График зависимости проекции ускорения от времени движения. Равнопеременное прямолинейное движение

Равномерное прямолинейное движение – это частный случай неравномерного движения.

Неравномерное движение – это движение, при котором тело (материальная точка) за равные промежутки времени совершает неодинаковые перемещения. Например, городской автобус движется неравномерно, так как его движение состоит в основном из разгонов и торможений.

Равнопеременное движение – это движение, при котором скорость тела (материальной точки) за любые равные промежутки времени изменяется одинаково.

Ускорение тела при равнопеременном движении остаётся постоянным по модулю и по направлению (a = const).

Равнопеременное движение может быть равноускоренным или равнозамедленным.

Равноускоренное движение – это движение тела (материальной точки) с положительным ускорением, то есть при таком движении тело разгоняется с неизменным ускорением. В случае равноускоренного движения модуль скорости тела с течением времени возрастает, направление ускорения совпадает с направлением скорости движения.

Равнозамедленное движение – это движение тела (материальной точки) с отрицательным ускорением, то есть при таком движении тело равномерно замедляется. При равнозамедленном движении векторы скорости и ускорения противоположны, а модуль скорости с течением времени уменьшается.

В механике любое прямолинейное движение является ускоренным, поэтому замедленное движение отличается от ускоренного лишь знаком проекции вектора ускорения на выбранную ось системы координат.

Средняя скорость переменного движения определяется путём деления перемещения тела на время, в течение которого это перемещение было совершено. Единица измерения средней скорости – м/с.

V cp = s / t

– это скорость тела (материальной точки) в данный момент времени или в данной точке траектории, то есть предел, к которому стремится средняя скорость при бесконечном уменьшении промежутка времени Δt:

Вектор мгновенной скорости равнопеременного движения можно найти как первую производную от вектора перемещения по времени:

Проекция вектора скорости на ось ОХ:

V x = x’

это производная от координаты по времени (аналогично получают проекции вектора скорости на другие координатные оси).

– это величина, которая определяет быстроту изменения скорости тела, то есть предел, к которому стремится изменение скорости при бесконечном уменьшении промежутка времени Δt:

Вектор ускорения равнопеременного движения можно найти как первую производную от вектора скорости по времени или как вторую производную от вектора перемещения по времени:

Если тело движется прямолинейно вдоль оси ОХ прямолинейной декартовой системы координат, совпадающей по направлению с траекторией тела, то проекция вектора скорости на эту ось определяется формулой:

V x = v 0x ± a x t

Знак «-» (минус) перед проекцией вектора ускорения относится к равнозамедленному движению. Аналогично записываются уравнения проекций вектора скорости на другие оси координат.

Так как при равнопеременном движении ускорение является постоянным (a = const), то график ускорения – это прямая, параллельная оси 0t (оси времени, рис. 1.15).

Рис. 1.15. Зависимость ускорения тела от времени.

Зависимость скорости от времени – это линейная функция, графиком которой является прямая линия (рис. 1.16).

Рис. 1.16. Зависимость скорости тела от времени.

График зависимости скорости от времени (рис. 1.16) показывает, что

При этом перемещение численно равно площади фигуры 0abc (рис. 1.16).

Площадь трапеции равна произведению полусуммы длин её оснований на высоту. Основания трапеции 0abc численно равны:

0a = v 0 bc = v

Высота трапеции равна t. Таким образом, площадь трапеции, а значит, и проекция перемещения на ось ОХ равна:

В случае равнозамедленного движения проекция ускорения отрицательна и в формуле для проекции перемещения перед ускорением ставится знак «–» (минус).

График зависимости скорости тела от времени при различных ускорениях показан на рис. 1.17. График зависимости перемещения от времени при v0 = 0 показан на рис. 1.18.

Рис. 1.17. Зависимость скорости тела от времени для различных значений ускорения.

Рис. 1.18. Зависимость перемещения тела от времени.

Скорость тела в данный момент времени t 1 равна тангенсу угла наклона между касательной к графику и осью времени v = tg α, а перемещение определяют по формуле:

Если время движения тела неизвестно, можно использовать другую формулу перемещения, решая систему из двух уравнений:

Поможет нам вывести формулу для проекции перемещения:

Так как координата тела в любой момент времени определяется суммой начальной координаты и проекции перемещения, то будет выглядеть следующим образом:

Графиком координаты x(t) также является парабола (как и график перемещения), но вершина параболы в общем случае не совпадает с началом координат. При а x < 0 и х 0 = 0 ветви параболы направлены вниз (рис. 1.18).

