Импульсные стабилизаторы напряжения и тока. Импульсные стабилизаторы постоянного напряжения


Источники питания
[Содержание номера ] [Содержание года ] [Архив ] [Статьи ]
Простой импульсный стабилизатор

С.Засухин, г.Санкт-Петербург

Преимущества импульсных стабилизаторов постоянного напряжения известны: высокий КПД и устойчивая работоспособность при большой разнице значений входного и выходного напряжений. В "Радио" уже публиковались описания таких стабилизаторов, но они либо не имеют защиты от замыкания в нагрузке , либо очень сложны . Предлагаемый стабилизатор с широтно-импульсным управлением (рис.1) по принципу действия близок к стабилизатору, описанному в , но, в отличие от него, имеет две цепи обратной связи, соединенные таким образом, что ключевой элемент закрывается при превышении напряжения на нагрузке или превышении тока, потребляемого нагрузкой.

Рис.1

При подаче питания на вход устройства ток, текущий через резистор R2, открывает ключевой элемент, образованный транзисторами VT2, VT3, в результате чего в цепи транзистор VT3 - дроссель L1 - нагрузка - резистор R6 возникает ток. Происходит зарядка конденсатора C4 и накопление энергии дросселем L1. Если сопротивление нагрузки достаточно большое, то напряжение на ней достигает 12 В и открывается стабилитрон VD4. Это приводит к открыванию транзисторов VT5, VT1 и закрыванию ключевого элемента, а благодаря наличию диода VD1, дроссель L1 отдает накопленную энергию нагрузке.

По мере уменьшения тока через дроссель и разрядки конденсатора C4 напряжение на нагрузке уменьшится, что приводит к закрыванию транзисторов VT5, VT1 и открыванию ключевого элемента. Далее процесс работы стабилизатора повторяется.

Конденсатор CЗ, снижающий частоту колебательного процесса, повышает КПД стабилизатора.

Более подробно о работе такого стабилизатора рассказано в .

При малом сопротивлении нагрузки колебательный процесс в стабилизаторе происходит иначе. Нарастание тока нагрузки приводит к увеличению падения напряжения на резисторе R6, открыванию транзистора VT4 и закрыванию ключевого элемента. Далее процесс протекает аналогично описанному выше. Диоды VD2 и VD3 способствуют более резкому переходу устройства из режима стабилизации напряжения в режим ограничения тока, потребляемого нагрузкой.

Нагрузочная характеристика стабилизатора приведена на рис.2. На участке а-б устройство работает как стабилизатор напряжения, на участке б-в - как стабилизатор тока. На участке в-г выходной ток с уменьшением сопротивления нагрузки хотя и растет, но даже в режиме короткого замыкания (точка г) он безопасен для деталей стабилизатора.

Рис.2

Интересно отметить: во всех режимах работы стабилизатора потребляемый им ток меньше тока нагрузки.

Стабилизатор выполнен на печатной плате из одностороннего фольгированного стеклотекстолита (рис.3). Резисторы - МЛТ и С5-16Т (R6). Оксидный конденсатор C4 составлен из двух конденсаторов К50-6 емкостью по 500 мкф каждый; конденсаторы C2 и CЗ - К10-7В. Диод КД226А (VD1) заменим на КД213; VD2 и VD3 могут быть любыми импульсными. Транзисторы VT1, VT4, VT5 - любые маломощные соответствующих структур с Uкэ max > Uвх . Транзистор VT2 (с некоторым ухудшением КПД) может быть любым из серии КТ814, VT3 - любым мощным структуры N-P-N в пластмассовом корпусе, который следует установить на теплоотводе размерами 40х25 мм из алюминиевого сплава.

Дроссель L1 представляет собой 20 витков жгута из трех проводов ПЭВ-2 0,47, помещенных в чашечный магнитопровод Б22 из феррита 1500НМ3. Магнитопровод собран с зазором толщиной 0,5 мм из немагнитного материала.

Безошибочно смонтированный стабилизатор налаживания не требует.

Стабилизатор несложно перестроить на другое выходное напряжение и ток, потребляемый нагрузкой. Необходимое выходное напряжение устанавливают выбором соответствующего стабилитрона VD4, а максимальный ток нагрузки - пропорциональным изменением сопротивления резистора R6 или подачей на базу транзистора VT4 небольшого тока от отдельного параметрического стабилитрона через переменный резистор.

Участок б-в на нагрузочной характеристике позволяет использовать устройство для зарядки аккумуляторных батарей стабильным током. При этом, правда, КПД стабилизатора падает, и если предполагается длительная работа на этом участке нагрузочной характеристики, то транзистор VT3 придется установить на более эффективный теплоотвод. Иначе допустимый выходной ток придется уменьшить.

Для снижения уровня пульсации выходного напряжения целесообразно использовать LC-фильтр, аналогичный примененному в .

Мною смакетирован аналогичный стабилизатор на напряжение 18 В при токе нагрузки, регулируемом от 1 до 5 А. Такое устройство можно использовать, например, для зарядки автомобильных аккумуляторных батарей, если предусмотреть защиту от их переполюсовки. Его транзисторы VT1 и VT2 - КТ914А, VT3 - КТ935А, VT4 и VT5 - КТ645А; диод VD1 - КД213; VD4 - два последовательно включенных стабилитрона Д814А. Конденсатор C4 - два оксидных емкостью по 500 мкф на номинальное напряжение 25 В. Дроссель L1 - 12 витков жгута из шести проводов ПЭВ-2 0,57 в магнитопроводе Б36 из феррита 1500НМ3 с зазором 0,5 мм. Резистор R6 - проволочный сопротивлением 0,05 Ом. Транзистор VT3 и диод VD1 установлены на общем теплоотводе с поверхностью 300 см² через слюдяные прокладки.

