The design of the gable roof truss system. Variants of gable roofs and their features: calculation and installation steps, photo

When designing any residential building, architects pay special attention to the roof, as it performs not one, but several functions at once, depending on its design features. It must be said that not all future homeowners are satisfied with the usual gable roof, although it can be called the most reliable, since it has only two pitched planes and one joint between them. Many are attracted to more complex designs that add a special appeal and originality to the structure. Other, more practical homeowners prefer attic structures that can simultaneously serve as a roof and a second floor.

The basis of any roof is an individual truss system, which has its own design features. Making the choice of the desired roof frame will be much easier if you figure out in advance which ones types and schemes of truss systems used in building practice. After receiving such information, it will become more clear how complex such structures are in installation. This is especially important to know if the roof frame is supposed to be built independently.

The main functional tasks of truss systems

When arranging pitched roof structures, the truss system is a frame for covering and for holding materials of the "roofing pie". With proper installation of the frame structure, the necessary conditions will be created for the correct and non-insulated types of roofs that protect the walls and the interior of the house from various atmospheric influences.


The roof structure is also always the final architectural element of the exterior design of the building, supporting its stylistic direction with its appearance. Nevertheless, the design features of the truss systems must first of all meet the requirements of strength and reliability that the roof must meet, and only then - aesthetic criteria.

The frame of the truss system forms the configuration and angle of inclination of the roof. These parameters largely depend on the natural factors characteristic of a particular region, as well as on the desire and capabilities of the homeowner:

  • The amount of precipitation in different periods of the year.
  • Direction and average wind speed in the area where the building will be erected.
  • Plans for the use of the space under the roof - arranging residential or non-residential premises in it, or using it only as an air gap for thermal insulation of the premises below.
  • Variety of planned roofing material.
  • Financial capacity of the homeowner.

Atmospheric precipitation and the strength of wind currents give a very sensitive load on the structure of the roof. For example, in regions with heavy snowfalls, you should not choose a truss system with a small angle of inclination of the slopes, as snow masses will linger on their surface, which can lead to deformation of the frame or roofing or leaks.

If the area where the construction will be carried out is famous for its winds, then it is better to choose a structure with a slight slope of the slope so that the sharp gusts that occur do not rip off individual elements of the roof and roof.

The main elements of the roof structure

Details and nodes of truss systems

Depending on the chosen type of truss system, the structural elements used can vary significantly, however, there are details that are present in both simple and complex roof systems.


The main elements of the pitched roof truss system include:

  • Rafter legs forming roof slopes.
  • - a wooden bar fixed on the walls of the house and serving to fix the lower part of the rafter legs on it.
  • The ridge is the junction of the frames of two slopes. It is usually the highest horizontal roof line and serves as a support on which the rafters are fixed. The ridge can be formed by rafters fastened together at a certain angle or fixed on a ridge board (run).
  • Sheathing is slats or beams mounted on rafters with a certain pitch and serving as the basis for laying the selected roofing material.
  • Retaining elements, where you can take beds, girders, racks, struts, ties and other parts, serve to increase the rigidity of the rafter legs, support the ridge, link individual parts into a common structure.

In addition to the above structural details, other elements can be included in it, the functions of which are aimed at strengthening the system and optimal distribution of roof loads on the walls of the building.

The truss system is divided into several categories depending on the different features of its design.

attic space

Before proceeding to the consideration of different types of roofs, it is worthwhile to figure out what an attic space can be, since many owners successfully use it as utility and full-fledged living quarters.


The design of pitched roofs can be divided into non-attic and attic. The first option is called just that because the space under the roof has a small height and is used only as an air layer that insulates the building from above. Such systems usually include or have several slopes, but located at a very slight angle.

The attic structure, which has a sufficiently large ridge height, can be used in different ways, be insulated and not insulated. These options include attic or gable version. If a roof with a high ridge is chosen, then it is imperative to take into account wind loads in the region where the house is built.

Slope slope

To determine the optimal slope of the roof slopes of the future residential building, first of all, you need to look at the already built low-rise neighboring houses. If they have been standing for more than one year and steadfastly withstand wind loads, then their design can be safely taken as a basis. In the same case, when the owners set the goal of creating an exclusive original project, unlike the buildings standing nearby, it is necessary to familiarize yourself with the design and operational features of various truss systems and make appropriate calculations.


It should be borne in mind that the change in the tangent and normal values ​​​​of the wind force depends on how large the slope of the roof slopes is - the steeper the angle of inclination, the greater the importance of the normal forces and the smaller the tangents. If the roof is sloping, then the structure is more affected by the tangential wind load, since the lifting force increases on the leeward side and decreases on the windward side.


Winter snow load should also be taken into account when designing the roof. Usually this factor is considered in conjunction with the wind load, since the snow load on the windward side will be much lower than on the leeward slope. In addition, there are places on the slopes where snow will definitely collect, giving a big load on this area, so it should be strengthened with additional rafters.

Roof slopes can vary from 10 to 60 degrees and must be selected not only with regard to the consolidated external load, but also depending on the roofing that is planned to be used. This factor is taken into account because roofing materials differ in their mass, their fixing requires a different number of elements of the truss system, which means that the load on the walls of the house will also vary, and how large it will be, also depends on the angle of the roof slope. Equally important are the features of each coating in terms of resistance to moisture penetration - in any case, many roofing materials need one or another slope to ensure the free flow of storm water or melting snow. In addition, when choosing a roof slope, you need to think in advance how the process of cleaning and repair work on the roof will be carried out.

When planning this or that angle of the roof slopes, you need to know that the fewer joints between the sheets of the coating, and the tighter they are, the less you can make the slope of the slope, of course, if it is not supposed to arrange a residential or utility room in the attic space.

If a material consisting of small elements, for example, ceramic tiles, is used to cover the roof, then the slope of the slopes must be made steep enough so that water never lingers on the surface.

Given the weight of the roofing material, you need to know - the heavier the coating, the greater the angle of the slopes should be, since in this case the load will be correctly distributed to the rafter system and load-bearing walls.

The following materials can be used to cover the roof: either a profile sheet, galvanized steel, corrugated asbestos-concrete and bitumen-fiber sheets, cement and ceramic tiles, roofing felt, soft roofing and other roofing materials. The illustration below shows the allowable slope angles for various types of roofing.


Basic structures of truss systems

First of all, it is worth considering the basic types of truss systems regarding the location of the walls of the house, which are used in all roof structures. The basic options are divided into layered, hanging, and also combined, that is, including elements of both the first and second types of systems in their design.

fasteners for rafters

Layered system

In buildings where internal load-bearing walls are provided, a layered truss system is often installed. It is much easier to install than a hanging one, since the internal load-bearing walls provide reliable support for its elements, and in addition, fewer materials will be required for this design.


For rafters in this system, the defining reference point is the ridge board, on which they are fixed. The non-thrust type of the layered system can be equipped in three versions:

  • In the first version, the upper side of the rafters is fixed on a ridge support, called a sliding one, and their lower side is fixed by cutting to the Mauerlat. Additionally, the rafters in the lower part are fixed to the wall with wire or staples.

  • In the second case, the rafters in the upper part are cut at a certain angle and interconnected using special metal plates.

The lower edge of the rafter legs is attached to the Mauerlat with movable fasteners.


  • In the third version, the rafters are rigidly fastened in the upper part with bars or processed boards located horizontally, parallel to each other on both sides of the rafters connected at an angle, and a ridge run is pinched between them.

In the lower part, sliding fasteners are used to fix the rafters, just as in the previous case.

It is necessary to explain why sliding fasteners are often used to fix the rafters on the Mauerlat. The fact is that they are able to save the load-bearing walls from excessive stress, since the rafters are not rigidly fixed, and when the structure shrinks, they have the ability to move without deforming the overall structure of the roofing system.

This type of fastening is used only in layered systems, which also distinguishes them from the hanging version.

However, in some cases, a spacer system is used for layered rafters, in which the lower end of the rafters is rigidly fixed to the Mauerlat, and in order to remove the load from the walls, puffs and struts are built into the structure. This option is called complex, as it includes elements of a layered and hanging system.

Specify the requested values ​​and click the button "Calculate the excess Lbc"

Base length (horizontal projection of the slope)

Planned roof slope angle α (degrees)

Rafter Length Calculator

The calculation is carried out on the basis of the horizontal projection (Lsd) and the height of the rafter triangle determined earlier (Lbc).

If desired, you can include in the calculation the width of the cornice overhang, if it is created by protruding rafters.

Enter the requested values ​​and click the "Calculate rafter length" button

Excess value Lbc (meters)

The length of the horizontal projection of the rafter Lsd (meters)

Calculation conditions:

Required eaves width (meters)

Number of overhangs:

Gable truss system

Gable truss systems are the most popular for one-story private houses. They look neat, fit well into any style of construction, are reliable and can be used, depending on the angle of their slope, to equip the attic for living rooms, utility rooms, or simply to create an air gap that retains heat in the building.

wood screws


A roof with two slopes is the most common option for completing the box of a private house. In its manufacture, it is important to correctly select the cross-sections of the supporting elements, securely fasten the nodes and choose the right type of construction. The truss system of a gable roof does not have great difficulties and may well be made by hand.

Classification of truss systems according to the method of support

The structure can be classified in two ways. The first of them is the method of supporting the bearing elements. The gable roof truss system of the house in this case includes the following types:

  • with layered rafters;
  • with hanging rafters.

Types of a gable roof with layered and hanging rafters

Roofing with the use of layered rafters involves their support at two points. The design in this case avoids the occurrence of a serious spacer. To do the installation yourself, you will need the following basic elements:

  • rafter legs;
  • Mauerlat;
  • crossbar;
  • intermediate racks and struts with a large span of load-bearing beams;
  • crate and counter-crate;
  • overlays persistent bars.