Равномерное движение – это движение с постоянной скоростью, то есть когда скорость не изменяется (v = const) и ускорения или замедления не происходит (а = 0).

Прямолинейное движение – это движение по прямой линии, то есть траектория прямолинейного движения – это прямая линия.

Равномерное прямолинейное движение – это движение, при котором тело за любые равные промежутки времени совершает одинаковые перемещения. Например, если мы разобьём какой-то временной интервал на отрезки по одной секунде, то при равномерном движении тело будет перемещаться на одинаковое расстояние за каждый из этих отрезков времени.

Скорость равномерного прямолинейного движения не зависит от времени и в каждой точке траектории направлена также, как и перемещение тела. То есть вектор перемещения совпадает по направлению с вектором скорости. При этом средняя скорость за любой промежуток времени равна мгновенной скорости:

Скорость равномерного прямолинейного движения – это физическая векторная величина, равная отношению перемещения тела за любой промежуток времени к значению этого промежутка t:

Таким образом, скорость равномерного прямолинейного движения показывает, какое перемещение совершает материальная точка за единицу времени.

Перемещение при равномерном прямолинейном движении определяется формулой:

Пройденный путь при прямолинейном движении равен модулю перемещения. Если положительное направление оси ОХ совпадает с направлением движения, то проекция скорости на ось ОХ равна величине скорости и положительна:

v x = v, то есть v > 0

Проекция перемещения на ось ОХ равна:

s = vt = x – x 0

где x 0 – начальная координата тела, х – конечная координата тела (или координата тела в любой момент времени)

Уравнение движения , то есть зависимость координаты тела от времени х = х(t), принимает вид:

Если положительное направление оси ОХ противоположно направлению движения тела, то проекция скорости тела на ось ОХ отрицательна, скорость меньше нуля (v < 0), и тогда уравнение движения принимает вид:

Зависимость скорости, координат и пути от времени

Зависимость проекции скорости тела от времени показана на рис. 1.11. Так как скорость постоянна (v = const), то графиком скорости является прямая линия, параллельная оси времени Ot.

Рис. 1.11. Зависимость проекции скорости тела от времени при равномерном прямолинейном движении.

Проекция перемещения на координатную ось численно равна площади прямоугольника ОАВС (рис. 1.12), так как величина вектора перемещения равна произведению вектора скорости на время, за которое было совершено перемещение.

Рис. 1.12. Зависимость проекции перемещения тела от времени при равномерном прямолинейном движении.

График зависимости перемещения от времени показан на рис. 1.13. Из графика видно, что проекция скорости равна

v = s 1 / t 1 = tg α

где α – угол наклона графика к оси времени.

Чем больше угол α, тем быстрее движется тело, то есть тем больше его скорость (больший путь тело проходит за меньшее время). Тангенс угла наклона касательной к графику зависимости координаты от времени равен скорости:

Рис. 1.13. Зависимость проекции перемещения тела от времени при равномерном прямолинейном движении.

Зависимость координаты от времени показана на рис. 1.14. Из рисунка видно, что

tg α 1 > tg α 2

следовательно, скорость тела 1 выше скорости тела 2 (v 1 > v 2).

tg α 3 = v 3 < 0

Если тело покоится, то графиком координаты является прямая, параллельная оси времени, то есть

Рис. 1.14. Зависимость координаты тела от времени при равномерном прямолинейном движении.

Связь угловых и линейных величин

Отдельные точки вращающегося тела имеют различные линейные скорости . Скорость каждой точки, будучи направлена по касательной к соответствующей окружности, непрерывно изменяет свое направление. Величина скоростиопределяется скоростью вращения телаи расстоянием R рассматриваемой точки от оси вращения. Пусть за малый промежуток временитело повернулось на угол(рис 2.4). Точка, находящаяся на расстоянии R от оси проходит при этом путь, равный

Линейная скорость точки по определению.

Тангенциальное ускорение

Воспользовавшись тем же отношением (2.6) получаем

Таким образом, как нормальное, так и, тангенциальное ускорения растут линейно с расстоянием точки от оси вращения.

Основные понятия.

