Дуговое напряжение. Что такое электрическая дуга и как она возникает

22 августа 2012 в 10:00

При размыкании электрической цепи возникает электрический разряд в виде электрической дуги. Для появления электрической дуги достаточно, чтобы напряжение на контактах было выше 10 В при токе в цепи порядка 0,1А и более. При значительных напряжениях и токах температура внутри дуги может достигать 10...15 тыс. °С, в результате чего плавятся контакты и токоведущие части.

При напряжениях 110 кВ и выше длина дуги может достигать нескольких метров. Поэтому электрическая дуга, особенно в мощных силовых цепях, на напряжение выше 1 кВ представляет собой большую опасность, хотя серьезные последствия могут быть и в установках на напряжение ниже 1 кВ. Вследствие этого электрическую дугу необходимо максимально ограничить и быстро погасить в цепях на напряжение как выше, так и ниже 1 кВ.

Причины возникновения электрический дуги

Процесс образования электрической дуги может быть упрощенно представлен следующим образом. При расхождении контактов вначале уменьшается контактное давление и соответственно контактная поверхность, увеличиваются переходное сопротивление(плотность тока и температура — начинаются местные (на отдельных участках площади контактов) перегревы, которые в дальнейшем способствуют термоэлектронной эмиссии, когда под воздействием высокой температуры увеличивается скорость движения электронов и они вырываются с поверхности электрода.

В момент расхождения контактов, то есть разрыва цепи, на контактном промежутке быстро восстанавливается напряжение. Поскольку при этом расстояние между контактами мало, возникает электрическое поле высокой напряженности, под воздействием которого с поверхности электрода вырываются электроны. Они разгоняются в электрическом поле и при ударе в нейтральный атом отдают ему свою кинетическую энергию. Если этой энергии достаточно, чтобы оторвать хотя бы один электрон с оболочки нейтрального атома, то происходит процесс ионизации.

Образовавшиеся свободные электроны и ионы составляют плазму ствола дуги, то есть ионизированного канала, в котором горит дуга и обеспечивается непрерывное движение частиц. При этом отрицательно заряженные частицы, в первую очередь электроны, движутся в одном направлении (к аноду), а атомы и молекулы газов, лишенные одного или нескольких электронов, — положительно заряженные частицы — в противоположном направлении (к катоду). Проводимость плазмы близка к проводимости металлов.

В стволе дуги проходит большой ток и создается высокая температура. Такая температура ствола дуги приводит к термоионизации — процессу образования ионов вследствие соударения молекул и атомов, обладающих большой кинетической энергией при высоких скоростях их движения (молекулы и атомы среды, где горит дуга, распадаются на электроны и положительно заряженные ионы). Интенсивная термоионизация поддерживает высокую проводимость плазмы. Поэтому падение напряжения по длине дуги невелико.

В электрической дуге непрерывно протекают два процесса: кроме ионизации, также деионизация атомов и молекул. Последняя происходит в основном путем диффузии, то есть переноса заряженных частиц в окружающую среду, и рекомбинации электронов и положительно заряженных ионов, которые воссоединяются в нейтральные частицы с отдачей энергии, затраченной на их распад. При этом происходит теплоотвод в окружающую среду.

Таким образом, можно различить три стадии рассматриваемого процесса: зажигание дуги, когда вследствие ударной ионизации и эмиссии электронов с катода начинается дуговой разряд и интенсивность ионизации выше, чем деионизации, устойчивое горение дуги, поддерживаемое термоионизацией в стволе дуги, когда интенсивность ионизации и деионизации одинакова, погасание дуги, когда интенсивность деионизации выше, чем ионизации.

Способы гашения дуги в коммутационных электрических аппаратах

Для того чтобы отключить элементы электрической цепи и исключить при этом повреждение коммутационного аппарата, необходимо не только разомкнуть его контакты, но и погасить появляющуюся между ними дугу. Процессы гашения дуги, так же как и горения, при переменном и постоянном токе различны. Это определяется тем, что в первом случае ток в дуге каждый полупериод проходит через нуль. В эти моменты выделение энергии в дуге прекращается и дуга каждый раз самопроизвольно гаснет, а затем снова загорается.