Для питания такого зарядного устройства использовался трансформатор ТН54 с соединенными последовательно обмотками. Мостовой выпрямитель на диодах Д242 с фильтрующим конденсатором емкостью 10 000 мкф на номинальное напряжение 50 В.

Линейные стабилизаторы имеют общий недостаток – это малый КПД и высокое выделение тепла. Мощные приборы, создающие нагрузочный ток в широких пределах имеют значительные габариты и вес. Чтобы компенсировать эти недостатки, разработаны и используются импульсные стабилизаторы.

Устройство, поддерживающее в постоянном виде напряжение на потребителе тока с помощью регулировки электронным элементом, действующим в режиме ключа. Импульсный стабилизатор напряжения, так же как и линейный существует последовательного и параллельного вида. Роль ключа в таких моделях исполняют транзисторы.

Так как действующая точка стабилизирующего устройства практически постоянно расположена в области отсечки или насыщения, проходя активную область, то в транзисторе выделяется немного тепла, следовательно, импульсный стабилизатор имеет высокий КПД.

Стабилизация осуществляется с помощью изменения продолжительности импульсов, а также управления их частотой. Вследствие этого различают частотно-импульсное, а другими словами широтное регулирование. Импульсные стабилизаторы функционируют в комбинированном импульсном режиме.

В устройствах стабилизации с регулированием широтно-импульсным частота импульсов имеет постоянную величину, а продолжительность действия импульсов является непостоянным значением. В приборах с регулированием частотно-импульсным продолжительность импульсов не изменяется, меняют только частоту.

На выходе устройства напряжение представлено в виде пульсаций, соответственно оно не годится для питания потребителя. Перед подачей питания на нагрузку потребителя, его нужно выровнять. Для этого на выходе импульсных стабилизаторов монтируют выравнивающие емкостные фильтры. Они бывают многозвенчатыми, Г-образными и другими.

Средняя величина напряжения, поданная на нагрузку, вычисляется по формуле:

  • Ти – продолжительность периода.
  • tи – продолжительность импульса.
  • Rн – значение сопротивления потребителя, Ом.
  • I(t) – значение тока, проходящего по нагрузке, ампер.

Ток может перестать протекать по фильтру к началу следующего импульса, в зависимости от индуктивности. В этом случае идет речь о режиме действия с переменным током. Ток также может дальше протекать, тогда имеют ввиду функционирование с постоянным током.

При повышенной чувствительности нагрузки к импульсам питания, выполняют режим постоянного тока, не смотря со значительными потерями в обмотке дросселя и проводах. Если размер импульсов на выходе прибора незначителен, то рекомендуется функционирование при переменном токе.

Принцип работы

В общем виде импульсный стабилизатор включает в себя импульсный преобразователь с устройством регулировки, генератор, выравнивающий фильтр, снижающий импульсы напряжения на выходе, сравнивающее устройство, подающее сигнал разности входного и выходного напряжения.

Схема основных частей стабилизатора напряжения показана на рисунке.

Напряжение на выходе прибора поступает на сравнивающее устройство с базовым напряжением. В результате получают пропорциональный сигнал. Его подают на генератор, предварительно усилив его.

При регулировании в генераторе разностный аналоговый сигнал модифицируют в пульсации с постоянной частотой и переменной продолжительностью. При регулировании частотно-импульсном продолжительность импульсов имеет постоянное значение. Она меняет частоту импульсов генератора в зависимости от свойств сигнала.

Образованные генератором управляющие импульсы проходят на элементы преобразователя. Транзистор регулировки действует в режиме ключа. Изменяя частоту или интервал импульсов генератора, есть возможность менять нагрузочное напряжение. Преобразователь модифицирует значение напряжения на выходе в зависимости от свойств управляющих импульсов. По теории в приборах с частотной и широтной регулировкой импульсы напряжения на потребителе могут отсутствовать.

При релейном принципе действия сигнал, который управляется стабилизатором, образуется с помощью триггера. При поступлении постоянного напряжения в прибор транзистор, работающий в качестве ключа, открыт, и повышает напряжение на выходе. сравнивающее устройство определяет сигнал разности, который достигнув некоторого верхнего предела, поменяет состояние триггера, и произойдет коммутация регулирующего транзистора на отсечку.

Напряжение на выходе станет уменьшаться. При падении напряжения до нижнего предела сравнивающее устройство определяет сигнал разности, переключающий снова триггер, и транзистор опять войдет в насыщение. Разность потенциалов на нагрузке прибора станет повышаться. Следовательно, при релейном виде стабилизации напряжение на выходе повышается, тем самым выравнивается. Предел срабатывания триггера настраивают с помощью корректировки амплитуды значения напряжения на сравнивающем устройстве.

Стабилизаторы релейного типа имеют повышенную скорость реакции, в отличие от приборов с частотным и широтным регулированием. Это является их преимуществом. В теории при релейном виде стабилизации на выходе прибора всегда будут импульсы. Это является их недостатком.

Повышающий стабилизатор

Импульсные повышающие стабилизаторы применяют вместе с нагрузками, разность потенциалов которых выше, чем напряжение на входе приборов. В стабилизаторе нет гальванической изоляции сети питания и нагрузки. Импортные повышающие стабилизаторы называются boost converter. Основные части такого прибора:

Транзистор вступает в насыщение, и ток проходит по цепи от положительного полюса по накопительному дросселю, транзистору. При этом накапливается энергия в магнитном поле дросселя. Нагрузочный ток может создать только разряд емкости С1.

Отключим выключающее напряжение с транзистора. При этом он вступит в положение отсечки, а следовательно на дросселе появится ЭДС самоиндукции. Оно будет коммутировано последовательно с напряжением входа, и подключено по диоду к потребителю. Ток пойдет по цепи от положительного полюса к дросселю, по диоду и нагрузке.