At the top point, the installation provides for leaning on the crossbar. The installation also provides support at the lowest point - Mauerlat. You can assemble such a structure for a house with your own hands only in two cases:

Options for assembling a layered gable roof system

  1. A layered system is possible if the distance between the gables is not large. That is, such an installation is suitable for a small house with your own hands. The greatest length of the structure, which allows the construction of a wooden crossbar without additional reinforcements, is 6 m. For large spans, it will be necessary to install metal beams as a crossbar. When using a wooden beam, it will be necessary to provide intermediate racks, which are located on average every 2 meters. This can be avoided only when using glued laminated timber of a sufficiently large cross section as a crossbar. In this case, a free layout of the space becomes impossible - the racks in the middle of the room cannot be removed.
  2. The second option, when it is possible to install a layered gable roof system with your own hands, is the presence of a wall in the middle of the house. The device in this case provides that the beam, on which the rafters will rest at the top point, will transfer the load to the inner wall. In this case, the supporting structure should not be confused with the partition. The partition rests on the floors, and installing the wall of the house with your own hands involves resting it directly on the foundations. Such a device is suitable for buildings with sufficient width, where it makes sense to install a wall fence in the middle.

The second option is hanging rafters. They are more complex in calculation, but they allow the installation in the under-roof space of a free-plan house. The design assumes the absence of a supporting wooden or metal bar in the upper part. Installation involves supporting the rafters only at the lowest point. In the upper part, the bearing beams are securely connected to each other. Installing such a system is like a farm. The design works on thrust, so it is important to prevent excessive horizontal load on the walls of the house. You can do this by doing the following:

  • the device of a monolithic belt along the edge of the walls;
  • it is necessary to make a reliable fastening of the Mauerlat of a gable roof to the wall of the house with your own hands;
  • to eliminate the spacer, a contraction is established.

Installation of a hanging truss system

The fight or screed becomes one of the significant elements of the gable roof of the house. It prevents the expansion of the walls under the action of thrust. The following types of fights can be distinguished:

  • located at the attic floor level;
  • located at the level of the attic ceiling.

It is worth noting that the second option provides less reliability, since the higher the element is mounted, the stronger the rafters have an effect on it. If the fight turns out to be too long, you need to make it stronger with your own hands. For this, additional elements of the gable roof of the house are installed - suspensions. They connect the skate to the middle of the puff, which prevents it from sagging.

The gable roof truss system with hanging rafters allows installation with pre-assembly of trusses on the ground, then raise them to the roof and fix them.

This option is only suitable if you have lifting equipment, since the finished gable roofs of the house will become too large and heavy to lift with your own hands.

Classification by type of slope

The second division can be made depending on how the ramp line is designed. The views here suggest the presence of two options:

Gable roof with broken and straight slopes

  1. With straight slopes. The easiest way to do. Allows you to get the job done without any hassle. The disadvantage of this do-it-yourself roofing option is the reduction in attic space.
  2. With broken slopes. Such types of roofing are more difficult to perform. It is assumed that there is a line along which the angle of inclination changes. The angle of inclination of the lower part of the slope must be made greater than that of the upper. Thus, it turns out to raise the ceiling of the attic and increase the free space. The installation of the roof is carried out with the installation of an additional crossbar at the fracture site.

These types involve a choice between them, depending on the wishes of the future owner of the building.

The main elements of the roof

The rafter system of the gable final part of the building consists of many elements. Installation should begin with a detailed study of each of them and the choice of their sections.

When installing elements under a metal tile or other coating, it implies the use of a bar with a section of 150x150 or 200x200 mm. It is this size that allows you to most optimally distribute the load. then you need to choose a method of fixing it depends on the material of the walls. There are several options:

The scheme of fastening the Mauerlat to the wall

  1. Frame, timber or log walls do not require the installation of a Mauerlat. In the case of a frame building, the top framing of the walls serves as a support for the rafter legs. during the construction of fences from timber or logs, the upper crown becomes the Mauerlat. It is important to correctly fix these elements in the wall structure.
  2. When used for the construction of lightweight concrete, additional reinforcement will be required. Lightweight concretes include materials such as foam concrete, cinder concrete, expanded clay concrete. They can collapse if the roof is not supported centrally on them. To evenly distribute the load, a monolithic reinforced concrete belt is poured along the edge of the walls. During work, a special wire, studs or bolts are laid in it, on which the Mauerlat will be fastened.
  3. For brick means, it is possible not to provide a reinforced concrete belt. In this case, to connect with the strapping beam, a wire is inserted into the masonry, which is then wrapped around the Mauerlat and twisted. The second option - one row before the walls are cut, wooden blocks impregnated with an antiseptic are brought into the masonry from the outside. Such plugs and Mauerlat are fastened with staples. It is also possible to use studs and bolts, for fixing which will require pouring a monolithic belt.

An important point is waterproofing.

When installing, it is important to provide roofing material, linokrom or waterproofing at the junction of concrete or brick with wood. This is required to prevent the wood from rotting on contact with material of a different moisture content.

After fixing the Mauerlat, rafter legs are installed. Their cross section is selected depending on the pitch of the supporting beams, their span, snow load and type of coating. When installing a frame under a metal tile with a step of 60 cm, it is recommended to follow the following recommendations, depending on the span:

  • 3 m - 4x15 cm;
  • 4 m - 5=15 cm;
  • 5 m - 5x17.5 cm;
  • 6 m - 5x20 cm.

Table of average values ​​of rafter legs

These are average values, in order to perform a more accurate calculation, it is better to contact a specialist or study additional literature.

There are two ways to fasten the rafter legs to the Mauerlat:

  • with a notch;
  • without her.

Fastening rafter legs to the Mauerlat with and without a notch

In the first case, they wash down on the strapping beam, in the second, a special plank is nailed to the rafters, which becomes a persistent bar. Further, for both methods, the work is performed in the same way. With the help of metal corners, the inclined beam is fixed so that it does not move relative to the design position along the Mauerlat. Additionally, nails are driven in at an angle.

Scheme of fastening rafters with wire and brackets

In addition, you will need to fasten the rafter to the wall. The implementation of this measure is provided for in the regulatory documents. You can do this in two ways:

  • on brackets (suitable for wooden buildings);
  • using wire twisting (a more time-consuming option, but the only one possible for stone houses).

You can perform fastening according to the norms through one leg. This is necessary for a more secure attachment of the roof to the box of the house.

If you do the work correctly, you can not worry about its condition even in the strongest winds.

Racks, ties, struts

Such elements are most often made of boards. The optimal thickness is in the range of 32-50 mm. Racks are an exception. Here you can use boards with a thickness of 50-100 mm. Fastening is carried out on studs or using support bars.

Gable roof truss system: design and nodes


A gable roof is the most common in construction. For proper installation, it is recommended to study the device of the gable roof truss system.

The device of the truss system of a gable roof

The gable roof truss system is designed for roofing in the form of two rectangles located at a certain angle to each other in the upper part of the structure. This design is quite often used in the construction of private low-rise buildings, various buildings for domestic and household purposes. At industrial and commercial enterprises, a gable roof is installed on buildings for various purposes, which have a significant length several times greater than the width. The design contains two slopes of different lengths. On the front side, a short slope with a large angle of inclination is installed, on the back - a long one, with a smaller angle of inclination. This configuration allows the main part of atmospheric precipitation to be directed to the non-working zone of the enterprise territory.

Figure 1. Scheme of fillies.

The construction of a gable roof is one of the low-cost options that does not require significant physical effort.

It is performed relatively simply with little experience working with wood material.

Typical bearing elements of the system, specific terms

Figure 2. Scheme of the crate.

In the manufacture of details of the gable roof truss system, softwood lumber is used. Hardwood is undesirable due to its high specific gravity. Most of the elements have specific names that are understood mainly by specialists:

  1. Lezhen - timber with a section of 150x150 mm, 180x180 mm. It is laid on the surface of the internal load-bearing wall. Designed for leveling the surface and distributing loads from racks.
  2. The rafter leg, or rafter, is a piece of timber or thick board. The main element of the triangular roof structure, bearing the main load from snow, rain, wind and other atmospheric phenomena. The distance between the rafter legs can be from 0.6 to 1.2 m. The step size mainly depends on the plumb line of the roofing material, in some cases, the characteristics of the roofing material should be taken into account.
  3. Mauerlat - a square beam with a side size of 150-180 cm. It is laid on the surface of external load-bearing walls. When installing, it must be fixed with anchor bolts or in another reliable way. Distributes the load from the rafter legs to the load-bearing walls.

All parts of a gable roof are interconnected in various ways. Previously, structures were assembled mainly using staples, nails, threaded studs. Now manufacturers of building materials offer a wide range of different brackets for assembling roofs of any configuration. Most parts are fastened with self-tapping screws of the required diameter and length, reinforced with special spikes in the brackets.

Additional elements of the rafter system

Figure 3. Scheme of an arch with three hinges.

In addition to load-bearing parts, additional reinforcing elements are used in the structures:

  1. Filly (Fig. 1) - used to increase the length of the rafter legs. Are established in the lower part for the device of cornice overhang. The thickness of the filly is somewhat less than the size of the rafters.
  2. Roof overhang, or cornice overhang, is a roof element protruding from the edge of the wall by about 40-50 cm. Designed to protect walls from atmospheric precipitation.
  3. The ridge is an element that connects all the rafter legs of the system in the upper part. Installed in a horizontal position.
  4. Sheathing (Fig. 2) - boards or bars installed for fixing the roof. They are located perpendicular to the rafter legs, additionally performing the function of their fastening. They take the main effort from the roofing material, distribute it to the rafters. For the device, it is desirable to use edged lumber. With limited funds, you can use unedged, clearing it of bark. If the roof is made of soft material, the crate is made solid. This option can be made from boards or plywood treated with protective materials from high humidity. When corrugated board is used, the crate is performed with a certain step, depending on the weight of the material and its design features.
  5. Struts - elements made of timber or thick boards that reinforce the main structure. Distribute the force from the rafter legs to the bearing parts. The assembled structure of struts and puffs was called a farm - an enlarged part with the necessary margin of safety.
  6. Racks - are made from pieces of lumber of rectangular or square section. Are established in vertical position under a descent of slopes. The load from the corner connection of the roof rafters is distributed through the posts to the internal load-bearing wall.
  7. Puff - a bar or board that fastens the rafters in a hanging system. Creates a rigid triangle shape between rafter legs, compensating for sprawl.