Периодическим колебанием называется процесс, при котором система (например, механическая) возвращается в одно и то же состояние через определенный промежуток времени. Этот промежуток времени называется периодом колебаний.

Возвращающая сила - сила, под действием которой происходит колебательный процесс. Эта сила стремится тело или материальную точку, отклоненную от положения покоя, вернуть в исходное положение.

В зависимости от характера воздействия на колеблющееся тело различают свободные (или собственные) колебания и вынужденные колебания.

Свободные колебания имеют место тогда, когда на колеблющееся тело действует только возвращающая сила. В том случае, если не происходит рассеивания энергии, свободные колебания являются незатухающими. Однако, реальные колебательные процессы являются затухающими, т.к. на колеблющееся тело действуют силы сопротивления движению (в основном силы трения).

Вынужденные колебания совершаются под действием внешней периодически изменяющейся силы, которую называют вынуждающей. Во многих случаях системы совершают колебания, которые можно считать гармоническими.

Гармоническими колебаниями называют такие колебательные движения, при которых смещение тела от положения равновесия совершается по закону синуса или косинуса:

Для иллюстрации физического смысла рассмотрим окружность, и будем вращать радиус ОК с угловой скоростью ω против часовой (7.1) стрелки. Если в начальный момент времени ОК лежал в горизонтальной плоскости, то через время t он сместится на угол. Если начальный угол отличен от нуля и равенφ 0 , тогда угол поворота будет равен Проекцияна ось ХО 1 равна . По мере вращения радиуса ОК изменяется величина проекции, и точкабудет совершать колебания относительно точки- вверх, вниз и т.д. При этом максимальное значение х равно А и называется амплитудой колебаний; ω - круговая или циклическая частота;- фаза колебаний;– начальная фаза. За один оборот точки К по окружности ее проекция совершит одно полное колебание и вернется в исходную точку.

Периодом Т называется время одного полного колебания. По истечению времени Т повторяются значения всех физических величин, характеризующих колебания. За один период колеблющаяся точка проходит путь, численно равный четырем амплитудам.

Угловая скорость определяется из условия, что за период Т радиус ОК сделает один оборот, т.е. повернется на угол 2π радиан:

Частота колебаний - число колебаний точки в одну секунду, т.е. частота колебаний определяется как величина, обратная периоду колебаний:

Пружынный маятник упругие силы.

Пружинный маятник состоит из пружины и массивного шара, насаженного на горизонтальный стержень, вдоль которого он может скользить. Пусть на пружине укреплен шарик с отверстием, который скользит вдоль направляющей оси (стержня). На рис. 7.2,а показано положение шара в состоянии покоя; на рис. 7.2,б - максимальное сжатие и на рис. 7.2,в -произвольное положение шарика.

Под действием возвращающей силы, равной силе сжатия, шарик будет совершать колебания. Сила сжатия F = -kx , где k - коэффициент жесткости пружины. Знак минус показывает, что направление силы F и смещение х противоположны. Потенциальная энергия сжатой пружины

кинетическая .

Для вывода уравнения движения шарика необходимо связать х и t. Вывод основывается на законе сохранения энергии. Полная механическая энергия равна сумме кинетической и потенциальной энергии системы. В данном случае:

. В положении б) :.

Так как в рассматриваемом движении выполняется закон сохранения механической энергии, можно записать:

. Определим отсюда скорость:

Но в свою очередь и, следовательно,. Разделим переменные. Интегрируя это выражение, получим:,

где - постоянная интегрирования. Из последнего следует, что

Таким образом, под действием упругой силы тело совершает гармонические колебания. Силы иной природы, чем упругие, но в которых выполняется условие F = -kx, называются квазиупругими. Под действием этих сил тела тоже совершают гармонические колебания. При этом:

смещение:

скорость:

ускорение:

Математический маятник.

Математическим маятником называется материальная точка, подвешенная на нерастяжимой невесомой нити, совершающая колебательное движение в одной вертикальной плоскости под действием силы тяжести.