В этот момент магнитное поле индуктивного дросселя выдает энергию, а емкость С1 резервирует энергию для поддержки напряжения на потребителе после вхождения транзистора в режим насыщения. Дроссель является для резерва энергии и не работает в фильтре питания. При повторной подаче напряжения на транзистор, он откроется, и весь процесс пойдет заново.

Стабилизаторы с триггером Шмитта

Такой вид импульсного устройства имеет свои особенности наименьшим набором компонентов. Основную роль в конструкции играет триггер. В его состав входит компаратор. Основной задачей компаратора является сравнивание величины выходной разности потенциалов с наибольшим допустимым.

Принцип действия аппарата с триггером Шмитта состоит в том, что при увеличении наибольшего напряжения осуществляется коммутация триггера в позицию ноля с размыканием электронного ключа. В одно время разряжается дроссель. Когда напряжение доходит до наименьшего значения, то выполняется коммутация на единицу. Это обеспечивает замыкание ключа и прохождение тока на интергратор.

Такие приборы имеют отличия своей упрощенной схемой, но использовать их можно в особых случаях, так как импульсные стабилизаторы бывают только повышающими и понижающими.

Понижающий стабилизатор

Стабилизаторы импульсного типа, функционирующие с понижением напряжения, являются компактными и мощными приборами питания электрическим током. При этом они имеют низкую чувствительность к наводкам потребителя постоянным напряжением одного значения. Гальваническая изоляция выхода и входа в понижающих устройствах отсутствует. Импортные приборы получили название chopper. Выходное питание в таких устройствах постоянно находится меньше входного напряжения. Схема импульсного стабилизатора понижающего типа изображена на рисунке.

Подключим напряжение для управления истоком и затвором транзистора, который войдет в положение насыщения. По нему будет проходить ток по цепи от положительного полюса по выравнивающему дросселю и нагрузке. В прямом направлении ток по диоду не протекает.

Отключим управляющее напряжение, которое выключает ключевой транзистор. После этого он будет находиться в положении отсечки. ЭДС индукции выравнивающего дросселя будет преграждать путь для изменения тока, который пойдет по цепи через нагрузку от дросселя, по общему проводнику, диод, и опять придет на дроссель. Емкость С1 будет разряжаться и будет удерживать напряжение на выходе.

При подаче отпирающей разницы потенциалов между истоком и затвором транзистора, он перейдет в режим насыщения и вся цепочка вновь повторится.

Инвертирующий стабилизатор

Импульсные стабилизаторы инвертирующего типа используют для подключения потребителей с постоянным напряжением, полюсность которого имеет противоположное направление полюсности разности потенциалов на выходе устройства. Его значение может быть выше сети питания, и ниже сети, в зависимости от настройки стабилизатора. Гальваническая изоляция сети питания и нагрузки отсутствует. Импортные приборы инвертирующего типа называются buck-boost converter. На выходе таких приборов напряжение всегда ниже.

Подключим управляющую разность потенциалов, которое откроет транзистор между истоком и затвором. Он откроется, и ток пойдет по цепи от плюса по транзистору, дросселю к минусу. При таком процессе дроссель резервирует энергию с помощью своего магнитного поля. Отключим разность потенциалов управления от ключа на транзисторе, он закроется. Ток пойдет от дросселя по нагрузке, диоду, и возвратится в первоначальное положение. Резервная энергия на конденсаторе и магнитном поле будет расходоваться для нагрузки. Снова подадим питание на транзистор к истоку и затвору. Транзистор опять станет насыщаться и процесс повторится.

Преимущества и недостатки

Как и все приборы, модульный импульсный стабилизатор не идеален. Поэтому ему присущи минусы и плюсы. Разберем основные из преимуществ:

  • Простое достижение выравнивания.
  • Плавное подключение.
  • Компактные размеры.
  • Устойчивость выходного напряжения.
  • Широкий интервал стабилизации.
  • Повышенный КПД.

Недостатки прибора:

  • Сложная конструкция.
  • Много специфических компонентов, снижающих надежность устройства.
  • Необходимость в использовании компенсирующих устройств мощности.
  • Сложность работ по ремонту.
  • Образование большого количества помех частоты.

Допустимая частота

Функционирование импульсного стабилизатора возможно при значительной частоте преобразования. Это является основной отличительной чертой от устройств, имеющих трансформатор сети. Увеличение этого параметра дает возможность получить наименьшие габариты.

Для большинства приборов интервал частот будет равен 20-80 килогерц. Но при выборе ШИМ и ключевых приборов необходимо учесть высокие гармоники токов. Верхняя граница параметра ограничена определенными требованиями, которые предъявляются к радиочастотным приборам.

Импульсный блок питания 200W Step-Down на микросхеме TL494 - схема принципиальная, печатная плата и описание. Это улучшенная версия импульсного стабилизатора на популярной м/с TL494.

  • Входное напряжение 2x18~30 V AC
  • Выходное напряжение регулируется с помощью потенциометра в диапазоне 0-25 V DC
  • Ограничение тока регулируется потенциометром
  • Для R=0,01 Ом - 5~20 А
  • Для R=0,1 Ом - 0,1~5 А

Большие токи вызывают слишком большие потери мощности на резисторе R, поэтому его сопротивление уменьшаем. Эффективность схемы преобразователя очень хорошая, на 100 Вт радиатор только немного греется. Красный светодиод сообщает о стабилизации тока, а зеленый - о стабилизации по напряжению. Испытания проводились на резистивной нагрузке 10 А. Работает как положено.