For the manufacture of additional parts, you can use lumber with a section similar to that of load-bearing parts. In order to save money, you can calculate and purchase products of a smaller section.

Two typical ways to arrange truss systems

Figure 4. Scheme of connecting the lower ends of the parts.

The gable roof truss system can be arranged in two main ways:

  • hanging rafter system;
  • layered system.

The hanging system is used for buildings with a distance between the outer walls of less than 10 m, without an internal load-bearing wall in the middle of the building. In a different configuration of the building, a layered rafter structure is used.

If the building has columns located along one of the central axes, it is possible to use a combined option. Rafter legs located above the columns are mounted with emphasis on the surface of the columns, hanging rafters are installed between them.

Hanging truss system

In structures of this type, the installation of truss beams is carried out on the surface of the outer walls. The disadvantage of this method is the occurrence of force, bursting the walls. To compensate for the load, the beams are pulled together by tightening. The design takes the form of a rigid triangle that retains its shape under the influence of loads. In some cases, floor beams can play the role of puffs. Such a scheme is used when arranging an attic in the attic space.

Hanging rafters can be made in various versions:

Scheme of the reinforced structure.

  1. A simple version of the arch with three hinges (Fig. 3) - the design is a rigid triangle, the two sides of which are the rafter legs. The main load creates a bending force on the parts. The force on the third side is aimed at stretching the structure, so instead of a wooden part, a steel tie can be used. The connection of the lower ends of the parts can be assembled in various ways (Fig. 4), by inserting beams into a puff, using wooden elements or metal brackets.
  2. Reinforced structure (Fig. 5) - a gable truss system used for roofing of large industrial buildings with a distance between walls of more than 6 m. This system is not suitable for use in small residential buildings. A design feature is the distribution of the puff weight on the skate. Since it is almost impossible to find solid lumber of the required length (6 m or more), the puff is made from segments. The connection of all elements is carried out by a straight or oblique inset. The central part is called the headstock. The connection of the headstock with a tightening is performed by a collet twist with the possibility of adjusting the tension.
  3. The device of an arch with a tightening in the upper part of the rafters (Fig. 6) is used for equipment in the attic space of the attic. At the same time, the tensile force in the rafter beams increases. The lower ends of the beams are attached to the Mauerlat bars. The fastening should limit the movement of the beams to the sides along the beam, but allow sliding across. This ensures uniform load distribution and stability of the entire system. Rafter beams should form an overhang.

Many variants of hanging-type systems have been developed. Most are used for relatively small buildings without load-bearing structures inside buildings. For larger buildings, a layered rafter system should be used.

Layered truss system

The main difference of this system is the installation of a vertical beam resting on an internal load-bearing wall located in the middle of the building. This design is necessary when a gable roof is installed on a building with a wall spacing of more than 10 m.

Figure 6. Arrangement of an arch with a puff at the top of the rafters.

  1. A properly executed system of non-expanding rafter beams allows you to get rid of the forces that burst the walls. The surface of the slopes is subjected only to the bending force. There are 3 main options for the device of such systems. With all options, the lower ends of the rafters are attached according to the sliding support method. For insurance, an additional mount is installed between the support bar and the rafter leg.
  2. You can use a steel strip, wire tie. The options differ in the method of connecting the upper ends of the rafters, docking with the ridge beam. One of the options involves laying rafters on a beam in the form of a sliding support with a cutout device. Mounting can be done using brackets or special brackets. The gable roof, arranged according to the following option, is the most popular because of the simplicity of the device. The top of the rafters can be made end-to-end or overlay with cutting grooves. The corner must be fastened in any of the available ways and fixed on the ridge beam. The third option involves a rigid connection of the run and rafters. For mounting on rafter legs, pieces of boards are stuffed on two sides. A large bending force is formed on the beam, but the load on the rafter beams is reduced.
  3. A gable roof for a building with dimensions up to 14 m must have a reinforced truss system. One of the options for increasing strength is the installation of a strut. The part takes on the load from the rafter leg, experiencing a compressive force. To correctly select the installation position of the element, you need to measure the angle of 45-53 ° from the horizontal plane of the building. An additional support device turns an ordinary beam into a reinforced version, consisting of two spans. To install the struts, calculations are not required, you just need to fix it under the rafter, cutting out the joint angle with maximum accuracy.

The technology for installing gable roofs is simple, you can do everything yourself. Work must begin with the installation and fastening of the base to the walls, then mount the gables. It is desirable to carry out work on the manufacture of rafter beams and enlargement of structures on the ground, to lift the assembled elements, install them on the building, and fix them with temporary fasteners. After assembling and installing all the elements, you should fix the crate and proceed with the installation of the roof.

Gable roof truss system: installation and diagrams


The gable roof truss system is designed for roofing in the form of two rectangles located at a certain angle to each other in the upper part of the structure.

Do-it-yourself gable roof truss system: an overview of hanging and layered structures

Rafters perform a number of significant roofing functions. They set the configuration of the future roof, perceive atmospheric loads, and hold the material. Among the rafter duties are the formation of even planes for laying the coating and providing space for the components of the roofing pie. In order for such a valuable part of the roof to flawlessly cope with the listed tasks, information about the rules and principles of its construction is needed. The information is useful both for those who are building a gable roof truss system with their own hands, and for those who decide to resort to the services of a hired team of builders.

Rafter structures for gable roofs

In the device of the truss frame for pitched roofs, wooden and metal beams are used. The starting material for the first option is a board, log, timber. The second is constructed from rolled metal: a channel, a profile pipe, an I-beam, a corner. There are combined structures with steel most loaded parts and wood elements in less critical areas.

In addition to the "iron" strength, the metal has a lot of disadvantages. These include heat engineering qualities that do not satisfy the owners of residential buildings. Disappointing need for the use of welded joints. Most often, industrial buildings are equipped with steel rafters, less often private change houses assembled from metal modules.

In the case of self-construction of truss structures for private houses, wood is a priority. It is easy to work with it, it is lighter, “warmer”, more attractive in terms of environmental criteria. In addition, nodal connections do not require a welding machine and welder skills.

Rafters - a fundamental element

The main "player" of the frame for the construction of the roof is the rafter, among the roofers called the rafter leg. Beds, braces, headstocks, girders, puffs, even Mauerlat may or may not be used depending on the architectural complexity and dimensions of the roof.

The rafters used in the construction of the gable roof frame are divided into:

  • Layered rafter legs, both heels of which have reliable structural supports under them. The lower edge of the layered rafter rests on the Mauerlat or on the ceiling crown of the log house. The support for the upper edge can be a mirror analogue of an adjacent rafter or a run, which is a beam horizontally laid under the ridge. In the first case, the truss system is called spacer, in the second, non-spacer.
  • hanging rafters, the top of which rests against each other, and the bottom is based on an additional beam - puff. The latter connects the two lower heels of adjacent rafter legs, resulting in a triangular module called a truss truss. The tightening dampens the tensile processes, so that only a vertically directed load acts on the walls. The design with hanging rafters, although it is spacer, does not transfer the spacer itself to the walls.

In accordance with the technological specifics of the rafter legs, the structures constructed from them are divided into layered and hanging. For structural stability, they are equipped with struts and additional racks. For the arrangement of supports for the top of the layered rafters, beds and girders are mounted. In reality, the truss structure is much more complicated than the elementary patterns described.

Note that the formation of a gable roof frame can generally be carried out without a truss structure. In such situations, the alleged planes of the slopes are formed by slegs - beams laid directly on the bearing gables. However, we are now specifically interested in the device of the gable roof truss system, and it can involve either hanging or layered rafters, or a combination of both types.

Subtleties of fastening rafter legs

The rafter system is fastened to brick, foam concrete, aerated concrete walls through the mauerlat, which in turn is fixed with anchors. Between the Mauerlat, which is a wooden frame, and the walls of these materials, a waterproofing layer of roofing material, waterproofing, etc. is necessarily laid.

The top of the brick walls is sometimes specially laid out so that something like a low parapet is obtained along the outer perimeter. So it is necessary that the Mauerlat placed inside the parapet and the walls do not burst the rafter legs.

The rafters of the frame of the roofs of wooden houses rest on the upper crown or on the ceiling beams. The connection in all cases is made by cutting and duplicated with nails, bolts, metal or wooden plates.

How to do without furious calculations?

It is highly desirable that the cross section and linear dimensions of the wooden beams be determined by the project. The designer will give clear calculation justifications for the geometric parameters of the board or beam, taking into account the entire range of loads and weather conditions. If there is no home design development master at his disposal, his path lies on the construction site of a house with a similar roof structure.

You can ignore the number of storeys of the building under construction. It is easier and more correct to find out the required dimensions from the foreman than to find them out from the owners of a shaky unauthorized construction. After all, the foreman is in the hands of documentation with a clear calculation of the loads per 1 m² of roof in a particular region.

The installation step of the rafters determines the type and weight of the roofing. The heavier it is, the smaller the distance between the rafter legs should be. For laying clay tiles, for example, the optimal distance between the rafters will be 0.6-0.7 m, and for the installation of metal tiles and profiled sheets, 1.5-2.0 m is acceptable. However, even if the step required for the correct installation of the roof is exceeded, there is a way out . This is a reinforcing counter-lattice device. True, it will increase both the weight of the roof and the construction budget. Therefore, it is better to deal with the step of the rafters before the construction of the rafter system.

Craftsmen calculate the pitch of the rafters according to the design features of the building, tritely dividing the length of the ramp into equal distances. For insulated roofs, the step between the rafters is selected based on the width of the thermal insulation boards.

Rafter structures of layered type

Rafter structures of the layered type are much simpler in execution than their hanging counterparts. A justified plus of the layered scheme is to provide full ventilation, which is directly related to the longevity of the service.