Практически ток в дуге становится близким нулю несколько раньше перехода через нуль, так как при снижении тока энергия, подводимая к дуге, уменьшается, соответственно снижается температура дуги и прекращается термоионизация. При этом в дуговом промежутке интенсивно идет процесс деионизации. Если в данный момент разомкнуть и быстро развести контакты, то последующий электрический пробой может не произойти и цепь будет отключена без возникновения дуги. Однако практически это сделать крайне сложно, и поэтому принимают специальные меры ускоренного гашения дуги, обеспечивающие охлаждение дугового пространства и уменьшение числа заряженных частиц.

В результате деионизации постепенно увеличивается электрическая прочность промежутка и одновременно растет восстанавливающееся напряжение на нем. От соотношения этих величин и зависит, загорится ли на очередную половину периода дуга или нет. Если электрическая прочность промежутка возрастает быстрее и оказывается больше восстанавливающего напряжения, дуга больше не загорится, в противном же случае будет обеспечено устойчивое горение дуги. Первое условие и определяет задачу гашения дуги.

В коммутационных аппаратах используют различные способы гашения дуги.

Удлинение дуги

При расхождении контактов в процессе отключения электрической цепи возникшая дуга растягивается. При этом улучшаются условия охлаждения дуги, так как увеличивается ее поверхность и для горения требуется большее напряжение.

Деление длинной дуги на ряд коротких дуг

Если дугу, образовавшуюся при размыкании контактов, разделить на К коротких дуг, например затянув ее в металлическую решетку, то она погаснет. Дуга обычно затягивается в металлическую решетку под воздействием электромагнитного поля, наводимого в пластинах решетки вихревыми токами. Этот способ гашения дуги широко используется в коммутационных аппаратах на напряжение ниже 1 кВ, в частности в автоматических воздушных выключателях.

Охлаждение дуги в узких щелях

Гашение дуги в малом объеме облегчается. Поэтому в коммутационных аппаратах широко используют дугогасительные камеры с продольными щелями (ось такой щели совпадает по направлению с осью ствола дуги). Такая щель обычно образуется в камерах из изоляционных дугостойких материалов. Благодаря соприкосновению дуги с холодными поверхностями происходят ее интенсивное охлаждение, диффузия заряженных частиц в окружающую среду и соответственно быстрая деионизация.

Кроме щелей с плоскопараллельными стенками, применяют также щели с ребрами, выступами, расширениями (карманами). Все это приводит к деформации ствола дуги и способствует увеличению площади соприкосновения ее с холодными стенками камеры.

Втягивание дуги в узкие щели обычно происходит под действием магнитного поля, взаимодействующего с дугой, которая может рассматриваться как проводник с током.

Внешнее магнитное поле для перемещения дуги наиболее часто обеспечивают за счет катушки, включаемой последовательно с контактами, между которыми возникает дуга. Гашение дуги в узких щелях используют в аппаратах на все напряжения.

Гашение дуги высоким давлением

При неизменной температуре степень ионизации газа падает с ростом давления, при этом возрастает теплопроводность газа. При прочих равных условиях это приводит к усиленному охлаждению дуги. Гашение дуги при помощи высокого давления, создаваемого самой же дугой в плотно закрытых камерах, широко используется в плавких предохранителях и ряде других аппаратов.

Гашение дуги в масле

Если контакты выключателя помещены в масло, то возникающая при их размыкании дуга приводит к интенсивному испарению масла. В результате вокруг дуги образуется газовый пузырь (оболочка), состоящий в основном из водорода (70...80 %), а также паров масла. Выделяемые газы с большой скоростью проникают непосредственно в зону ствола дуги, вызывают перемешивание холодного и горячего газа в пузыре, обеспечивают интенсивное охлаждение и соответственно деионизацию дугового промежутка. Кроме того, деионизирующую способность газов повышает создаваемое при быстром разложении масла давление внутри пузыря.

Интенсивность процесса гашения дуги в масле тем выше, чем ближе соприкасается дуга с маслом и быстрее движется масло по отношению к дуге. Учитывая это, дуговой разрыв ограничивают замкнутым изоляционным устройством — дугогасительной камерой. В этих камерах создается более тесное соприкосновение масла с дугой, а при помощи изоляционных пластин и выхлопных отверстий образуются рабочие каналы, по которым происходит движение масла и газов, обеспечивая интенсивное обдувание (дутье) дуги.

Дугогасительные камеры по принципу действия разделяют на три основные группы: с автодутьем, когда высокие давление и скорость движения газа в зоне дуги создаются за счет выделяющейся в дуге энергии, с принудительным масляным дутьем при помощи специальных нагнетающих гидравлических механизмов, с магнитным гашением в масле, когда дуга под действием магнитного поля перемещается в узкие щели.

