, чтобы ветряк работал эффективно, нужно заранее рассчитать его конструктивные характеристики.

Уход за ветряком

В качестве регулярного ухода за конструкцией проводятся следующие процедуры:

  • смазывание движущихся частей (не реже 2 раз в году)
  • подкручивание болтов и электрических соединений
  • проверка механизмов на ржавчину и ослабленные растяжки
  • контроль поломки лопастей

Наиболее частым повреждением ветряка является отрыв лопасти. Зимой на них появляется корка льда. Частая их очистка продлит срок службы конструкции.
Покраска деталей производится по необходимости. Раз в год нужно полностью осматривать конструкцию на предмет повреждений.

Самодельный ветряк сильно отличается по значениям мощности от заводских изделий. Это объясняется неточными расчетами. Горизонтальный ветряк при теоретической мощности 101 Вт будет выдавать лишь 90, а вертикальный при 69 Вт — около 60.

Чтобы не разочароваться в низких показателях самодельной конструкции, стоит изготавливать ее с расчетными параметрами в 2 раза выше необходимых.

Таким образом, сборка вертикального ветряка является довольно простым вариантом обеспечения жилого дома электроэнергией. Это объясняется простотой сборки конструкции, дешевизной проекта и высокой эффективностью работы устройства. К тому же, обслуживание он требует минимальное, а электричество вырабатывает постоянно. О том, как сделать ветряк самостоятельно, представлено на видео:

Теперь получить бесплатную электроэнергию с помощью ветра вполне возможно. Существует несколько вариантов ветряков: с вертикальной и горизонтальной осью. Собрать вертикальный ветрогенератор своими руками может практически каждый человек, как правильно это сделать, читайте в нашей статье.

Принцип работы ветрогенераторов

Принцип работы во всех модификациях ветряков одинаков. В процессе вращения лопастей образуется три вида физического воздействия: подъемная, импульсная и тормозящая силы. В результате воздействия этих сил статор приходит в движение, а ротор на неподвижной части генератора начинает создавать магнитное поле и электрический ток движется по проводам.

Вариантов исполнения ветрогенераторов большое количество, отличаются они не только мощностью, но и своим внешним видом. Структура большинства ветряков включает в себя: генератор, лопасти, инвертор, мультипликатор. Инвертор используется для преобразования полученного заряда в постоянный ток. Мультипликатор — это редуктор, который предназначен для увеличения числа оборотов вала. Устанавливают редукторы не на все ветряки, в основном только на большие и мощные ветровые установки.

Трехфазный переменный ток образуется благодаря вращению ротора. Полученная энергия направляется через контроллер к аккумуляторной батарее. Далее инвертор преобразовывает ток и делает его стабильным, именно в таком виде его можно подавать для питания бытовых приборов или освещения.

Как самостоятельно изготовить ветрогенератор вертикального типа

Изготовить ветряк можно самостоятельно в домашних условиях. Для начала нужно определиться с видом ветрогенератора. В зависимости от своей конструкции ветроустановки бывают:

  • с вертикальной осью вращения: ротор Дарье, ветрогенератор Савониуса;
  • с горизонтальной осью вращения: параллельной или перпендикулярной потоку ветра.

Некоторые модели ветряков совмещают в себе несколько типов установок. Рассмотрим пример создания гибридного ветряка, который совмещает в себе конструкцию ветровых генераторов типа Савониуса и Дарье.

Собираем ротор

Чтобы собрать ротор, необходимо приобрести:

  • 6 неодимовых магнитов D30хH10 мм;
  • 6 ферритовых кольцевых магнитов D72xd32xh15 мм;
  • 2 металлических диска D230хH5 мм;
  • эпоксидная смола или клей.

Вместо металлических дисков можно использовать пильные диски подходящего размера. На одном диске размещают 6 неодимовых магнитов, чередуя их полярность, угол между ними должен быть 60 градусов на диаметре 165 мм.

На втором диске по такому же принципу располагают ферритовые кольцевые магниты.

Чтобы магниты не сдвинулись во время работы ветряка, их нужно хотя бы до половины залить эпоксидным клеем.

Изготавливаем статор

Сначала необходимо намотать 9 катушек по 60 витков, для этого используют эмалированный медный провод диаметром 1 мм.

Далее катушки спаивают между собой: начало первой катушки с концом четвертой, четвертая с седьмой. Вторая фаза точно так же соединяется через две катушки, только спаивать начинают со второй катушки. Соединение третьей фазы начинается с третьей катушки.

Из фанеры изготавливается форма, в нее укладывают пергаментную бумагу, сверху которой кладут кусок стекловолокна и катушки.

Все это заливается эпоксидной смолой. Через 24 часа из формы извлекается готовый статор.