Distinctive design features:

  • Mandatory presence of support under the ridge heel of the rafter leg. The role of the support can be played by a run - a wooden beam resting on racks or on the inner wall of the building, or the upper end of an adjacent rafter.
  • The use of Mauerlat for the construction of a truss structure on walls made of brick or artificial stone.
  • The use of additional runs and racks where the rafter legs, due to the large size of the roof, require additional support points.

The minus of the scheme is the presence of structural elements that affect the layout of the internal space of the operated attic. If the attic is cold and the organization of useful premises is not supposed to be in it, then the layered construction of the truss system for the installation of a gable roof should be preferred.

A typical sequence of work on the construction of a layered truss structure:

  • First of all, we measure the height of the building, the diagonals and the horizontalness of the upper cut of the skeleton. When identifying vertical deviations of brick and concrete walls, we eliminate them with a cement-sand screed. Exceeding the heights of the log house we squeeze. By placing chips under the Mauerlat, vertical flaws can be dealt with if their magnitude is insignificant.
  • The floor surface for laying the bed must also be leveled. He, the Mauerlat and the run must be clearly horizontal, but the location of the listed elements in the same plane is not necessary.
  • We process all wooden parts of the structure before installation with fire retardants and antiseptic preparations.
  • We lay waterproofing on concrete and brick walls for the installation of a Mauerlat.
  • We lay the Mauerlat beam on the walls, measure its diagonals. If necessary, we slightly move the bars and turn the corners, trying to achieve the perfect geometry. Align the frame horizontally if necessary.
  • We mount the Mauerlat frame. The splicing of the beams into a single frame is carried out by means of oblique cuts, the joints are duplicated with bolts.
  • We fix the position of the Mauerlat. Fasteners are made either with brackets to wooden plugs laid in the wall ahead of time, or with anchor bolts.
  • We mark the position of the bed. Its axis should recede from the Mauerlat bars at equal distances on each side. If the run will be based only on racks without lying down, the marking procedure is carried out only for these columns.
  • We install the bed on a two-layer waterproofing. We fasten it to the base with anchor bolts, connect it to the inner wall with wire twists or staples.
  • We mark the installation points of the rafter legs.
  • We cut out racks according to uniform sizes, because our bed is set to the horizon. The height of the racks must take into account the dimensions of the section of the run and the bed.
  • Installing racks. If provided by the project, we fix them with spacers.
  • We lay the run on the racks. We check the geometry again, then install the brackets, metal plates, wooden mounting plates.
  • We install a trial rafter board, mark the places of trimming on it. If the Mauerlat is set strictly to the horizon, there is no need to adjust the roof rafters in fact. The first board can be used as a template for making the rest.
  • We mark the installation points of the rafters. Folk craftsmen for marking usually prepare a pair of slats, the length of which is equal to the gap between the rafters.
  • According to the markup, we install the rafter legs and fasten them first at the bottom to the Mauerlat, then at the top to the run to each other. Every second rafter is screwed to the Mauerlat with a wire bundle. In wooden houses, the rafters are screwed to the second crown from the top row.

If the rafter system is done flawlessly, the layered boards are mounted in random order. If there is no confidence in the ideal structure, then the extreme pairs of rafters are installed first. A control twine or fishing line is stretched between them, according to which the position of the newly installed rafters is adjusted.

The installation of the truss structure is completed by installing the filly, if the length of the rafter legs does not allow the formation of an overhang of the required length. By the way, for wooden buildings, the overhang should “go beyond” the contour of the building by 50 cm. If the organization of the visor is planned, separate mini-rafters are installed under it.

Hanging truss systems

The hanging type of truss systems is a triangle. The two upper sides of the triangle are folded by a pair of rafters, and the puff connecting the lower heels serves as the base. The use of tightening allows you to neutralize the effect of the spread, therefore, only the weight of the crate, the roof, plus, depending on the season, the weight of precipitation, acts on walls with hanging truss structures.

The specifics of hanging truss systems

Characteristic features of hanging type truss structures:

  • Mandatory presence of a puff, made most often of wood, less often of metal.
  • The ability to refuse the use of Mauerlat. A frame made of timber will be successfully replaced by a board laid on a two-layer waterproofing.
  • Installation on the walls of ready-made closed triangles - roof trusses.

The advantages of the hanging scheme include the space under the roof free from racks, which allows you to organize an attic without pillars and partitions. There are disadvantages. The first of these is the limitation on the steepness of the slopes: their slope angle can be at least 1/6 of the span of a triangular truss, steeper roofs are strongly recommended. The second disadvantage is the need for thorough calculations for the competent device of cornice nodes.

Among other things, the angle of the truss truss will have to be set with jewelry accuracy, because. the axes of the connected components of the hanging truss system must intersect at a point, the projection of which must fall on the central axis of the Mauerlat or the lining board replacing it.

Subtleties of long-span hanging systems

Puff - the longest element of the hanging rafter structure. Over time, it, as is typical of all lumber, deforms and sags under the influence of its own weight. Owners of houses with spans of 3-5m are not too concerned about this circumstance, but owners of buildings with spans of 6 meters or more should think about installing additional parts that exclude geometric changes in tightening.

To prevent sagging in the installation scheme of the truss system for a large-span gable roof, there is a very significant component. This is a pendant called a grandmother. Most often, it is a bar attached with wooden surfs to the top of the truss truss. You should not confuse the headstock with the racks, because. its lower part should not come into contact with the puff at all. And the installation of racks as supports in hanging systems is not used.

The bottom line is that the headstock, as it were, hangs on a ridge knot, and a tightening is already attached to it with the help of bolts or nailed wooden plates. Threaded or collet type clamps are used to correct slack.

Adjustment of the tightening position can be arranged in the zone of the ridge knot, and the headstock can be rigidly connected to it with a notch. Instead of a bar in non-residential attics, reinforcement can be used to manufacture the described tightening element. It is also recommended to arrange a headstock or suspension where the puff is assembled from two bars to support the connection area.

In an improved hanging system of this type, the headstock is complemented by strut beams. The stress forces in the resulting rhombus are extinguished spontaneously due to the competent arrangement of the vector loads acting on the system. As a result, the truss system pleases with stability with a slight and not too expensive upgrade.

Hanging type for attics

In order to increase the usable space, the tightening of the rafter triangles for the attic is moved closer to the ridge. A perfectly reasonable move has additional advantages: it allows you to use puffs as the basis for filing the ceiling. It is attached to the rafters by cutting with a semi-frying pan with a duplication of a bolt. It is protected from sagging by installing a short headstock.

A noticeable drawback of the attic hanging structure is the need for accurate calculations. It is too difficult to calculate it on your own, it is better to use a ready-made project.

Which design is more cost effective?

Cost is an important argument for an independent builder. Naturally, the price of construction for both types of truss systems cannot be the same, because:

  • In the construction of a layered structure for the manufacture of rafter legs, a board or beam of small section is used. Because layered rafters have two reliable supports under them, the requirements for their power are lower than in the hanging version.
  • In the construction of a hanging structure, the rafters are made of thick timber. For the manufacture of puffs, a material similar in cross section is required. Even taking into account the rejection of the Mauerlat, the consumption will be significantly higher.

Saving on the grade of material will not work. For the bearing elements of both systems: rafters, purlins, beds, Mauerlat, attendants, racks, lumber of the 2nd grade is needed. For crossbars and puffs working in tension, you will need the 1st grade. In the manufacture of less responsible wooden slips, the 3rd grade can be used. Without counting, we can say that in the construction of hanging systems, expensive material is used to a greater extent.

Hanging trusses are assembled in an open area next to the object, then transported assembled upstairs. To lift weighty triangular arches from a bar, you will need equipment, for which you will have to pay rent. And the project for complex nodes of the hanging version is also worth something.

There are actually many more methods for constructing truss systems for roofs with two slopes. We have described only the basic varieties that are actually applicable for small country houses and buildings without architectural ideas. However, the information provided is sufficient to cope with the construction of a simple truss structure.

Do-it-yourself gable roof truss system: device, design, installation


In order for the truss system of a gable roof to be built competently and firmly with your own hands, you need information about the rules and principles of the device, fastening and

Construction of houses

When building one-story houses, a roof with two slopes is very popular. This is due to the speed of construction of the structure. In this parameter, only a single-pitched roof can compete with a gable roof. In the device, a gable rafter roof is not too complicated. And you will successfully master this work on your own.

The design of the gable roof truss system

The gable roof consists of two inclined surfaces that have a rectangular shape. Thanks to this, precipitation, which is represented by rain and melt water, flows off the roof in a natural way. The gable roof has a rather complex structure. It consists of such structural units: Mauerlat, rafter system, filly, ridge, roof overhang, bed, struts, puffs, crate and racks:

  1. Mauerlat. This element performs the functions of transferring and distributing the load created by the rafter system on the load-bearing walls of the house. For the manufacture of Mauerlat, a beam is used, which has a square section - from 100 by 100 to 150 by 150 mm. It is better to use softwood. The beam is placed around the perimeter of the building and fixed to the outer walls. For fastening use special rods or anchors.
  2. Rafter leg. Rafters form the main frame of any roof. In the case of a gable roof, they form a triangle. The rafters are responsible for the uniform transfer of loads to the Mauerlat. First of all, those that arise from precipitation, wind and the weight of the roof itself. For the manufacture of rafters, boards are used that have a section of 100 by 150 or 50 by 150 mm. Choose a rafter pitch of about 60-120 cm, depending on the type of roofing material. When using a heavy coating, place the rafter legs more often.
  3. Skate. This element connects two slopes at the top of the roof. The ridge is formed after connecting all the rafter legs.
  4. Filly. They act as a continuation of the rafters and form the overhang of the gable roof. It is customary to install fillies if the rafter legs are very short and do not allow an overhang to form. To make this structural unit, take a board that has a smaller section than the rafter. The use of fillies facilitates the construction of the truss system, as it allows the use of short rafters.
  5. Eaves. This part of the design of the gable roof truss system is responsible for draining water from the walls during rain and at the same time preventing them from getting wet and quickly destroyed. The overhang protrudes from the wall, as a rule, by 400 mm.
  6. Sill. It is located on the inner wall and serves to evenly distribute the load from the roof racks. For the manufacture of bedding, a beam is used, which has a section of 150 by 150 or 100 by 100 mm.
  7. Racks. These vertical elements are responsible for transferring the load from the ridge to the interior walls. To create this element, prepare a beam that has a square section of 150 by 150 or 100 by 100 mm.
  8. Struts. They are needed to transfer loads from the rafters to the load-bearing walls. Struts and puffs form a solid structure called a truss. Such a device is designed to withstand loads at large spans.
  9. Puff. This structural unit, together with the rafters, forms a triangle. It does not allow the rafters to part in different directions.
  10. Crate. This design consists of boards and bars. They are attached perpendicular to the rafters. Sheathing is necessary to evenly distribute the weight of the roof covering and the loads created by weather phenomena on the rafters. In addition, the crate is required to fasten the rafters together. When arranging a soft roof to create a crate, you should not use boards and bars, but moisture-resistant plywood.