Наиболее эффективны и просты дугогасительные камеры с автодутьем. В зависимости от расположения каналов и выхлопных отверстий различают камеры, в которых обеспечивается интенсивное обдувание потоками газопаровой смеси и масла вдоль дуги (продольное дутье) или поперек дуги (поперечное дутье). Рассмотренные способы гашения дуги широко используются в выключателях на напряжение выше 1 кВ.

Другие способы гашения дуги в аппаратах на напряжение выше 1 кВ

Кроме указанных выше способов гашения дуги, используют также: сжатый воздух, потоком которого вдоль или поперек обдувается дуга, обеспечивая ее интенсивное охлаждение (вместо воздуха применяются и другие газы, часто получаемые из твердых газогенерирующих материалов — фибры, винипласта и т. п. — за счет их разложения самой горящей дугой), элегаз (шестифтористая сера), обладающий более высокой электрической прочностью, чем воздух и водород, в результате чего дуга, горящая в этом газе, даже при атмосферном давлении достаточно быстро гасится, высокоразреженный газ (вакуум), при размыкании контактов в котором дуга не загорается вновь (гаснет) после первого прохождения тока через нуль.

Последние публикации

Привет всем посетителям моего блога. Тема сегодняшней статьи электрическая дуга и защита от электрической дуги. Тема не случайная, пишу из больницы имени Склифосовского. Догадываетесь почему?

Что такое электрическая дуга

Это один из видов электрического разряда в газе (физическое явление). Также ее называют – Дуговой разряд или Вольтова дуга. Состоит из ионизированного, электрически квазинейтрального газа (плазмы).

Может возникнуть между двумя электродами при увеличении напряжения между ними, либо приближении друг к другу.

Вкратце о свойствах : температура электрической дуги, от 2500 до 7000 °С. Не маленькая температура, однако. Взаимодействие металлов с плазмой, приводит к нагреву, окислению, расплавлению, испарению и другим видам коррозии. Сопровождается световым излучением, взрывной и ударной волной, сверхвысокой температурой, возгоранием, выделением озона и углекислого газа.

В интернете есть немало информации о том, что такое электрическая дуга, каковы ее свойства, если интересно подробнее, посмотрите. Например, в ru.wikipedia.org.

Теперь о моем несчастном случае. Трудно поверить, но 2 дня назад я напрямую столкнулся с этим явлением, причем неудачно. Дело было так: 21 ноября, на работе, мне было поручено сделать разводку светильников в распаечной коробке, после чего подключить их в сеть. С разводкой проблем не возникло, а вот когда полез в щит, возникли некоторые трудности. Жаль андройд свой дома забыл, не сделал фото электрощита, а то было бы более ясно. Возможно сделаю еще, как выйду на работу. Итак, щит был очень старый — 3 фазы, нулевая шина (она же заземление), 6 автоматов и пакетный выключатель (вроде все просто), состояние изначально не вызывало доверия. Долго боролся с нулевой шиной, так как все болты были ржавые, после чего без труда посадил фазу на автомат. Все хорошо, проверил светильники, работают.

После, вернулся к щиту, чтобы аккуратно уложить провода, закрыть его. Хочу заметить, электрощит находился на высоте ~2 метра, в узком проходе и чтобы добраться до него, использовал стремянку (лестницу). Укладывая провода, обнаружил искрения на контактах других автоматов, что вызывало моргание ламп. Соответственно я протянул все контакты и продолжил осмотр остальных проводов (чтобы 1 раз сделать и не возвращаться больше к этому). Обнаружив, что один контакт на пакетнике имеет высокую температуру, решил протянуть его тоже. Взял отвертку, прислонил к винту, повернул, бах! Раздался взрыв, вспышка, меня отбросило назад, ударившись об стену, я упал на пол, ничего не видно (ослепило), щит не переставал взрываться и гудеть. Почему не сработала защита мне не известно. Чувствуя на себе падающие искры я осознал, что надо выбираться. Выбирался на ощупь, ползком. Выбравшись из этого узкого прохода, начал звать напарника. Уже на тот момент я почувствовал, что с моей правой рукой (ей я держал отвертку) что-то не так, ужасная боль ощущалась.

Вместе с напарником мы решили, что нужно бежать в медпункт. Что было дальше, думаю не стоит рассказывать, всего обкололи и в больницу. Никогда походу не забуду этот ужасный звук долгого короткого замыкания – зуд с жужжанием.