Схема импульсного регулируемого инвертора

Второй вариант схемы

Печатная плата - рисунок

Представленный на схеме стабилизатор установлен на 14,4 вольта и используется как зарядное устройство, поэтому применены конденсаторы вольтажом 16 В. На входе 35 В - на выходе 14,4 В. Трансформатор намотан с запасом витков, так что при желании можно поднять напряжение. Но свыше 38 - это слишком много. Микросхема выдерживает только 44 VDC по даташиту. Рабочая частота преобразователя 100 кГц.

Схемы самодельных импульсных DC-DC преобразователей напряжения на транзисторах, семь примеров.

Благодаря высокому КПД импульсные стабилизаторы напряжения получают в последнее время все более широкое распространение, хотя они, как правило, сложнее и содержат большее число элементов.

Поскольку в тепловую энергию преобразуется лишь малая доля подводимой к импульсному стабилизатору энергии, его выходные транзисторы меньше нагреваются, следовательно, за счет снижения площади теплоотводов снижаются масса и размеры устройства.

Ощутимым недостатком импульсных стабилизаторов является наличие на выходе высокочастотных пульсаций, что заметно сужает область их практического использования — чаще всего импульсные стабилизаторы используют для питания устройств на цифровых микросхемах.

Понижающий импульсный стабилизатор напряжения

Стабилизатор с выходным напряжением, меньшим входного, можно собрать на трех транзисторах (рис. 1), два из которых (VT1, VT2) образуют ключевой регулирующий элемент, а третий (ѴТЗ) является усилителем сигнала рассогласования.

Рис. 1. Схема импульсного стабилизатора напряжения с КПД 84%.

Устройство работает в автоколебательном режиме. Напряжение положительной обратной связи с коллектора составного транзистора ѴТ1 через конденсатор С2 поступает в цепь базы транзистора ѴТ2.

Элементом сравнения и усилителем сигнала рассогласования является каскад на транзисторе ѴТЗ. Его эмиттер подключен к источнику опорного напряжения — стабилитрону VD2, а база — к делителю выходного напряжения R5 — R7.

В импульсных стабилизаторах регулирующий элемент работает в ключевом режиме, поэтому выходное напряжение регулируется изменением скважности работы ключа.

Включением/выключением транзистора VT1 по сигналу транзистора ѴТЗ управляет транзистор ѴТ2. В моменты, когда транзистор ѴТ1 открыт, в дросселе L1, благодаря протеканию тока нагрузки, запасается электромагнитная энергия.

После закрывания транзистора запасенная энергия через диод VD1 отдается в нагрузку. Пульсации выходного напряжения стабилизатора сглаживаются фильтром L1, СЗ.

Характеристики стабилизатора целиком определяются свойствами транзистора ѴТ1 и диода VD1, быстродействие которых должно быть максимальным. При входном напряжении 24 В, выходном — 15 В и токе нагрузки 1 А измеренное значение КПД было равно 84%.

Дроссель L1 имеет 100 витков провода диаметром 0,63 мм на кольце К26х16х12 из феррита с магнитной проницаемостью 100. Его индуктивность при токе подмагничивания 1 А — около 1 мГн.

Step-down DC-DC преобразователь напряжения на +5В

Схема простого импульсного стабилизатора показана на рис. 2. Дроссели L1 и L2 намотаны на пластмассовых каркасах, помещенных в броневые магнитопроводы Б22 из феррита М2000НМ.

Дроссель L1 содержит 18 витков жгута из 7 проводов ПЭВ-1 0,35. Между чашками его магнитопровода вложена прокладка толщиной 0,8 мм.

Активное сопротивление обмотки дросселя L1 27 мОм. Дроссель L2 имеет 9 витков жгута из 10 проводов ПЭВ-1 0,35. Зазор между его чашками — 0,2 мм, активное сопротивление обмотки — 13 мОм.

Прокладки можно изготовить из жесткого теплостойкого материала — текстолита, слюды, электрокартона. Винт, скрепляющий чашки магнитопровода, должен быть из немагнитного материала.

Рис. 2. Схема простого ключевого стабилизатора напряжения с КПД 60%.

Для налаживания стабилизатора к его выходу подключают нагрузку сопротивлением 5...7 Ом и мощностью 10 Вт. Подбором резистора R7 устанавливают номинальное выходное напряжение, затем увеличивают ток нагрузки до 3 А и, подбирая величину конденсатора С4, устанавливают такую частоту генерации (примерно 18...20 кГц), при которой высокочастотные выбросы напряжения на конденсаторе СЗ минимальны.

Выходное напряжение стабилизатора можно довести до 8...10В, увеличив величину резистора R7 и установив новое значение рабочей частоты. При этом мощность, рассеиваемая на транзисторе ѴТЗ, также увеличится.

В схемах импульсных стабилизаторов желательно использовать электролитические конденсаторы К52-1. Необходимую величину емкости получают параллельным включением конденсаторов.

Основные технические характеристики:

  • Входное напряжение, В — 15...25.
  • Выходное напряжение, В — 5.
  • Максимальный ток нагрузки, А — 4.
  • Пульсации выходного напряжения при токе нагрузки 4 А во всем диапазоне входных напряжений, мВ, не более — 50.
  • КПД, %, не ниже — 60.
  • Рабочая частота при входном напряжении 20 б и токе нагрузки 3А, кГц--20.

Улучшенный вариант импульсного стабилизатора на +5В

В сравнении с предыдущим вариантом импульсного стабилизатора в новой конструкции А. А. Миронова (рис. 3) усовершенствованы и улучшены такие его характеристики, как КПД, стабильность выходного напряжения, длительность и характер переходного процесса при воздействии импульсной нагрузки.

Рис. 3. Схема импульсного стабилизатора напряжения.

Оказалось, что при работе прототипа (рис. 2) возникает так называемый сквозной ток через составной ключевой транзистор. Этот ток появляется в те моменты, когда по сигналу узла сравнения ключевой транзистор открывается, а коммутирующий диод еще не успел закрыться. Наличие такого тока вызывает дополнительные потери на нагревание транзистора и диода и уменьшает КПД устройства.