Varieties of gable roof truss system

There are gable truss systems with hanging and layered rafters. Ideally, the design contains a combination of them. It is customary to install hanging-type rafters if the outer walls are located at a distance of less than 10 m. Also, there should no longer be walls between them that divide the space of a residential building. The design with hanging rafters creates a bursting force transmitted to the walls. It can be reduced if you arrange a puff made of wood or metal and place it at the base of the rafters.

At the same time, the rafters and tightening form a rigid geometric figure - a triangle. It is not able to deform under loads that are in any direction. The puff will be stronger and more powerful if it is placed higher. The floor beams act as puffs. Thanks to their use, the hanging rafter system of a gable roof acts as the basis for the arrangement of the attic floor.

Laminated rafters in their design have a support beam, which is located in the middle. It is responsible for transferring the weight of the entire roof to the intermediate column or middle wall located between the outer walls. It is recommended to install rafters if the outer walls are placed more than 10 m apart. If there are columns instead of internal walls, you can alternate between rafters and hanging rafters.

Do-it-yourself gable truss system

The roof must be strong to withstand various loads - precipitation, gusts of wind, the weight of a person and the roofing itself, but at the same time light, so as not to put a lot of pressure on the walls of the house. A properly arranged gable rafter roof evenly distributes the load on all load-bearing walls.

Calculation of a gable roof

The choice of a gable roof slope will depend on the material you have chosen for laying on the roof and architectural requirements:

  • When building a gable roof, remember that it must slope at an angle of more than 5 degrees. It happens that the slope of the roof reaches 90 °.
  • For areas with heavy rainfall, and when the roofing does not fit snugly, steep slopes are made. In this situation, the angle should be 35-40 ° so that precipitation does not linger on the roof. But such an angle does not allow building a living space in the attic. The output will be a broken roof structure. It will have a flat upper part, and on the lower part there will be a sharp slope.
  • In regions with strong gusts of wind, sloping roofs are equipped. If constant winds prevail in the area, then make a slope of 15-20 ° for high-quality protection of the roofing.
  • It is best to choose the middle option. Equip a gable roof that is not too steep. But also the slope should not be very gentle.
  • When choosing a large angle of the roof, its windage increases, and, accordingly, the price of the gable roof truss system and the crate. After all, such a slope entails an increase in the area of ​​\u200b\u200bthe roof and, accordingly, the amount of necessary material - building and roofing.

When buying materials for the construction of a gable roof, it is useful to calculate its area:

  1. Find the area of ​​one slope of the structure, and then double the result.
  2. Ideally, a slope is an inclined rectangle that is placed along a long load-bearing wall. To determine the area of ​​​​a slope, multiply its length by its width.
  3. The length of the slope is equal to the length of the wall. In addition, the length of the ledge of the roof above the gable is added to the length. Remember that the protrusions are present on both sides.
  4. The width of the slope is the length of the rafter leg. To it is added the length of the ledge of the roof above the load-bearing wall.

In order to properly design the structure, it is recommended to carry out an accurate calculation of the gable roof truss system, including determining the loads and characteristics of the rafters:

  1. When erecting a roof for a standard building that has one floor, the design load on the roof will consist of two values. The first of them is the weight of the roof, the second is the load from external factors: precipitation and wind.
  2. Calculate the weight of the roof by adding up the weight of each layer of the "pie" - heat-insulating, vapor barrier and waterproofing materials, truss system, battens and directly roofing material. Calculate the weight per 1 m2.
  3. Increase the result by 10%. You can also take into account the correction factor. In our case, K=1.1.
  4. If you plan to change the design of the roof over time and increase the angle of its inclination, then include a margin of safety in the calculation. Take immediately higher load indicators than those that you received at the time of the calculation. It is recommended to build on the value, which is 50 kg per 1 m2.
  5. When calculating the load exerted by atmospheric phenomena, take into account the climatic features of the area where the building is located. In this calculation, take into account the slope of the slope. If the gable roof forms an angle of 25 degrees, then take the snow load equal to 1.
  6. If the roof is equipped with a greater slope - up to 60 degrees, the correction factor reaches 1.25. Snow load for an angle greater than 60 degrees is not taken into account.
  7. The rafters transfer the entire load from the created structure to the load-bearing walls. Therefore, their parameters must also be taken appropriately. Select the section and length of the rafter leg, depending on the current load on the roof and the angle of the slope. Increase the values ​​obtained by 50% to ensure a high margin of safety.

Mauerlat installation methods

The construction of any roof begins with the installation of a Mauerlat:

  • If logs or timber were used to build the walls, then the upper timber will act as a Mauerlat, as shown in the photo of the gable roof truss system.
  • If you used bricks to build walls, then brick the metal rods into the masonry. They must have a cut thread for attaching the Mauerlat. Install rods every 1-1.5 m. Choose rods with a diameter of at least 10 mm. Lay waterproofing between masonry and Mauerlat.
  • For walls made of ceramic or foam concrete blocks, pour concrete on top. Be sure to make the layer reinforced. It should have a height of approximately 200-300 mm. Be sure to attach metal rods that are threaded to the reinforcement.
  • For Mauerlat, use a beam that has a section of 15 by 15 cm. It will act as a kind of foundation for the truss system.
  • Lay the Mauerlat on the top edge of the wall. Depending on its design, the Mauerlat can be laid along the outer and inner edges. Do not place it close to the very edge, as otherwise it may be torn off by the wind.
  • Mauerlat is recommended to be placed on top of the waterproofing layer. To connect all the parts into one whole, use bolts and metal plates.
  • To avoid sagging, make a lattice of racks, struts and a crossbar. To do this, take boards measuring 25x150 mm. The angle between the strut and the leg of the rafter should be as straight as possible.
  • If using a rafter leg that is too long, install another support. She must lean on the bed. Each element is associated with two adjacent ones. As a result, a stable structure is created around the entire perimeter of the roof.

Rafter leg attachment

The best option for a gable roof truss system is a combination of sloping and hanging rafters. This design allows you to create a reliable gable roof and reduce the cost of building materials. Consider the following recommendations when working:

  1. Use only the highest quality wood as a material. Beams that have cracks and knots should not be used.
  2. Rafters have standard dimensions - 50x150x6000 mm. When the beams are longer than 6 m, it is recommended to increase the width of the board so that the beams do not break under their own weight. Take boards 180 mm wide.
  3. First, make a template for the rafter leg. Attach the board to the floor beam and the end of the ridge beam. Having outlined two lines, saw off a board along them. The template is ready.
  4. Cut the rafters according to this pattern. After that, do the top washed down on them.
  5. Take the resulting workpiece, bring it to the floor beam to mark the lower cut in place.
  6. Install all rafters. At the same time, remember that after installing one leg, you must immediately install the opposite one. So you will quickly remove the lateral loads on the ridge beam.
  7. If the slope is too long, then standard boards will not be enough to make a rafter leg. In this case, you can splice two boards together. To do this, sew on them a piece of wood of a similar section. It should have a length of 1.5 - 2 meters. According to the diagram of the gable roof truss system, the joint should always be at the bottom. Under it, install an additional rack.
  8. Attach the rafter leg to the ridge beam with nails. Use self-tapping screws to fasten the rafters to the floor beam. Metal mounting plates are also suitable. In addition, a few nails are added.
  9. If you are building a structure exclusively from hanging rafters, then skip the next step. When erecting a structure with layered rafters, you need to think about the supports that are installed on their floor. To reduce the deflection of the rafters, correctly calculate the location of such supports.
  10. If you're building a gabled mansard roof, the intermediate studs will form the frame for the side walls.
  11. When performing this work, maintain a certain step of the beams. Set its size at the design stage.
  12. After installing the rafters, attach the ridge. It is located on their upper edge. For fastening use metal corners or staples. Bolts are the most popular.

Giving structure rigidity

After installing the gable roof truss system, strengthen it using the technology below:

  • For smaller buildings, such as saunas, cottages, utility buildings, and roofs with a simple hanging rafter system, connect each pair of rafters from below with a tightening and from above using a crossbar.
  • For large buildings that are light at the same time, provide a lightweight roof. The walls must support it.
  • If the house has a width of 6-8 m, then the structure should be tightened. Install in the middle of the support. Such racks are called grandmas. Place them at each pair of rafter legs.
  • If the span of the walls reaches 10 meters, then reinforcing beams will be needed. The struts act as an additional support for the rafter legs for tightening. They are attached to each rafter - closer to the ridge or in the middle of the rafter leg. Fasten them to the bottom end of the headstock and to each other as shown in the gable roof truss video.
  • In a situation with long roofs, gable beams should be relieved. This is done by installing braces. The upper end should rest against the corner of the gable. The lower one is mounted on the central floor beam. For fasteners, use a beam that has a large cross section. So you can prevent them from breaking if there are strong gusts of wind.
  • In areas where winds predominate, the rafters must be resistant to such influences. Strengthen them by installing diagonal ties. Boards are nailed from the bottom of one rafter to the middle of the next.
  • For greater rigidity, when creating the most critical fasteners, it is better not to use nails. Use pads and metal fasteners for this. Nails will not be able to provide high-quality fastening, since the wood can dry out after some time.