Таким маятником можно считать тяжелый шар массой m, подвешенный на тонкой нити, длина l которой намного больше размеров шара. Если его отклонить на угол α (рис.7.3.) от вертикальной линии, то под влиянием силы F – одной из составляющих веса Р он будет совершать колебания. Другая составляющая , направленная вдоль нити, не учитывается, т.к. уравновешивается силой натяжения нити. При малых углах смещенияи, тогда координату х можно отсчитывать по горизонтальному направлению. Из рис.7.3 видно, что составляющая веса, перпендикулярная нити, равна

Знак минус в правой части означает то, что сила F направлена в сторону уменьшения угла α. С учетом малости угла α

Для вывода закона движения математического и физического маятников используем основное уравнение динамики вращательного движения

Момент силы относительно точки О: , и момент инерции:M = FL . Момент инерции J в данном случае Угловое ускорение:

С учетом этих величин имеем:

Его решение ,

Как видим, период колебаний математического маятника зависит от его длины и ускорения силы тяжести и не зависит от амплитуды колебаний.

Затухающие колебания.

Все реальные колебательные системы являются диссипативными. Энергия механических колебаний такой системы постепенно расходуется на работу против сил трения, поэтому свободные колебания всегда затухают - их амплитуда постепенно уменьшается. Во многих случаях, когда отсутствует сухое трение, в первом приближении можно считать, что при небольших скоростях движения силы, вызывающие затухание механических колебаниях, пропорциональны скорости. Эти силы, независимо от их происхождения, называют силами сопротивления.

Перепишем это уравнение в следующем виде:

и обозначим:

где представляет ту частоту, с которой совершались бы свободные колебания системы при отсутствии сопротивления среды, т.е. при r = 0. Эту частоту называют собственной частотой колебания системы; β - коэффициент затухания. Тогда

Будем искать решение уравнения (7.19) в виде где U - некоторая функция от t.

Продифференцируем два раза это выражение по времени t и, подставив значения первой и второй производных в уравнение (7.19), получим

Решение этого, уравнения существенным образом зависит от знака коэффициента, стоящего при U. Рассмотрим случай, когда этот коэффициент положительный. Введем обозначение тогда С вещественным ω решением этого уравнения, как мы знаем, является функция

Таким образом, в случае малого сопротивления среды , решением уравнения (7.19) будет функция

График этой функции показан на рис. 7.8. Пунктирными линиями показаны пределы, в которых находится смещение колеблющейся точки. Величину называют собственной циклической частотой колебаний диссипативной системы. Затухающие колебания представляют собой непериодические колебания, т.к, в них никогда не повторяются, например, максимальные значения смещения, скорости и ускорения. Величинуобычно называют периодом затухающих колебаний, правильнее - условным периодом затухающих колебаний,

Натуральный логарифм отношения амплитуд смещений, следующих друг за другом через промежуток времени, равный периоду Т, называют логарифмическим декрементом затухания.

Обозначим через τ промежуток времени, за который амплитуда колебаний уменьшается в е раз. Тогда

Следовательно, коэффициент затухания есть физическая величина, обратная промежутку времени τ, в течение которого амплитуда убывает в е раз. Величина τ называется временем релаксации.

Пусть N - число колебаний, после которых амплитуда уменьшается в е раз, Тогда

Следовательно, логарифмический декремент затухания δ есть физическая величина, обратная числу колебаний N, по истечению которого амплитуда убывает в е раз

Вынужденные колебания.

В случае вынужденных колебаний система колеблется под действием внешней (вынуждающей) силы, и за счет работы этой силы периодически компенсируются потери энергии системы. Частота вынужденных колебаний (вынуждающая частота) зависит от частоты изменения внешней силы Определим амплитуду вынужденных колебаний тела массой m, считая колебания незатухающими вследствие постоянно действующей силы .

Пусть эта сила изменяется со временем по закону , гдеамплитуда вынуждающей силы. Возвращающая силаи сила сопротивленияТогда второй закон Ньютона можно записать в следующем виде.

Равномерное движение – это движение с постоянной скоростью, то есть когда скорость не изменяется (v = const) и ускорения или замедления не происходит (а = 0).

Прямолинейное движение – это движение по прямой линии, то есть траектория прямолинейного движения – это прямая линия.

Равномерное прямолинейное движение – это движение, при котором тело за любые равные промежутки времени совершает одинаковые перемещения. Например, если мы разобьём какой-то временной интервал на отрезки по одной секунде, то при равномерном движении тело будет перемещаться на одинаковое расстояние за каждый из этих отрезков времени.