Еще один недостаток — значительная пульсация выходного напряжения при токе нагрузки, близком к предельному. Для борьбы с пульсациями в стабилизатор (рис. 2) был введен дополнительный выходной LC-фильтр (L2, С5).

Уменьшить нестабильность выходного напряжения от изменения тока нагрузки можно только уменьшением активного сопротивления дросселя L2.

Улучшение динамики переходного процесса (в частности, уменьшение его длительности) связано с необходимостью уменьшения индуктивности дросселя, но при этом неизбежно увеличится пульсация выходного напряжения.

Поэтому оказалось целесообразным исключить этот выходной фильтр, а емкость конденсатора С2 увеличить в 5... 10 раз (параллельным соединением нескольких конденсаторов в батарею).

Цепь R2, С2 в исходном стабилизаторе (рис. 6.2) практически не изменяет длительности спада выходного тока, поэтому ее можно удалить (замкнуть резистор R2), а сопротивление резистора R3 увеличить до 820 Ом.

Но тогда при увеличении входного напряжения с 15 6 до 25 6 ток, протекающий через резистор R3 (в исходном устройстве), будет увеличиваться в 1,7 раза, а мощность рассеивания — в 3 раза (до 0,7 Вт).

Подключением нижнего по схеме вывода резистора R3 (на схеме доработанного стабилизатора это резистор R2) к плюсовому выводу конденсатора С2 этот эффект можно ослабить, но при этом сопротивление R2 (рис. 3) должно быть уменьшено до 620 Ом.

Один из эффективных путей борьбы со сквозным током — увеличение времени нарастания тока через открывшийся ключевой транзистор.

Тогда при полном открывании транзистора ток через диод VD1 уменьшится почти до нуля. Этого можно достигнуть, если форма тока через ключевой транзистор будет близка к треугольной.

Как показывает расчет, для получения такой формы тока индуктивность накопительного дросселя L1 не должна превышать 30 мкГч.

Еще один путь — применение более быстродействующего коммутирующего диода VD1, например, КД219Б (с барьером Шотки). У таких диодов выше быстродействие и меньше падение напряжения при одном и том же значении прямого тока по сравнению с обычными кремниевыми высокочастотными диодами. Конденсатор С2 типа К52-1.

Улучшение параметров устройства может быть получено и при изменении режима работы ключевого транзистора. Особенность работы мощного транзистора ѴТЗ в исходном и улучшенном стабилизаторах состоит в том, что он работает в активном режиме, а не в насыщенном, и поэтому имеет высокое значение коэффициента передачи тока и быстро закрывается.

Однако из-за повышенного напряжения на нем в открытом состоянии рассеиваемая мощность в 1,5...2 раза превышает минимально достижимое значение.

Уменьшить напряжение на ключевом транзисторе можно подачей положительного (относительно плюсового провода питания) напряжения смещения на эмиттер транзистора ѴТ2 (см. рис. 3).

Необходимую величину напряжения смещения подбирают при налаживании стабилизатора. Если он питается от выпрямителя, подключенного к сетевому трансформатору, то для получения напряжения смещения можно предусмотреть отдельную обмотку на трансформаторе. Однако при этом напряжение смещения будет изменяться вместе с сетевым.

Схема преобразователя со стабильным напряжением смещения

Для получения стабильного напряжения смещения стабилизатор надо доработать (рис. 4), а дроссель превратить в трансформатор Т1, намотав дополнительную обмотку II. Когда ключевой транзистор закрыт, а диод VD1 открыт, напряжение на обмотке I определяется из выражения: U1=UBыx + U VD1.

Поскольку напряжение на выходе и на диоде в это время меняется незначительно, то независимо от значения входного напряжения на обмотке II напряжение практически стабильно. После выпрямления его подают на эмиттер транзистора VT2 (и VT1).

Рис. 4. Схема модифицированного импульсного стабилизатора напряжения.

Потери на нагрев снизились в первом варианте доработанного стабилизатора на 14,7%, а во втором — на 24,2%, что позволяет им работать при токе нагрузки до 4 А без установки ключевого транзистора на теплоотвод.

В стабилизаторе варианта 1 (рис. 3) дроссель L1 содержит 11 витков, намотанных жгутом из восьми проводов ПЭВ-1 0,35. Обмотку помещают в броневой магнитопровод Б22 из феррита 2000НМ.

Между чашками нужно заложить прокладку из текстолита толщиной 0,25 мм. В стабилизаторе варианта 2 (рис. 4) трансформатор Т1 образован намоткой поверх катушки дросселя L1 двух витков провода ПЭВ-1 0,35.

Вместо германиевого диода Д310 можно использовать кремниевый, например, КД212А или КД212Б, при этом число витков обмотки II нужно увеличить до трех.

DC стабилизатор напряжения с ШИМ

Стабилизатор с широтно-импульсным управлением (рис. 5) по принципу действия близок к стабилизатору, описанному в, но, в отличие от него, имеет две цепи обратной связи, соединенные таким образом, что ключевой элемент закрывается при превышении напряжения на нагрузке или увеличении тока, потребляемого нагрузкой.

При подаче питания на вход устройства ток, текущий через резистор R3, открывает ключевой элемент, образованный транзисторами VT.1, VT2, в результате чего в цепи транзистор VT1 — дроссель L1 — нагрузка — резистор R9 возникает ток. Происходит заряд конденсатора С4 и накопление энергии дросселем L1.

Если сопротивление нагрузки достаточно большое, то напряжение на ней достигает 12 Б, и стабилитрон VD4 открывается. Это приводит к открыванию транзисторов VT5, ѴТЗ и закрыванию ключевого элемента, а благодаря наличию диода VD3 дроссель L1 отдает накопленную энергию нагрузке.