Lathing of the truss system

The final stage of the construction of the gable roof truss system is the creation of the crate. It is on it that you will lay the roofing. Carry out the work in the following sequence:

  1. Select a dry timber for the crate. It should not have cracks or knots. Nail the bars on the bottom. Attach two boards near the ridge so that there are no gaps. The lathing must withstand the weight of the top roofing material and not sag under the weight of the workers.
  2. If you will equip a soft roof, make two layers of sheathing. One is sparse, the other is solid. The same applies to roll roofing. To begin with, parallel to the ridge beam, place boards that are 25 mm thick and no more than 140 mm wide. A small gap is allowed - no more than 1 cm. Lay a continuous layer on top. To do this, it is better to use roofing plywood, slats or boards of small thickness. After that, check that there are no errors left on the crate - bumps and knots. Also check that the nail heads are not sticking out.
  3. Lay one layer of timber under the metal tile. It should have a section of 50 by 60 mm. Do the same when using slate or steel roofing sheets. Maintain a step between the timber, depending on the roofing you choose - from 10 to 50 cm. Hammer nails closer to the edges of the board, and not in the middle. Drive hats deep. So they will not be able to damage the roof later. If you are making a crate for a metal tile, then remember that the connection of the timber at the same level should fall on the rafters.

When you have installed and strengthened the gable roof truss system, you can start installing the roofing pie. Place a thermal insulation material between the rafters, a layer of vapor barrier and waterproofing. When using insulation in slabs, calculate in advance the pitch of the rafters for its installation. At the final stage, fasten the roofing material.

The device of the gable roof truss system, Building Portal


Construction of houses In the construction of one-story houses, a roof with two slopes is very popular. This is due to the speed of construction of the structure. For this setting,

A roof with two slopes is the most common and beloved design by compatriots. It is perfectly combined with our landscape data, with perfect execution it perfectly protects the owners from all possible weather adversities. In the gable family, there are many varieties built over wooden and stone boxes. Their builders adhere to general technological principles.

However, depending on the material of the walls and the design specifics of the building, there are still a number of differences. A striking example is the arrangement of houses with semi-mansards. If it is decided that a do-it-yourself gable roof will be built over a similar object, you should familiarize yourself with the construction features in detail.

For the construction of roofs with two slopes, there are a huge number of different solutions. They are erected over square and rectangular boxes of different heights, arranged with and without attics.

The gable technology is applicable in the arrangement of houses with attics, if the traditional one does not suit the owners for aesthetic, architectural or purely technical reasons. Most often, this is done if the boxes of buildings are made of bricks or concrete blocks, less often if the stacks of buildings are timber or log.

When constructing a roof with a "corner" over a building with a half attic, the walls of the box replace the lower tier of the rafter legs. The rafters in such situations do not rely on the purlins characteristic of the attic method, but directly on the walls through the Mauerlat.

Gables in such cases, it is customary to erect before the construction of the roof and lay out entirely from one material. Partial sheathing of the upper part of the gable wall looks ugly and is rarely used even for the purpose of economy.

The rafters of gabled roofs for houses with gables perform their usual work:

  • They serve as a roof frame necessary for the formation of slopes.
  • Distribute the components of the roofing cake.
  • They hold the inner lining of the ceiling and the upper part of the attic walls.

Despite the fact of participation in the arrangement of the attic, the rafter systems of boxes with gables do not belong to the category of broken lines. They do not form an attic as such, on the basis of which they are not included in the attic category. Therefore, they are arranged in the simplest ways without ceiling beams.

The presence of gables allows you to reduce a large part of the elements that ensure the rigidity of the structure. They prevent the displacement of structural components and guarantee static. In addition, the pediments themselves often serve as components of the truss system.

In another article, we have already found out that in the arrangement of buildings with solid gables, standard ones are used, i.e. hanging and layered schemes for the device of truss systems.

The choice of scheme is directly related to the architectural solution of the main part of the house:

  • If it is possible to install a ridge run to support the upper edge of the rafters, they are constructed according to the layered technique.
  • If it is impossible to install a ridge run, the rafter legs are constructed in a hanging way.

Installing a run allows you to significantly unload the truss system, therefore the layered scheme is preferred in the construction of low-rise buildings. In traditional truss frames, the purlin is supported by a structure intended for it, which is installed on the inner load-bearing wall of the house or on a series of supporting pillars.

However, the purlins and pillars located inside the building significantly interfere with the arrangement of the usable space: they reduce the area of ​​\u200b\u200bthe premises both under the roof and within the main part of the building. This is where the advantages of the box with gables appear - they are quite suitable as reliable supports for the run, replacing bulky supporting structures.

The run, in fact, is a powerful beam laid from one top of a gable roof to another. The beam can be sewn from a board, made from glued laminated timber or a log beveled into two or four edges. Finding material to run more than 6m is quite problematic. Yes, and it is unreasonable to install solid wood long runs, because. they will sag under the weight. In such cases, an unloading truss truss is mounted under the run, and the beam is divided into two segments.

In addition to the inconvenience of long runs, layered technology makes you think about transporting a heavy beam to the place of installation and fastening. For those who are thinking how to make a gable roof so that it comes out inexpensively, moving a solid bar or log to the roof without heavy construction equipment will be a serious problem. If the problem does not have a solution, the best choice is a hanging technology with roof truss installation right on the site.

The hanging method is not associated with the need to install a ridge run, but it does not completely reject its use as an element for connecting individual components into a single system. Roof structures of the hanging category are constructed mainly when overlapping small spans. In some cases, this is the only choice due to the impossibility of installing additional support for a long run.

We will assume that independent builders have decided on the choice of a layered or hanging method of constructing a gable roof at an angle above a house with stone gables. Then you should familiarize yourself with the same stages of work for both technologies.

Instead of the usual Mauerlat strapping, two parallel beams are laid on the walls of the building with gables. They are mounted flush with the inner vertical surface. Mauerlat bars are attached to brick walls either with anchor bolts or staples to the corks of their wood, laid down during the construction of the walls. Mauerlat on concrete boxes is fixed through a pre-filled reinforced concrete belt.

As a roof covering over houses with gables, all types of materials used in the arrangement of pitched structures with the corresponding types of battens are used. The choice of roofing is determined by the personal preferences of the owners and the angle of inclination of the main elements of the roof. For finishing steep slopes, piece material is acceptable, for gentle slopes, large-sheet and roll coatings.

Option # 1 - construction according to the layered scheme

The main task of implementing a layered scheme for building a roof over a box with gables is to install a ridge run, which can be:

  • Immured in the gable walls. The ends of the run are stacked in niches specially created for them on wooden linings. From both edges, the beam is hewn at an angle of 60º and wrapped in roofing material or a similar waterproofing representative. There should also be a waterproofing layer between the wall material and the wooden lining. The hewn ends of the beam do not need to be wrapped with anything to provide ventilation. It is forbidden for the wooden edges of the run in niches to lie close to the walls, so that due to the difference in the thermal engineering of materials, condensation does not appear, followed by decay of the wood.
  • Passed through the walls. The run fits into the through holes arranged in the walls. By analogy, a water-repellent layer must separate the wood from the wall material. First, waterproofing is laid, then a wooden lining is installed, on top of which there is a run wrapped in waterproofing at the intersection of the wall.

The second option with a ridge run through the walls is considered preferable in terms of stress distribution. The edges of the beam, located outside the box, act as consoles, tending to bend the beam upwards. The load acting on the run within the span tries to bend it down.

The forces directed in opposite directions are compensated, as a result, the run passed through the walls practically does not sag and does not deform. The second impressive plus: the release of the beam beyond the contour of the building spontaneously creates a roof overhang. Although in the first version, the overhang is quite simply formed by moving the edges of the crate beyond the perimeter of the box.

For the manufacture of runs and with subsequent embedding in walls, and with their intersection, it is better to use a log. It retains the structure of the fibers. Therefore, the bearing capacity is higher than that of a glued beam or a beam assembled from a board.

The installation height of the run is chosen according to the architectural features of the roof. Most often, at attic objects, they are located 2.2-2.5 m from the planned floor line above the floor of the first floor.

The use of layered technology makes it necessary to pay close attention to the walls intended to serve as a support for the run. Especially if there is a window under a niche or a through hole. Above the window opening, regardless of its size, it is necessary to arrange at least 6 rows of masonry with a reinforcing mesh. Above the openings in the concrete walls there must be reinforced concrete lintels.

Option # 2 - hanging roof device

According to the hanging roof construction scheme with two slopes, the rafter legs of its frame rest exclusively on the walls of the building. In the simplest hanging structures, the ridge run is not present at all, but in more critical systems it can be used as a guide for the top of the rafter legs. Because it performs the function of an auxiliary element, no supporting structures are provided. The pediments also do not play a supporting role: the ridge beam is attached to them, but does not transfer the load from the weight of the roof.

Due to the fact that the roof is being built over a half attic with partially erected walls, the puffs are transferred higher - to the level of the ceiling beams. By installing puffs, the spacer is partially compensated, transmitted by the lower heels of the rafter legs to the walls through the Mauerlat. However, if the load on the roofing system is exceeded, the Mauerlat will still be acted upon by bursting forces that push the bars out of the building. Therefore, when constructing hanging truss systems for semi-attics, Mauerlat fasteners are installed more often and the anchors are duplicated with metal plates.


Let's consider an example of a roof structure along hanging trusses. The angle of installation of the rafter legs that form the frame of the slopes is 40º. The roof is constructed without insulation, but if desired, heat-insulating plates or mats can be laid between the rafters. The installation step of the rafters for warm roofs determines the width of the insulation elements. In this case, it is quite suitable, equal to 60cm.

For the manufacture of rafters, we stock up on a 50 × 200mm board. A similar material is suitable for a run device, because. he will not experience a noticeable load. We will make Mauerlat from a bar 100 × 200mm.