Скорость равномерного прямолинейного движения не зависит от времени и в каждой точке траектории направлена также, как и перемещение тела. То есть вектор перемещения совпадает по направлению с вектором скорости. При этом средняя скорость за любой промежуток времени равна мгновенной скорости:

V cp = v

Пройденный путь при прямолинейном движении равен модулю перемещения. Если положительное направление оси ОХ совпадает с направлением движения, то проекция скорости на ось ОХ равна величине скорости и положительна:

V x = v, то есть v > 0

Проекция перемещения на ось ОХ равна:

S = vt = x – x 0

где x 0 – начальная координата тела, х – конечная координата тела (или координата тела в любой момент времени)

Уравнение движения , то есть зависимость координаты тела от времени х = х(t), принимает вид:

Х = x 0 + vt

Если положительное направление оси ОХ противоположно направлению движения тела, то проекция скорости тела на ось ОХ отрицательна, скорость меньше нуля (v < 0), и тогда уравнение движения принимает вид:

Х = x 0 - vt

Зависимость скорости, координат и пути от времени

Зависимость проекции скорости тела от времени показана на рис. 1.11. Так как скорость постоянна (v = const), то графиком скорости является прямая линия, параллельная оси времени Ot.

Рис. 1.11. Зависимость проекции скорости тела от времени при равномерном прямолинейном движении.

Проекция перемещения на координатную ось численно равна площади прямоугольника ОАВС (рис. 1.12), так как величина вектора перемещения равна произведению вектора скорости на время, за которое было совершено перемещение.

Рис. 1.12. Зависимость проекции перемещения тела от времени при равномерном прямолинейном движении.

График зависимости перемещения от времени показан на рис. 1.13. Из графика видно, что проекция скорости равна

V = s 1 / t 1 = tg α

где α – угол наклона графика к оси времени.Чем больше угол α, тем быстрее движется тело, то есть тем больше его скорость (больший путь тело проходит за меньшее время). Тангенс угла наклона касательной к графику зависимости координаты от времени равен скорости:

Tg α = v

Рис. 1.13. Зависимость проекции перемещения тела от времени при равномерном прямолинейном движении.

Зависимость координаты от времени показана на рис. 1.14. Из рисунка видно, что

Tg α 1 > tg α 2

следовательно, скорость тела 1 выше скорости тела 2 (v 1 > v 2).

Tg α 3 = v 3 < 0

Если тело покоится, то графиком координаты является прямая, параллельная оси времени, то есть

Х = х 0

Рис. 1.14. Зависимость координаты тела от времени при равномерном прямолинейном движении.

Тема урока : «Графическое представление движения»

Цель урока:

Научить учащихся решать задачи графическим методом. Добиться понимания функциональной зависимости между величинами и научить выражать эту зависимость графическим методом.

Тип урока:

Комбинированный урок.

Проверка

знаний:

Самостоятельная работа № 2 «Прямолинейное равномерное движение» - 12 минут.

План изложения нового материала:

1. Графики зависимости проекции перемещения от времени.

2. Графики зависимости проекции скорости от времени.

3. Графики зависимости координаты от времени.

4. Графики пути.

5. Выполнение графических упражнений.

В каждый данный момент времени движущаяся точка может находиться только в одном определенном положении на траектории. Поэтому ее удаление от начала координат есть некоторая функция времени t . Зависимость между переменными s и t выражается уравнением s(t ). Траекторию движения точки можно задать аналитически, т. е. в виде уравнений: s = 2 t + 3, s = At или графически.

Графики - «международный язык». Овладение ими имеет большое образовательное значение. Поэтому необходимо научить учащихся не только строить графики, но и анализировать их, читать, понимать какую информацию о движении тела можно получить из графика.

Рассмотрим, как строятся графики на конкретном примере.

Пример: По одной и той же прямой дороге едут велосипедист и автомобиль. Направим ось х вдоль дороги. Пусть велосипедист едет в положительном направлении оси х со скоростью 25 км/ч, а автомобиль - в отрицательном направлении со скоростью 50 км/ч, причем в начальный момент времени велосипедист находился в точке с координатой 25км, а автомобиль - в точке с координатой 100 км.

Графиком sx (t ) = vxt является прямая, проходящая через начало координат. Если vx > 0, то sx возрастает со временем а если vx < 0, то то sx убывает со временем

Наклон графика тем больше, - чем больше модуль скорости.

1. Графики зависимости проекции перемещения от времени. График функции sx ( t ) называется графиком движения .

2. Графики зависимости проекции скорости от времени.