Рис. 5. Схема стабилизатора с широтно-импульсным управлением с КПД до 89%.

Технические характеристики стабилизатора:

  • Входное напряжение — 15...25 В.
  • Выходное напряжение — 12 В.
  • Номинальный ток загрузки — 1 А.
  • Пульсации выходного напряжения при токе нагрузки 1 А — 0,2 В. КПД (при UBX =18 6, Ін=1 А) — 89%.
  • Потребляемый ток при UBX=18 В в режиме замыкания цепи нагрузки — 0,4 А.
  • Выходной ток короткого замыкания (при UBX =18 6) — 2,5 А.

По мере уменьшения тока через дроссель и разряда конденсатора С4 напряжение на нагрузке также уменьшится, что приведет к закрыванию транзисторов VT5, ѴТЗ и открыванию ключевого элемента. Далее процесс работы стабилизатора повторяется.

Конденсатор С3, снижающий частоту колебательного процесса, повышает эффективность стабилизатора.

При малом сопротивлении нагрузки колебательный процесс в стабилизаторе происходит иначе. Нарастание тока нагрузки приводит к увеличению падения напряжения на резисторе R9, открыванию транзистора ѴТ4 и закрыванию ключевого элемента.

Во всех режимах работы стабилизатора потребляемый им ток меньше тока нагрузки. Транзистор ѴТ1 следует установить на теплоотводе размерами 40x25 мм.

Дроссель L1 представляет собой 20 витков жгута из трех проводов ПЭВ-2 0,47, помещенных в чашечный магнитопровод Б22 из феррита 1500НМЗ. Магнитопровод имеет зазор толщиной 0,5 мм из немагнитного материала.

Стабилизатор несложно перестроить на другое выходное напряжение и ток нагрузки. Выходное напряжение устанавливают выбором типа стабилитрона VD4, а максимальный ток нагрузки — пропорциональным изменением сопротивления резистора R9 или подачей на базу транзистора ѴТ4 небольшого тока от отдельного параметрического стабилизатора через переменный резистор.

Для снижения уровня пульсаций выходного напряжения целесообразно применить LC-фильтр, аналогичный используемому в схеме на рис. 2.

Импульсный стабилизатор напряжения с КПД преобразования 69...72%

Импульсный стабилизатор напряжения (рис. 6) состоит из узла запуска (R3, VD1, ѴТ1, VD2), источника опорного напряжения и устройства сравнения (DD1.1, R1), усилителя постоянного тока (ѴТ2, DD1.2, ѴТ5), транзисторного ключа (ѴТЗ, ѴТ4), индуктивного накопителя энергии с коммутирующим диодом (VD3, L2) и фильтров — входного (L1, С1, С2) и выходного (С4, С5, L3, С6). Частота переключения индуктивного накопителя энергии в зависимости от тока нагрузки находится в пределах 1,3...48 кГц.

Рис. 6. Схема импульсного стабилизатора напряжения с КПД преобразования 69...72%.

Все катушки индуктивности L1 — L3 одинаковы и намотаны в броневых магнитопроводах Б20 из феррита 2000НМ с зазором между чашками около 0,2 мм.

Номинальное выходное напряжение 5 В при изменении входного от 8 до 60 б и КПД преобразования 69...72%. Коэффициент стабилизации — 500.

Амплитуда пульсаций выходного напряжения при токе нагрузки 0,7 А — не более 5 мВ. Выходное сопротивление — 20 мОм. Максимальный ток нагрузки (без теплоотводов для транзистора VT4 и диода VD3) — 2 А.

Импульсный стабилизатор напряжения на 12В

Импульсный стабилизатор напряжения (рис. 6.7) при входном напряжении 20...25 В обеспечивает на выходе стабильное напряжение 12 В при токе нагрузки 1,2 А.

Пульсации на выходе до 2 мВ. Благодаря высокому КПД в устройстве не используются теплоотводы. Индуктивность дросселя L1 — 470 мкГч.

Рис. 7. Схема импульсного стабилизатора напряжения с малыми пульсациями.

Аналоги транзисторов: ВС547 — КТ3102А] ВС548В — КТ3102В. Приблизительные аналоги транзисторов ВС807 — КТ3107; BD244 — КТ816.

Импульсные стабилизаторы постоянного напряжения

Выходное напряжение линейных стабилизаторов обычно меньше U вх на величину падения напряжения на регулирующем элементе. КПД непрерывных стабилизаторов мало (25 75 %), так как на регулирующем элементе рассеивается значительная мощность. В импульсных стабилизаторах регулируемое сопротивление заменяется ключом. В качестве ключа обычно применяют транзистор, который периодически переходит из закрытого состояния в открытое и наоборот, то подсоединяя, то отсоединяя нагрузку, и тем самым регулируя среднюю мощность, забираемую ею от источника. Величина U вых зависит от соотношения длительности открытого и закрытого состояний ключа. Частота переключений регулирующего элемента от единиц до сотен кГц, поэтому сглаживание пульсаций достигается малогабаритным фильтром, включенным после регулирующего элемента. Так как потери мощности в ключе малы, КПД достигает 0.85 0.95 при относительной нестабильности 0.1%.

Функциональная схема импульсного стабилизатора приведена на рис 2.4.10.
Рис. 2.4.10.