The first stage of work on the installation of a gable roof truss frame using hanging technology will be carried out as follows:

  • Let's make a template for the lower node for attaching a hanging rafter leg. An arbitrary cut of a board with a section of material prepared for the production of rafters is applied to the Mauerlat at an angle corresponding to the angle of inclination of the slopes. We focus on the slope of the gable, in our case it is 40º. We draw on the trimming of the vertical and horizontal so that on the inside we get a “tooth” 5 cm long. We check the outlined directions with a level, then we make cuts along the lines obtained.
  • Using the prepared template, we will find and mark the attachment points of the ridge run, which performs an auxiliary function in our example. We install a segment with cuts on the Mauerlat and draw a horizontal line from the base of the “tooth” we saw out to the pediment. From the point obtained on the pediment, we draw a vertical upwards. We measure the vertical segment outlined along the pediment. In the example, it is 18cm.
  • The resulting distance must be transferred to the upper part of the gable. The lower edge of the ridge board will fall on these 18 cm. Do not forget that they are not deposited from the very top. For accuracy, it is necessary to draw an equilateral triangle at the top, the base of which will be equal to the width of the board.
  • From the lower corners of the conditional triangle we set aside vertical segments 18 cm long. Based on the points obtained, we draw a rectangle to install the bracket for the ridge run. We fasten the brackets, not forgetting to check the directions with a plumb line and level before fixing.
  • We measure the distance between the bottom of the rectangle and the attic floor line. It is necessary for the manufacture of temporary supports.
  • We mount temporary racks on the same temporary board laid on the floor of the attic. For convenience, we fix the supports with auxiliary jibs. The distance between the supports is approximately 3m.
  • We install the ridge run on the supports so that its ends are fixed in the brackets.

The run device will facilitate the work in the future, because the rafters will rest on top of it directly. Temporary supports, braces and a kind of bedding will need to be dismantled upon completion of construction.


After erecting the foundation of the truss frame, we proceed to the construction of hanging trusses:

  • Using the template, we outline and file down the lower knot on the future rafter leg.
  • We measure the distance from the edge of the sawn tooth to the bottom edge of the ridge run. In the figures attached to the description, the points necessary for measurement are indicated by the letters A and B.
  • We set aside the measured distance from the tooth on the workpiece of the rafter leg and mark the point. From it we draw a line at an angle of 130º, having obtained it by adding 90º and the angle of inclination of the slopes 40º.
  • We install the finished rafter in its intended place. We fasten to the ridge run with nails or self-tapping screws, to the beam with metal corners with a reinforcing jumper or staples.
  • Following the algorithm tested in practice, we install rafters on both sides of the pitched roof. Folk technologies tell us to initially mount the extreme rafters and pull a cord between them for the sake of a guide. Then the entire row of rafters is exposed along the lace. The tops of the rafter legs are allowed to rise slightly above the ridge run. In such an arrangement, there is nothing reprehensible and requiring alteration. If the gap formed between the tops of the rafters is embarrassing, it can be simply filled with a bar.
  • From the floor to the rafter truss, we set aside 2.5 m upwards and mark the points on each rafter leg.
  • We fasten at the marked points horizontally a board of the same section that was used in the manufacture of rafter legs. We fix with a couple of nails and tighten with a hairpin Ø 12-14mm.

After setting the prescribed number of puffs connecting each pair of rafters, we remove temporary supports and slopes and proceed to the implementation of the third stage of work - the formation of eaves and gable overhangs:

  • From a board with a section of 50 × 100 mm, we will make fillies that create cornice overhangs of slopes. We calculate the length of the fillies so that approximately 50 cm of their length is superimposed on the side of the rafter, and on the opposite side there are 40-50 cm free to create an overhang of the planned width.
  • We attach the filly to the rafters. If necessary, if the filly is not installed in the same plane with the rafter leg, we mark a place on the Mauerlat and make a cut. It is not recommended to make a cut on a filly, because. it will weaken narrow material.
  • We install fillies, following the already proven method. First, we fasten the extreme ones, between which we stretch the construction cord. With the rafters we tighten them with a pair of studs, and so that they do not move or sway, we fix the position of the fillies with a piece of a bar screwed to the wall with a self-tapping screw.
  • We mark the ends of the fillies along the lace and file them strictly vertically.
  • We put the fillies on the gables, not forgetting to lay waterproofing between the wooden parts of the roof and the brick wall. The installation step of the gable fillies is 0.8-1.0 m, depending on the weight of the roof.

At the end, we sheathe the perimeter with a wind board, and install belts under the siding from below.


On the finished truss system, waterproofing is laid and a counter-lattice is arranged. Then a solid or sparse crate, depending on the type of coating chosen for the arrangement of the roof. If the video is planned to replenish the "piggy bank" of useful information for craftsmen who want to build a simple gable roof with their own hands - the video story in an accessible visual form introduces the stages of the process:

Roof options with two slopes for the attic are not easy, but extremely interesting. The main thing in the difficult work of a home master is to study and understand the principles of construction. Having mastered useful knowledge, you can safely proceed to confirm their practice. The result of the efforts of a theoretically "savvy" performer will be impeccable.

Roof installation is a complex multi-stage process. In order to independently assemble and install the truss system, it is necessary to carefully study the methods of connecting the elements, calculate the length of the rafters and the slope angle, and select the appropriate materials. If you do not have the necessary experience, you should not take on complex designs. The best option for a small residential building is a do-it-yourself gable roof.

A standard roof of this type consists of the following elements:


Mauerlat is a beam laid on top of the walls along the perimeter of the building. It is fixed with threaded steel rods immured into the wall or anchor bolts. The beam must be made of coniferous wood and have a square section of 100x100 mm or 150x150 mm. Mauerlat takes on the load from the rafters and transfers it to the outer walls.

rafter legs- these are long boards with a section of 50x150 mm or 100x150 mm. They are attached to each other at an angle and give the roof a triangular shape. The design of their two rafter legs is called a truss. The number of farms depends on the length of the house and the type of roofing. The minimum distance between them is 60 cm, the maximum is 120 cm. When calculating the pitch of the rafter legs, one should take into account not only the weight of the coating, but also the wind load, as well as the amount of snow in the winter.

It is located at the highest point of the roof and most often represents a longitudinal beam connecting both slopes. From below, the timber is supported by vertical racks, and the ends of the rafters are attached to the sides. Sometimes the ridge consists of two boards, which are nailed to the top of the rafters on both sides and connected at a certain angle.

Racks - vertical bars with a section of 100x100 mm, located inside each farm and serving to transfer the load from the ridge run to the load-bearing walls inside the house.

The struts are made from timber scraps and set at an angle between the uprights and the rafters. The side faces of the truss are strengthened with struts, the bearing capacity of the structure is increased.

Puff - a beam connecting the lower parts of the rafters, the base of the truss triangle. Together with struts, such a beam serves to strengthen the truss, increases its resistance to loads.

Lying is a long bar with a section of 100x100 mm, laid along the central load-bearing wall, on which vertical racks rest. Lying is used when installing layered rafters, when the run between the outer walls is more than 10 m.

The crate is a board or timber stuffed on the rafters. The crate is solid and with gaps, depending on the type of roof. It is always attached perpendicular to the direction of the rafters, most often horizontally.

If there is no more than 10 m between the outer walls and there is no load-bearing wall in the middle, arrange hanging rafter system. With such a system, the upper ends of adjacent rafters are sawn at an angle and connected to each other with nails, excluding the installation of racks and ridge timber. The lower ends of the rafter legs rest on the outer walls. Due to the lack of racks, the attic space can be used to equip the attic. Very often, floor beams perform the function of puffs. To strengthen the structure, it is recommended to install the upper puff at a distance of 50 cm from the ridge.

In the presence of a central supporting wall, the arrangement is more justified layered truss system. A bed is laid on the wall, support posts are attached to it, and a ridge beam is nailed to the posts. This installation method is quite economical and easier to perform. If the ceilings in the interior are designed at different levels, the racks are replaced with a brick wall dividing the attic into two halves.

The installation process of the roof includes several stages: fastening the Mauerlat to the walls, assembling the truss trusses, installing the rafters on the floors, installing the ridge, fastening the batten. All wooden elements before assembly are carefully treated with any antiseptic composition and dried in the air.

For work you will need:

  • timber 100x10 mm and 150x150 mm;
  • boards 50x150 mm;
  • boards 30 mm thick for lathing;
  • ruberoid;
  • metal studs;
  • jigsaw and hacksaw;
  • a hammer;
  • nails and screws;
  • square and building level.

in wooden houses Mauerlat functions are performed by logs of the last row, which greatly simplifies the workflow. To install the rafters, it is enough to cut grooves of the appropriate size on the inside of the logs.

in brick houses or buildings from blocks, the installation of the Mauerlat is as follows:


Mauerlat bars should form a regular rectangle and be in the same horizontal plane. This will facilitate further installation of the roof and provide the structure with the necessary stability. In conclusion, markings are made on the bars for the rafters and grooves are cut along the thickness of the bar.

When choosing a hanging truss system, it is necessary to assemble the trusses on the ground, and then install them above the floors. First you need to draw up a drawing and calculate the length of the rafter legs and the angle of their connection. Typically, the roof slope is 35-40 degrees, but in open, heavily ventilated areas, it is reduced to 15-20 degrees. To find out at what angle to connect the rafters, you should multiply the angle of the roof by 2.

Knowing the length of the run between the outer walls and the angle of connection of the rafters, you can calculate the length of the rafter legs. Most often, it is 4-6 m, taking into account the cornice overhang 50-60 cm wide.

The upper ends of the rafters can be fastened in several ways: overlap, butt and "in the paw", that is, with cut grooves. For fixing use metal pads or bolts. Next, the lower and upper puffs are mounted, and then the finished trusses are lifted up and installed above the ceilings.

The extreme trusses are attached first: with the help of a plumb line, the rafters are set vertically, the length of the overhang is adjusted and attached to the Mauerlat with bolts or steel plates. So that during the installation process the farm does not move, it is strengthened with temporary jibs from a bar. After installing the extreme rafters, the rest are exposed, keeping the same distance between them. When all the trusses are fixed, they take a board with a section of 50x150 mm, the length of which is 20-30 cm longer than the length of the eaves, and nail it along the upper edge of the slope. Do the same on the other side of the roof.