Наряду с графиками движения часто используются графики скорости vx (t ). При изучении равномерного прямолинейного движения необходимо научить учащихся строить графики скорости и пользоваться ими при решении задач.

График функции vx (t ) - прямая, параллельная оси t . Если vx > О, эта прямая проходит выше оси t , а если vx < О, то ниже.

Площадь фигуры, ограниченной графиком vx (t ) и осью t , численно равна модулю перемещения.

3. Графики зависимости координаты от времени. Наряду с графиком скорости очень важны графики координаты движущегося тела, так как они дают возможность определить положение движущегося тела в любой момент времени. График x (t ) = х0 + sx (t ) отличается от графика sx (t ) только сдвигом на х0 по оси ординат. Точка пересечения двух графиков соответствует моменту, когда координаты тел равны, т. е. эта точка определяет момент времени и координату встречи двух тел.

По графикам x (t ) видно, что велосипедист и автомобиль в течение первого часа двигались навстречу друг другу, а затем - удалялись друг от друга.

4. Графики пути. Полезно обратить внимание учащихся на отличие графика координаты (перемещения) от графика пути. Только при прямолинейном движении в одном направлении графики пути и координаты совпадают. Если направление движения изменяется, то эти графики уже не будут одинаковыми.

Обратите внимание: хотя велосипедист и автомобиль движутся в противоположных направлениях, в обоих случаях путь возрастает со временем.

ВОПРОСЫ НА ЗАКРЕПЛЕНИЕ МАТЕРИАЛА:

1. Что представляет собой график зависимости проекции скорости от времени? В чём его особенности? Приведите примеры.

2. Что представляет собой график зависимости модуля скорости от времени? В чём его особенности? Приведите примеры.

3. Что представляет собой график зависимости координаты от времени от времени? В чём его особенности? Приведите примеры.

4. Что представляет собой график зависимости проекции перемещения от времени? В чём его особенности? Приведите примеры.

5. Что представляет собой график зависимости пути от времени? В чём его особенности? Приведите примеры.

6. Графики x (t ) для двух тел параллельны. Что можно сказать о скорости этих тел?

7. Графики l (t ) для двух тел пересекаются. Обозначает ли точка пересечения графиков момент встречи этих тел?

ЗАДАЧИ, РЕШАЕМЫЕ НА УРОКЕ:

1. Опишите движения, графики которых приведены на рисунке. Запишите для каждого движения формулу зависимости x (t ). Постройте график зависимости vx (t ).

2. По графикам скорости (см. рисунок) запишите формулы и постройте графики зависимости sx (t ) и l (t ).

3. По приведенным на рисунке графикам скорости запишите формулы и постройте графики зависимости sx (t ) и x (t ), если начальная координата тела х0=5м.

САМОСТОЯТЕЛЬНАЯ РАБОТА

Начальный уровень

1. На рисунке даны графики зависимости координаты движущегося тела от времени. Какое из трех тел движется с большей скоростью?

A. Первое. Б. Второе. B. Третье.

2. На рисунке даны графики зависимости проекции скорости от времени. Какое из двух тел за 4 с прошло больший путь?

A. Первое. Б. Второе. B. Оба тела прошли одинаковый путь.

Средний уровень

1. Зависимость проекции скорости от времени движущегося тела задана формулой vx = 5. Опишите это движение, постройте график vx (t). По графику определите модуль перемещения через 2 с после начала движения.

2. Зависимость проекции скорости от времени движущегося тела задана формулой vx =10. Опишите это движение, постройте график vx (t ). По графику определите модуль перемещения через 3 с после начала движения.

Достаточный уровень

1. Опишите движения, графики которых приведены на рисунке. Запишите для каждого движения уравнение зависимости х (t ).

2. По графикам проекции скорости запишите уравнения движения и постройте графики зависимости sx (t) .

Высокий уровень

1. Вдоль оси ОХ движутся два тела, координаты которых изменяются согласно формулам: x 1 = 3 + 2 t и х2 = 6 + t . Как движутся эти тела? В какой момент времени тела встретятся? Найдите координату точки встречи. Задачу решить аналитически и графически.

2. Два мотоциклиста движутся прямолинейно и равномерно. Скорость движения первого мотоциклиста больше скорости движения второго. Чем отличаются графики их: а) путей? б) скоростей? Задачу решить графически.