Сборка генератора

Все части генератора готовы, осталось их только собрать.

Сам генератор будет крепиться к кронштейну с хабом с помощью шпилек. Детальнее рассмотрим процесс сборки.

Этапы сборки генератора:

  • в верхнем роторе проделывается 4 отверстия с резьбой под шпильки. Они необходимы для того, чтобы ротор плавно «садился» на свое посадочное место;
  • в статоре проделывается 4 отверстия под крепление кронштейна;
  • на кронштейн укладывается нижний ротор магнитами вверх, в нем также просверливается 4 отверстия под резьбу для шпильки;
  • на нижний ротор кладут статор;
  • сверху укладывают второй ротор магнитами вниз. Все это фиксируется между собой и кронштейном с хабом шпильками и гайками.

Хаб (фланец с подшипниками) нужно приобрести отдельно: нижняя часть хаба должна быть диаметром под 1,5 дюймовую трубу.

Очередность крепления всех деталей более детально представлены на схеме ниже:

1 — соединительный элемент; 2 — опора лопастей; 3 — верхняя часть ротора; 4 — магнит; 5 — втулка; 6 — статор; 7 — нижняя часть ротора; 8 — гайка; 9 — шпилька; 10 — хаб; 11 — ось; 12 — кронштейн для крепления статора

Изготавливаем лопасти

Лопасти можно изготовить из дерева, стеклоткани и других материалов. Быстрее и легче эту часть ветрогенератора смастерить из канализационной ПВХ трубы. Лучше использовать трубы оранжевого цвета, так как они обладают хорошей плотностью и не боятся попадания прямых солнечных лучей.

Для вертикального ветрогенератора понадобится 4 лопасти из ПВХ трубы и 2 ортогональные (изогнутые) лопасти из оцинкованной жести. Такая конструкция позволит вращаться ветряку даже в условиях слабого ветра со скоростью 2-3 м в секунду. Берем метровые отрезки ПВХ трубы и разрезаем их вдоль на 2 равные части. Из жести вырезаем полукруги по размерам будущей лопасти и крепим их с помощью болтов по краям трубы.

Чтобы изготовить ортогональные лопасти, вам понадобится стандартный оцинкованный лист стали толщиной 0,75 мм. Сначала ножницами по металлу вырезается два отрезка размером 1х0,4 м и четыре отрезка в виде капельки. Потом отрезки стали нужно согнуть и по краям прикрепить отрезки «капельки».

Крепят лопасти по кругу на каркас, его можно сварить из профильной квадратной трубы 20х20 и уголков 25х25. Размеры каркаса и расстояние между лопастями можно увидеть на схеме ниже:

Сборка конструкции ветрогенератора

Из водопроводных труб различного диаметра сваривается мачта, высота ее зависит от местности, где будет располагаться ветрогенератор, и условий его эксплуатации, но в любом случае он должен быть выше крыши дома.

Заранее под секционную мачту нужно подготовить трехточечный армированный фундамент. К готовой мачте на земле прикручивается генератор. Далее к генератору прикрепляется болтами каркас с лопастями. Мачта с ветряком крепится к фундаменту с помощью двух шарнирных опор и посредством лебедки поднимается в вертикальное положение. После подъема мачты третья опора с помощью болта прикручивается к основанию ветряка. Дополнительно мачту нужно зафиксировать с помощью растяжки.

Электрическая часть

Ветряк будет выдавать 3-х фазный переменный ток. С помощью мостового выпрямителя, состоящего из 6 диодов, преобразовываем его в постоянный ток.

Это дает возможность заряжать аккумулятор на 12 В. Для контроля зарядки аккумулятора и предотвращения его перезарядки используют стандартное реле зарядки автомобиля РР-380.

К аккумулятору подключают инвертор, который позволяет преобразовать полученные 12 В постоянного тока в 220 В переменного частотой 50 Гц.

Результат работы ветряка: расчет эффективности

Тестовые испытания ветрогенератора при разной скорости ветра показали следующие результаты:

  • при скорости ветра 5 м/с получаем 60 об/мин — 7 В и 2,3 А = 16 Вт;
  • при скорости ветра 10,6 м/с получаем около 120 об/мин — 13 В и 3,4 А = 44 Вт;
  • при скорости 15,3 м/с примерно 180 об/мин — 15 В и 5,1 А = 76,5 Вт;
  • при скорости ветра 18 м/с получаем 240 об/мин — 18 В и 9 А = 162 Вт.

В основном ветряк выдает 16-45 Вт, так как ветер более 15 м/с бывает редко. Однако, если поставить скоростной винт, тогда можно получить более высокие результаты .

Loading...Loading...