СУ - сравнивающее устройство, включающее ИОН. ИУ - импульсное устройство. Регулирующий транзистор VT работает в режиме переключений и соединен последовательно с сопротивлением нагрузки R н. Дроссель и конденсатор образуют сглаживающий фильтр для сглаживания пульсаций U вых. Диод VD включен в обратном направлении. Сигнал ошибки, возникший из-за дестабилизирующих факторов, подается со схемы сравнения, которая содержит ИОН, на вход ИУ. В ИУ происходит преобразование медленно меняющегося постоянного напряжения в последовательность импульсов. Если ИУ создает на своем выходе импульсную последовательность с постоянным периодом повторения и с меняющейся в зависимости от сигнала ошибки длительностью импульса t и, то схему называют стабилизатором с широтно - импульсной модуляцией (ШИМ), если t и =const, а меняется частота, то это стабилизатор с частотно - импульсной модуляцией (ЧИМ). Если же ИУ замыкает ключ при U вых U пор, то такую схему называют релейным или двухпозиционным стабилизатором. VT, VD, L, C образуют силовую цепь, а СУ и ИУ - цепь управления. Рассмотрим работу релейного стабилизатора. При подаче U вх VT открыт и ток через дроссель поступает в R н. Конденсатор заряжается в течение t и. Относительная длительность импульса  и /T. U L =U вх -U вых. Когда U н >=U н.макс, в цепи ООС вырабатывается такой управляющий сигнал, который запирает VT и i k =0 . В дросселе возникает противо ЭДС, препятствующая снижению тока, что способствует отпиранию диода. Энергия, запасенная в фильтре, поступает в R н. i д протекает через дроссель, С, R н, VD. При уменьшении i д уменьшается U н и когда U н <=U н.мин, схема управления вырабатывает отпирающий сигнал, VT открывается, пропуская ток в нагрузку i L =i н =i k +i д . U вых сохраняет заданный средний уровень U н. Из равенства нулю постоянной составляющей напряжения на дросселе следует: (U вх - U вых)=(T - )U вых, откуда U вых = вх (2.4.6).

Рис. 2.4.11.

Принцип действия стабилизатора с ШИМ. Частота переключения регулирующего транзистора постоянна. Изменяется соотношение между длительностями открытого и закрытого состояний регулирующего транзистора. На вход сравнивающего устройства (компаратора) подаются два сигнала, один из которых U ГПН поступает с генератора пилообразного напряжения, а второй - с выходного делителя. Переключение транзистора будет происходить в момент равенства этих сигналов. При увеличении U вх возрастает KU вых, что вызывает уменьшение длительности открытого состояния регулирующего транзистора и соответствующее уменьшение U н. По сравнению с релейным стабилизаторы с ШИМ более сложны и содержат большее число элементов.

Рис. 2.4.12.

В стабилизаторе с ЧИМ t и =const , а частота изменяется. Недостатки такого стабилизатора: сложность схемы управления, обеспечивающей изменение частоты в широких пределах; уменьшение коэффициента сглаживания при уменьшении частоты. В стабилизаторах с ШИМ можно подобрать оптимальную частоту, при которой КПД наибольший. Кроме того, в стабилизаторах с ЧИМ и ШИМ пульсации выходного напряжения меньше. В релейном стабилизаторе U вых~ принципиально не может быть равна нулю, так как периодическое переключение триггера в схеме управления возможно при изменении U н в пределах от U н.макс до н.мин.

Рис. 2.4.13.

В импульсном стабилизаторе с параллельным включением транзистора VT открыт в течение t и =, U L U вх, в дросселе накапливается энергия, а конденсатор разряжается на нагрузку. При запирании транзистора в дросселе наводится ЭДС самоиндукции. U вых =U вх +U L . Под действием этого напряжения открывается диод и конденсатор заряжается, U L =U вых -U вх. Постоянная составляющая на дросселе равна нулю, поэтому U вх  = (U вых - U вх)(T - ) U вых = U вх  + U вх - U вх /(1 - ) = U вх /(1 - ) (2.4.7) Это стабилизатор повышающего типа.

Рис. 2.4.14.

В инвертирующем стабилизаторе (рис. 2.4.14) при открытом VT в течение T в дросселе запасается энергия U L =U вх, конденсатор разряжается на нагрузку. При закрытом VT в дросселе индуцируется ЭДС обратного знака. U L =U вых в течение длительности T-T. Конденсатор заряжается от дросселя через открытый диод. U вх T=U вых (T-T) U вых =U вх /(1-) (2.4.8). По мере повышения частоты переключения регулирующего транзистора происходит увеличение относительной длительности процессов рассасывания избыточных носителей в базе VT и диода. Это может привести к нарушению устойчивой работы и переходу к режиму автоколебаний. Возрастают динамические потери в элементах стабилизатора и уменьшается его КПД. Коммутационные процессы приводят к изменению формы прямоугольных импульсов токов и напряжений (затягиваются передний и задний фронты), но это не столь существенно. А существенно то, что VT испытывает большую кратковременную перегрузку по току. Когда на базу закрытого VT поступает управляющий импульс, открывающий его, I к начинает нарастать, а ток через блокирующий диод VD убывать. Поскольку VD еще открыт, VT работает в режиме короткого замыкания и к нему приложено U вх и I к может в 5 10 раз превосходить I н. Таким образом, инерционность реальных диодов является основной причиной коммутационных перегрузок регулирующих транзисторов. Эти перегрузки будут тем больше, чем лучше импульсные свойства VT и хуже быстродействие диода. Приходится выбирать более мощный транзистор, использование которого по току будет низким. Для уменьшения перегрузок в коллекторную или эмиттерную цепи вводят токоограничивающие элементы. Введение дополнительного дросселя в коллекторную цепь показано на рис. 2.4.15.

Рис. 2.4.15.

L доп уменьшает скорость нарастания I к. R доп обеспечивает запирание VD доп к моменту открывания транзистора VT. Разряд дросселя происходит при закрытом VT через диод VD доп на R доп. В коллекторную или эмиттерную цепь может быть введен двухобмоточный дроссель (рис. 2.4.16).

Рис. 2.4.16.