The first option: on the rafter leg, at the place of contact with the Mauerlat, a rectangular groove is cut out 1/3 of the beam width. Stepping back from the top of the box 15 cm, a steel crutch is driven into the wall. The rafter is leveled, the grooves are aligned, then a wire clamp is thrown on top and the beam is pulled close to the wall. The ends of the wire are securely fixed on the crutch. The lower edges of the rafters are carefully cut with a circular saw, leaving an overhang of 50 cm.

The second option: the upper rows of walls are laid out with a stepped brick cornice, and the mauerlat is placed flush with the inner surface of the wall and a groove is cut in it for the rafter. The edge of the rafter leg is cut at the level of the upper corner of the eaves. This method is simpler than the others, but the overhang is too narrow.

The third option: ceiling beams are extended beyond the edge of the outer wall by 40-50 cm, and roof trusses are installed on the beams. The ends of the rafter legs are cut at an angle and rest against the beams, fixing with metal plates and bolts. This method allows you to slightly increase the width of the attic.

The device of layered rafters

1 shows the cutting of the struts of the rafters into a bed laid on intermediate supports, and in Fig. 2 - supporting the rafter leg on the Mauerlat

The procedure for installing a layered truss system:


When the main elements are fixed, the surface of the rafters is treated with flame retardants. Now you can start making the crate.

A beam of 50x50 mm is suitable for the crate, as well as boards with a thickness of 3-4 cm and a width of 12 cm or more. Waterproofing material is usually laid under the crate to protect the truss system from getting wet. The waterproofing film is laid in horizontal stripes from the eaves to the roof ridge. The material spreads with an overlap of 10-15 cm, after which the joints are fastened with adhesive tape. The bottom edges of the film must completely cover the ends of the rafters.

It is necessary to leave a ventilation gap between the boards and the film, so first wooden slats 3-4 cm thick are stuffed onto the film, placing them along the rafters.

The next stage is the sheathing of the truss system with boards; they are stuffed perpendicular to the rails, starting from the roof eaves. The step of the lathing is affected not only by the type of roofing, but also by the angle of inclination of the slopes: the larger the angle, the greater the distance between the boards.

After the installation of the battens is completed, they begin to sheath the gables and overhangs. You can close the gables with boards, plastic panels, clapboard, waterproof plywood or corrugated board - it all depends on financial capabilities and personal preferences. Sheathing is attached to the side of the rafters, nails or self-tapping screws are used as fasteners. Overhangs are also hemmed with various materials - from wood to siding.

Video - Do-it-yourself gable roof

The arrangement of a gable roof is considered a very practical and right decision in the construction of a residential or commercial building. This option combines the relative simplicity of execution and reliability, ease of maintenance and long service life. In this material, we will talk about how to install a gable roof truss system with your own hands, what are its varieties, and how to calculate the dimensions of its individual elements. Our step-by-step instructions will allow you to deal with any complications that may arise in the process.

A roof with two slopes has a whole list of advantages:

  • ease of calculation;
  • various versions;
  • saving materials;
  • the possibility of natural outflow of water;
  • low probability of water leakage due to the integrity of the structure;
  • the possibility of arranging an attic or attic;
  • reliability and long service life;
  • ease of preventive maintenance.

Varieties of gable roofs

Consider the main types of roofs with two slopes, the truss system in which will differ slightly in execution.

Symmetrical gable roof

This is the simplest gable roof, however, the most reliable and in demand. Symmetrical slopes allow you to distribute the load on the Mauerlat and load-bearing walls evenly. In this case, the type and thickness of the insulation layer do not affect the choice of roofing material. Thick beams of rafters have a sufficient margin of safety, so they will not sag. In addition, spacers can be installed at your discretion.


Among the disadvantages of this option, one can only note a too sharp angle of the slopes, which makes it difficult to use the attic floor and creates "deaf" zones that have no use.

Roof with two asymmetrical slopes

If the angle of inclination of the slopes is made more than 45º, some unused areas of space can be used. It will even be possible to equip a living space in the attic. However, some additional calculations will be required, as the load on the walls will become uneven.

Broken roof with external or internal break

This configuration makes it possible to place a spacious attic or attic under the roof. However, in this case, more complex engineering calculations will be required.

The design of rafters for arranging a roof with two slopes

The design of the gable roof truss system assumes the presence of such components:

  • Mauerlat. It is a durable bar made of oak, pine, larch or other strong wood, which is laid around the perimeter on the bearing walls of the building. The purpose of the Mauerlat is to evenly distribute the load. The cross section of the bars is chosen based on their structure - solid or glued, as well as on the age of the building. The most commonly used beams are 100 × 100 or 150 × 150 mm.
  • rafters. The whole structure is created from such elements (read also: ""). Connecting at the top point, two rafters form a farm. They are made from logs or durable bars.
  • puff. This part serves to grip the rafters and ensure their rigidity.
  • Runs. In those places where the rafter legs are joined, a ridge run is attached, on which the skate will subsequently be mounted. And with the help of side runs, the frame of the rafters is given additional strength. The expected load determines the size and number of such elements.
  • Rafter rack. This is a vertical beam that partially takes over the weight of the roof. If the gable roof scheme is simple, then one such beam is placed in the center. For a long span, three bars may be required - one in the center and two on the sides. If an asymmetrical roof is being erected, then the location of such a beam is determined by the length of the rafter legs. Under the rafters for a sloping roof, racks are placed on the sides to make room for movement. Beams are placed in the center and sides if there are two rooms.
  • Struts. These are rack supports. If significant winds and precipitation are expected in the winter, longitudinal as well as diagonal racks are installed.
  • Sill. A rack for rafters rests on it, and struts are also attached.
  • crate. The selected roofing material is attached to it, and you can also move along it during work. Fix the crate perpendicular to the rafters. Please note that the crate allows you to evenly distribute the mass of roofing material over the rafter system.


The installation scheme of the gable roof truss system will greatly facilitate all construction work. How such a roof scheme will look depends on the type of roof.

Please note that the material for the truss system must be of the highest quality, treated with flame retardant and antiseptic agents. There should be no knots or cracks on the beams for rafters, Mauerlat and racks. Only a small number of knots are allowed on the crate, firmly seated in the wood.

Calculation of frame elements for a gable roof

Laying Mauerlat on the walls

This element is mounted on a load-bearing wall along its entire length. If we are talking about a log house, then the upper crown can serve as a Mauerlat. For buildings made of aerated concrete or brick, a Mauerlat equal to the length of the wall will be required. Sometimes this detail can be laid between the rafters.

With a lack of material length for the Mauerlat, several pieces can be spliced. At the same time, the edges are sawn at 90º and joined with bolts - wire, dowels or nails are not suitable.


There are two ways to lay a Mauerlat on top of a load-bearing wall:

  • symmetrically in the center;
  • offset in the desired direction.

Mounting of the Mauerlat is carried out on a pre-laid waterproofing layer of roofing material. This will protect the wood from rotting.

It is worth taking a responsible attitude to the process of attaching the Mauerlat, since in strong winds it must withstand a particularly heavy load.

As fasteners for Mauerlat, you can use the following consumables:

  • Anchors, which are indispensable for monolithic materials.
  • Wooden dowels. These parts are used in houses made of timber and logs, although they require additional fastenings.
  • Staples.
  • Reinforcement or special studs. This option is preferable for buildings made of foam or aerated concrete.
  • Knitting or steel wire is an auxiliary fastener that is used almost always.

Assembly of trusses or trusses

Farm assembly can be done using one of the following methods:

  • Beams for rafters are assembled and mounted directly on the roof of the building. This process is quite laborious, since all measurements, trimming and coupling of the bars will have to be done at a height. However, you can do it on your own, without the involvement of technology.
  • Trusses or truss pairs can be fixed to the ground, and then the finished elements can be raised to the roof of the building. On the one hand, this simplifies the process of installing the rafters, and on the other hand, due to the large weight of the structure, lifting it up will require special equipment.

Please note that it is worth starting the assembly of truss pairs only after marking. And if you make a template in advance, for which you take two boards equal to the length of the rafters, and connect them together, then all pairs will turn out to be exactly the same.

Installation of rafters

After assembly and lifting to a height, the rafters of the gable roof of a wooden house are installed. To fix them on the Mauerlat, cuts are made at the bottom of the rafters. The first to install two trusses from opposite ends of the roof.

After that, a rope is pulled between the starting pairs, along which all the other truss trusses will be aligned and the ridge will be installed.


Now you can mount the remaining pairs in compliance with the calculated step between them. In cases where pairs are assembled directly on the roof, a ridge run is attached between the two end trusses. Subsequently, rafters are installed on it.

The order of installation of halves of rafters according to the opinions of professionals may differ. Some prefer to lay the bars in a checkerboard pattern so as not to overload the foundation and walls during work. Others tend to install pairs of rafters in series. Be that as it may, rafter legs may need props and racks - it all depends on the size of the roof and the shape of the trusses.

Skate mount

A ridge is an element that is formed by attaching rafters at the top point. As soon as all the details of the truss system for a gable roof are installed, it is necessary to perform a major fixing of all structural elements.

Lathing installation

The presence of lathing is mandatory in the construction of any roof. It not only supports the roofing material and allows it to be securely fastened, but also makes it possible to move along the roof during work.


The distance between the individual boards is chosen based on the type of roofing material:

  • soft roofing is laid on a continuous crate without gaps;
  • for a metal tile, a crate is needed with a step of 35 cm (between the two lower rows - 30 cm);
  • slate and corrugated board can be laid on the crate in increments of 44 cm.

Results

Thus, in order to assemble a truss system for a roof with two slopes, many nuances should be taken into account and any possible complications should be foreseen. We hope that our advice will help you cope with this difficult task and create a high-quality and durable roof for your home.


Loading...Loading...