ГРАФИКИ

Определение вида движения по графику

1. Равноускоренному движению соответствует график зависимости модуля ускорения от времени, обозначенный на рисунке буквой

1) А

2) Б

3) В

4) Г

2. На рисунках изображены графики зависимости модуля ускорения от времени для разных видов движения. Какой график соответствует равномерному движению?

1 4

3.
Тело, двигаясь вдоль оси Ох прямолинейно и равноускоренно, за некоторое время уменьшило свою скорость в 2 раза. Какой из графиков зависимости проекции ускорения от времени соответствует такому движению?

1 4

4. Парашютист движется вертикально вниз с постоянной по значению скоростью. Какой график - 1, 2, 3 или 4 - правильно отражает зависимость его координаты Y от времени движения t относительно поверхности земли? Сопротивлением воздуха пренебречь.

1) 3 4) 4

5. Какой из графиков зависимости проекции скорости от времени (рис.) соответствует движению тела, брошенного вертикально вверх с некоторой скоростью (ось Y направлена вертикально вверх)?

13 4) 4

6.
Тело бросили вертикально вверх с некоторой начальной скоростью с поверхности земли. Какой из графиков зависимости высоты тела над поверхностью земли от времени (рис.) соответствует этому движению?

12

Определение и сравнение характеристик движения по графику

7. На графике приведена зависимость проекции скорости тела от времени при прямолинейном движении. Определите проекцию ускорения тела.

1) – 10 м/с2

2) – 8 м/с2

3) 8 м/с2

4) 10 м/с2

8. На рисунке изображен график зависимости скорости движения тел от времени. Чему равно ускорение тела?

1) 1 м/с2

2) 2 м/с2

3) 3 м/с2

4) 18 м/с2

9. По графику зависимости проекции скорости от време ни, представленному па рисунке, определите модуль ускорения прямолинейно движущегося тела в момент времени t = 2 с.

1) 2 м/с2

2) 3 м/с2

3) 10 м/с2

4) 27 м/с2

10. х = 0, а пункт Б в точке х = 30 км. Чему равна скорость автобуса на пути из А в Б?

1) 40 км/ч

2) 50 км/ч

3) 60 км/ч

4) 75 км/ч

11. На рисунке представлен график движения автобуса из пункта А в пункт Б и обратно. Пункт А находится в точке х = 0, а пункт Б в точке х = 30 км. Чему равна скорость автобуса на пути из Б в А?

1) 40 км/ч

2) 50 км/ч

3) 60 км/ч

4) 75 км/ч

12. Автомобиль движется по прямой улице. На графике представлена зависимость скорости автомобиля от времени. Модуль ускорения максимален в интервале времени

1) от 0 с до 10 с

2) от 10 с до 20 с

3) от 20 с до 30 с

font-family: " times new roman>4) от 30 с до 40 с

13. Четыре тела движутся вдоль оси Оx .На рисунке изображены графики зависимости проекций скоростей υx от времени t для этих тел. Какое из тел движется с наименьшим по модулю ускорением?

1) 3 4) 4

14. На рисунке представлен график зависимости пути S велосипедиста от времени t . Определите интервал времени, когда велосипедист двигался со скоростью 2,5 м/с.

1) от 5 с до 7 с

2) от 3 с до 5 с

3) от 1 с до 3 с

4) от 0 до 1 с

15. На рисунке представлен график зависимости координаты тела, движущегося вдоль оси O х , от времени. Сравните скорости v 1 , v 2 и v 3 тела в моменты времени t1, t2 , t3

1) v 1 > v 2 = v 3

2) v 1 > v 2 > v 3

3) v 1 < v 2 < v 3

4) v 1 = v 2 > v 3

16. На рисунке приведен график зависимости проекции ско рости тела от времени.

Проекция ускорения тела в интервале времени от 5 до 10 с представлена графиком

13 4) 4

17. Материальная точка движется прямолинейно с ускорением, зависимость от времени которого приведена на рисунке. Начальная скорость точки равна 0. Какая точка на графике соответствует максимальной скорости материальной точки:

1) 2

2) 3

3) 4

4) 5

Составление кинематических зависимостей (функций зависимости кинематических величин от времени) по графику

18. На рис. изображен график зависимости координаты тела от времени. Определите кинематический закон движения этого тела

1) x ( t ) = 2 + 2 t

2) x ( t ) = – 2 – 2 t

3) x ( t ) = 2 – 2 t

4) x ( t ) = – 2 + 2 t

19. По графику зависимости скорости тела от времени определите функцию зависимости скорости этого тела от времени

1) v x = – 30 + 10 t

2) v x = 30 + 10 t

3) v x = 30 – 10 t

4) v x = – 30 + 10 t

Определение перемещения и пути по графику

20. По графику зависимости скорости тела от времени определите путь, пройденный прямолинейно движущимся телом за 3 с.