Электромагнитная энергия, накопленная в L доп, при протекании тока через VT возвращается обратно в источник при закрытом VT. По сравнению с предыдущим случаем КПД стабилизатора увеличивается за счет исключения потерь мощности в R доп. При протекании тока через VD доп U кэ.макс =U вх +U вх W 1 /W 2 . Для уменьшения U кэ.макс соотношение между W 1 и W 2 должно быть W 2 (5 10)W 1 . При этом амплитуда напряжения на закрытом диоде U доп =(5 10)U вх. С целью уменьшения U кн, t вкл и I кэ0 запирание регулируемого транзистора производится подключением к переходу база - эмиттер источника U зап (рис. 2.4.17а).

Рис. 2.4.17

Когда VT1 открыт, VT2 закрыт, C1 заряжается током базы I б1 . При отпирании VT2 U c1 закрывает VT1. U c1 может изменяться в зависимости от U вх, U c1 разряжается на R 1 . Поэтому вместо R 1 включают стабилитрон или диоды в прямом направлении (рис. 2.4.17б). Хотя импульсные стабилизаторы экономичнее непрерывных, им присущи некоторые недостатки, основными из которых являются: 1) повышенное значение коэффициента пульсаций выходного напряжения (у релейных до 10 20%, с ШИМ - 0.1 1%); 2) большое динамическое внутреннее сопротивление, то есть падающая внешняя характеристика; 3) большие помехи, создаваемые стабилизатором, для ослабления которых на входе и выходе включаются дополнительные фильтры. Это определяет их область применения: в устройствах электропитания с постоянным током нагрузки значительной мощности, где требуются малый вес и габариты, но допускаются значительные пульсации U вых. В настоящее время выпускается три разновидности интегральных микросхем (ИМС) импульсных стабилизаторов: 1) импульсные стабилизаторы повышающего типа, с питанием от низкого входного напряжения от 2 до 12В, с минимальной рассеиваемой мощностью и встроенным полевым транзистором (серия стабилизаторов 1446ПН1, 1446ПН2, 1446ПН3); 2) универсальные маломощные ИМС, которые можно использовать при построении самых различных схем импульсных стабилизаторов (например, 142ЕП1 или 1156ЕУ1); 3) законченные стабилизаторы, включающие схему управления и силовой транзистор на ток до 10А (например, 1155ЕУ1). В таблице 1 приведены основные характеристики ИМС импульсных стабилизаторов этих трех групп. Повышающие импульсные стабилизаторы 1446ПН1, 1446 ПН2 и 1446ПН3 предназначены для работы с низким входным напряжением и фиксированным выходным напряжением +5 или +12В. КПД таких стабилизаторов доходит до 88%, а рабочая частота до - 170 кГц. При малой выходной мощности в качестве ключевого элемента используется внутренний полевой транзистор. Для питания мощных нагрузок необходимо использование дополнительного биполярного или полевого транзистора. Основное применение такие ИМС находят в источниках бесперебойного питания отдельных плат ЭВМ, при питании измерительных приборов от гальванических элементов, в переносных устройствах связи.

Таблица 1 Основные характеристики ИМС управления импульсными стабилизаторами

Функциональное назначение

f пр,кГц

Pрас,Вт (КПД,%)

1446ПН1 (MAX731)

Повышающий конвертор

1446ПН2 (MAX734)

1446ПН3 (MAX641)

142ЕП1 (LM100)

Набор элементов для построения импульсного стабилизатора

1156ЕУ1 (µA78S40)

1155ЕУ1 (LAS6380)

Мощный импульсный стабилизатор

Наиболее универсальными являются ИМС второй группы, которые, по существу, представляют собой набор элементов для построения импульсных стабилизаторов различных типов. Из этих микросхем наиболее совершенной является ИМС типа 1156ЕУ1, упрощенная структурная схема которой приведена на рис.2.4.18. Микросхема представляет собой набор типовых блоков импульсного стабилизатора, расположенных на одном кристалле. В состав ИМС входят следующие узлы и блоки: источник опорного напряжения 1,25В; операционный усилитель с напряжением смещения 4мВ, коэффициентом усиления больше 200 тыс., скоростью нарастания 0,6В/мкс; широтно - импульсный модулятор, включающий задающий генератор, компаратор, схему "И" и RS - триггер; ключевой транзистор с драйвером (предварительным усилителем); силовой диод с прямым током 1А и обратным напряжением 40В.

Рис. 2.4.18.

Микросхема может управлять внешним биполярным или полевым транзистором, если требуется выходной ток больше 1,5А и напряжение выше 40В. ИМС 142ЕП1 использована в схеме ИСН релейного типа, структурная схема которого приведена на рис. 2.4.19.

Рис. 2.4.19 ИСН релейного типа.

ФРП - двухзвенный LC фильтр радиопомех, ослабляющий напряжение радиопомех, вносимых стабилизатором напряжения в первичную сеть при его работе. РЭ - силовой транзисторный ключ состоящий из ИМС типа 286ЕП3 (набор двух мощных транзисторов), дополнительного умощняющего транзистора VT и Др, ограничивающего скорость нарастания тока I к транзистора VT. СФ - (VD, L и C), фильтр, интегрирующий последовательность однополярных импульсов. ВФ - высокочастотный фильтр, дополнительно ослабляющий напряжение высокочастотных пульсаций тока нагрузки. УЗ - устройство защиты, обеспечивает защиту от перегрузок (транзисторная защита). На один из входов дифференциального УПТ подается опорное напряжение, на другой вход - напряжение с делителя, равное опорному. Сигнал рассогласования через эмиттерный повторитель ЭП поступает на триггер Шмидта. На его выходе вырабатываются однополярные импульсы, длительность которых изменяется в зависимости от сигнала УПТ. Эти импульсы управляют параллельным ключом ПК, который открывает или закрывает транзистор РЭ.

Loading...Loading...