Сейчас лежу в больнице, на коленке у меня ссадина, врачи думают, что меня било током, это выход, поэтому наблюдают за сердцем. Я же считаю, что током меня не било, а ожег на руке, был нанесен электрической дугой, которая возникла при замыкании.

Что там случилось, почему произошло замыкание мне пока не известно, думаю, при повороте винта, сдвинулся сам контакт и произошло замыкание фаза-фаза, либо сзади пакетного выключателя находился оголенный провод и при приближении винта возникла электрическая дуга . Узнаю позже, если разберутся.

Блин, сходил на перевязку, так руку замотали, что пишу одной левой теперь)))

Фото без бинтов делать не стал, очень не приятное зрелище. Не хочу пугать начинающих электриков….

Какие бывают меры защиты от электрической дуги, что могло меня защитить? Проанализировав интернет, увидел, что самым популярным средством защиты людей в электроустановках от электрической дуги является термостойкий костюм. В северной Америке большой популярностью пользуются специальные автоматы фирмы Siemens, которые защищают как от электрической дуги, так и от максимального тока. В России, на данный момент, подобные автоматы используются только на высоковольтных подстанциях. В моем случае мне бы хватило диэлектрической перчатки, но сами подумайте, как в них подключать светильники? Это очень неудобно. Также рекомендую использовать защитные очки, чтобы защитить глаза.

В электроустановках борьба с электрической дугой осуществляется с помощью вакуумных и масляных выключателей, а также при помощи электромагнитных катушек совместно с дугогасительными камерами.

Это все? Нет! Самым надежным способом обезопасить себя от электрической дуги, на мой взгляд, являются работы со снятием напряжения . Не знаю как вы, а я под напряжением работать больше не буду…

На этом моя статья электрическая дуга и защита от электрической дуги заканчивается. Есть что дополнить? Оставь комментарий.

В книге «Известие о гальвани-вольтовских опытах посредством огромной батареи, состоявшей иногда из 4200 медных и цинковых кружков» (Санкт-Петербург, 1803). Электрическая дуга является частным случаем четвёртой формы состояния вещества - плазмы - и состоит из ионизированного, электрически квазинейтрального газа. Присутствие свободных электрических зарядов обеспечивает проводимость электрической дуги.

Физические явления

Электрическая дуга между двумя электродами в воздухе при атмосферном давлении образуется следующим образом:

При увеличении напряжения между двумя электродами до определённого уровня в воздухе между электродами возникает электрический пробой . Напряжение электрического пробоя зависит от расстояния между электродами и других факторов. Потенциал ионизации первого электрона атомов металлов составляет приблизительно 4,5 - 5 В, а напряжение дугообразования - в два раза больше (9 - 10 В). Требуется затратить энергию на выход электрона из атома металла одного электрода и на ионизацию атома второго электрода. Процесс приводит к образованию плазмы между электродами и горению дуги (для сравнения: минимальное напряжение для образования искрового разряда немногим превышает потенциал выхода электрона - до 6 В).

Для инициирования пробоя при имеющемся напряжении электроды приближают друг к другу. Во время пробоя между электродами обычно возникает искровой разряд , импульсно замыкая электрическую цепь . Электроны в искровых разрядах ионизируют молекулы в воздушном промежутке между электродами. При достаточной мощности источника напряжения в воздушном промежутке образуется достаточное количество плазмы для значительного падения напряжения пробоя или сопротивления воздушного промежутка. При этом искровые разряды превращаются в дуговой разряд - плазменный шнур между электродами, являющийся плазменным тоннелем. Возникающая дуга является, по сути, проводником и замыкает электрическую цепь между электродами. В результате средний ток увеличивается ещё больше, нагревая дугу до 5000-50000 . При этом считается, что поджиг дуги завершён. После поджига устойчивое горение дуги обеспечивается термоэлектронной эмиссией с катода, разогреваемого током и ионной бомбардировкой.

После поджига дуга может оставаться устойчивой при разведении электрических контактов до некоторого расстояния.

Взаимодействие электродов с плазмой дуги приводит к их нагреву, частичному расплавлению, испарению, окислению и другим видам коррозии.

При эксплуатации высоковольтных электроустановок, в которых при коммутации электрической цепи неизбежно появление электрической дуги, борьба с ней осуществляется при помощи электромагнитных катушек, совмещённых с дугогасительными камерами . Среди других способов известны использование вакуумных, воздушных, элегазовых и масляных выключателей , а также методы отвода тока на временную нагрузку, самостоятельно разрывающую электрическую цепь.