1) 2 м

2) 4 м

3) 18 м

4) 36 м

21. Камень брошен вертикально вверх. Проекция его скорости на вертикальное направление изменяется со временем согласно графику на рисунке. Чему равен путь, пройденный камне за первые 3 с?

1) 30 м

2) 45 м

3) 60 м

4) 90 м

22. Камень брошен вертикально вверх. Проекция его скорости на вертикальное направление изменяется со временем согласно графику на рисунке к з.21. Чему равен путь, пройденный камнем за все время полета?

1) 30 м

2) 45 м

3) 60 м

4) 90 м

23. Камень брошен вертикально вверх. Проекция его скорости на вертикальное направление изменяется со временем согласно графику на рисунке к з.21. Чему равно перемещение камня за первые 3 с?

1) 0 м

2) 30 м

3) 45 м

4) 60 м

24. Камень брошен вертикально вверх. Проекция его скорости на вертикальное направление изменяется со временем согласно графику на рисунке к з.21. Чему равно перемещение камня за все время полета?

1) 0 м

2) 30 м

3) 60 м

4) 90 м

25. На рисунке дан график зависимости проекции скорости тела, движущегося вдоль оси Ох, от времени. Чему равен путь, пройденный телом к моменту времени t = 10 с?

1) 1м

2) 6 м

3) 7 м

4) 13 м

26. position:relative; z-index:24"> Тележка начинает движение из состояния покоя вдоль бумажной ленты. На тележке стоит капельница, которая через равные промежутки времени оставляет на ленте пятна краски.

Выберите график зависимости величины скорости от времени, который правильно описывает движение тележки.

1 4

УРАВНЕНИЯ

27. Движение троллейбуса при аварийном торможении задано уравнением: x = 30 + 15t – 2,5 t2 , м Чему равна начальная координата троллейбуса?

1) 2,5 м

2) 5 м

3) 15 м

4) 30 м

28. Движение самолета при разбеге задано уравнением: x = 100 + 0,85t2 , м Чему равно ускорение самолета?

1) 0 м/с2

2) 0,85 м/с2

3) 1,7 м/с2

4) 100 м/с2

29. Движение легкового автомобиля задано уравнением: x = 150 + 30t + 0,7t2 , м. Чему равна начальная скорость автомобиля?

1) 0,7 м/с

2) 1,4 м/с

3) 30 м/с

4) 150 м/с

30. Уравнение зависимости проекции скорости движущегося тела от времени: v x = 2 +3t (м/с). Каково соответствующее уравнение проекции перемещения тела?

1) Sx = 2 t + 3 t 2 2) Sx = 4 t + 3 t 2 3) Sx = t + 6 t 2 4) Sx = 2 t + 1,5 t 2

31. Зависимость координаты от времени для некоторого тела описывается уравнением х = 8t – t2 . В какой момент времени скорость тела равна нулю?

1) 8 с

2) 4 с

3) 3 с

4) 0 c

ТАБЛИЦЫ

32. х равномерного движения тела от времени t :

t, с

х , м

С какой скоростью двигалось тело от момента времени 0 с до мо мента времени 4 с?

1) 0,5 м/с

2) 1,5 м/с

3) 2 м/с

4) 3 м/с

33. В таблице представлена зависимость координаты х движения тела от времени t :

t , с

х , м

Определите среднюю скорость движения тела в интервале времени от 1с до Зс.

1) 0 м/с

2) ≈0,33 м/с

3) 0,5 м/с

4) 1 м/с

t, с

0

1

2

3

4

5

x 1 м

х2 , м

х3 , м

х4, м


У какого из тел скорость могла быть постоянна и отлична от нуля?

1) 1

35. Четыре тела двигались по оси Ох. В таблице представлена зависимость их координат от времени.

t, с

0

1

2

3

4

5

x 1 м

х2 , м

х3 , м

х4, м


У какого из тел ускорение могло быть постоянно и отлично от нуля?

Loading...Loading...