Строение дуги

Электрическая дуга состоит из катодной и анодной областей, столба дуги, переходных областей. Толщина анодной области составляет 0,001 мм, катодной области - около 0,0001 мм.

Температура в анодной области при сварке плавящимся электродом составляет около 2500 … 4000°С, температура в столбе дуги - от 7 000 до 18 000°С, в области катода - 9000 - 12000°С.

Столб дуги электрически нейтрален. В любом его сечении находятся одинаковое количество заряженных частиц противоположных знаков. Падение напряжения в столбе дуги пропорционально его длине .

Сварочные дуги классифицируют по:

  • Материалам электрода - с плавящимся и неплавящимся электродом;
  • Степени сжатия столба - свободную и сжатую дугу;
  • По используемому току - дуга постоянного и дуга переменного тока;
  • По полярности постоянного электрического тока - прямой полярности («-» на электроде, «+» - на изделии) и обратной полярности;
  • При использовании переменного тока - дуги однофазная и трехфазная.

Саморегулирование дуги

При возникновении внешнего возмущения - изменения напряжения сети, скорости подачи проволоки и др. - возникает нарушение в установившемся равновесии между скоростью подачи и скоростью плавления. При увеличении длины дуги в цепи уменьшаются сварочный ток и скорость плавления электродной проволоки, а скорость подачи, оставаясь постоянной, становится больше скорости плавления, что приводит к восстановлению длины дуги. При уменьшении длины дуги скорость плавления проволоки становится больше скорости подачи, это приводит к восстановлению нормальной длины дуги .

На эффективность процесса саморегулирования дуги значительно влияет форма вольт-амперной характеристики источника питания. Большое быстродействие колебания длины дуги отрабатывается автоматически при жестких ВАХ цепи.

Полезное применение

Электросварка

Электрическая дуга используется при электросварке металлов, для выплавки стали (Дуговая сталеплавильная печь) и в освещении (в дуговых лампах). Иногда используется свойство нелинейной вольт-амперной характеристики дуги (см. Автомат гашения поля).

Источники света

Борьба с электрической дугой

В ряде устройств явление электрической дуги является вредным. Это, в первую очередь, контактные коммутационные устройства, используемые в электроснабжении и электроприводе: высоковольтные выключатели , автоматические выключатели , контакторы , секционные изоляторы на контактной сети электрифицированных железных дорог и городского электротранспорта. При отключении нагрузок вышеуказанными аппаратами, между размыкающимися контактами возникает дуга.

Механизм возникновения дуги в данном случае следующий:

  • Уменьшение контактного давления - количество контактных точек уменьшается, растёт сопротивление в контактном узле;
  • Начало расхождения контактов - образование «мостиков» из расплавленного металла контактов (в местах последних контактных точек);
  • Разрыв и испарение «мостиков» из расплавленного металла;
  • Образование электрической дуги в парах металла (что способствует большей ионизации контактного промежутка и трудности при гашении дуги);
  • Устойчивое горение дуги с быстрым выгоранием контактов.

Для минимального повреждения контактов необходимо погасить дугу в минимальное время, прилагая все усилия по недопущению нахождения дуги на одном месте (при движении дуги, теплота выделяющаяся в ней будет равномерно распределяться по телу контакта).

Для выполнения вышеуказанных требований применяются следующие методы борьбы с дугой:

  • охлаждение дуги потоком охлаждающей среды - жидкости (масляный выключатель); газа - (воздушный выключатель , автогазовый выключатель , масляный выключатель , элегазовый выключатель), причём поток охлаждающей среды может проходить как вдоль ствола дуги (продольное гашение), так и поперёк (поперечное гашение); иногда применяется продольно-поперечное гашение;
  • использование дугогасящей способности вакуума - известно, что при уменьшении давления газов, окружающих коммутируемые контакты до определённого значения, приводит к эффективному гашению дуги (в связи с отсутствием носителей для образования дуги) вакуумный выключатель .
  • использование более дугостойкого материала контактов;
  • применение материала контактов с более высоким потенциалом ионизации;
  • применение дугогасительных решёток (автоматический выключатель , электромагнитный выключатель). Принцип применения дугогашения на решётках основан на применении эффекта околокатодного падения в дуге (большая часть падения напряжения в дуге - это падение напряжения на катоде; дугогасительная решётка - фактически ряд последовательных контактов для попавшей туда дуги).
  • использование дугогасительных камер - попадая в камеру из дугостойкого материала, например слюдопласта, с узкими, иногда зигзагообразными каналами, дуга растягивается, сжимается и интенсивно охлаждается от соприкосновения со стенками камеры.
  • использование «магнитного дутья» - поскольку дуга сильно ионизирована, то её в первом приближении можно полагать как гибкий проводник с током; создавая специальными электромагнитами (включённых последовательно с дугой) магнитное поле можно создавать движение дуги для равномерного распределения тепла по контакту, так и для загона её в дугогасительную камеру или решётку. В некоторых конструкциях выключателей создаётся радиальное магнитное поле, придающее дуге вращательный момент.
  • шунтирование контактов в момент размыкания силовым полупроводниковым ключом тиристором или симистором, включеным параллельно контактам, после размыкания контактов полупроводниковый ключ отключается в момент перехода напряжения через ноль (гибридный контактор, тирикон).
  • .
  • Искровой разряд - статья из Большой советской энциклопедии .
  • Райзер Ю. П. Физика газового разряда. - 2-е изд. - М. : Наука, 1992. - 536 с. - ISBN 5-02014615-3 .
  • Родштейн Л. А. Электрические аппараты, Л 1981 г.
  • Clerici, Matteo; Hu, Yi; Lassonde, Philippe; Milián, Carles; Couairon, Arnaud; Christodoulides, Demetrios N. ; Chen, Zhigang; Razzari, Luca; Vidal, François (2015-06-01). «Laser-assisted guiding of electric discharges around objects». Science Advances 1 (5): e1400111. Bibcode:2015SciA….1E0111C. doi:10.1126/sciadv.1400111. ISSN 2375-2548.

Возникновение электрической дуги и её свойства, процессы вызывающие рождение и поддерживающие горение, а также конструктивные решения в коммутационных аппаратах для гашения дугового разряда.

Краткое содержание статьи:

Свойства электрической дуги или дугового разряда

В электротехнике (автоматические выключатели, рубильники, контакторы) при выключении нагруженной цепи рождается электрическая дуга.

Установим ограничения: далее описываются процессы характерные для аппаратов с номинальными токами от 1 до 2000 ампер и предназначенных для работы в сетях с напряжением до 1000 вольт (низковольтная аппаратура). Для высоковольтной аппаратуры существуют другие условия возникновения и горения дуги.

Важные параметры электрической дуги:

  • дуговой разряд способен развиться исключительно при высоких токах (для металла этот ток составляет 0,5 ампера);
  • температура в стволе дуги значительная и составляет порядка 6-18 тысяч кельвинов (зачастую 6-10 тысяч кельвинов);
  • снижение напряжения у катода незначительно и равно 10-20 вольтам.

Дуговой разряд условно разделяют на три зоны:

  • околокатодную;
  • ствол дуги (основная часть);
  • околоанодную.

В выделенных зонах ионизация и деионизация проходят различно:

  • ионизация - процесс распадения нейтрального атома на отрицательный электрон и положительный ион;
  • деионизация - процесс противоположный ионизации (антоним), при котором происходит слияние электрона и иона в нейтральную частицу.


В 2-минутном видеоролике представлена замедленная съёмка гашения электрической дуги в модульном автоматическом выключателе производства ABB:

Процессы сопутствующие рождению электрической дуги

На начальном этапе разведения главных контактов дуга зарождается при следующих процессах:

  • термоэлектронная эмиссия (освобождение отрицательных электронов из разогретой поверхности контакта);
  • автоэлектронная эмиссия (отрыв электронов из катода под влиянием значительного электрического поля).

Термоэлектронная эмиссия . При разрыве контактов в районе последней площадки контакта образуется зона с расплавленной медью с соответствующей температурой. Медь испаряется на отрицательном электроде из так называемого катодного пятна, которое является источником свободных электронов. На данный процесс оказывают влияние: температура и металл контактных поверхностей; он является достаточным для рождения электрической дуги, но не достаточным для поддержания её горения.

Автоэлектронная эмиссия . Воздушное пространство между контактами можно рассматривать как своеобразный конденсатор, ёмкость которого в первое мгновение неограниченна, а далее сокращается в зависимости от растущего разрыва между подвижным и неподвижным контактом. Описанный конденсатор постепенно подзаряжается и напряжение в нём сравнивается с напряжением главной цепи. Напряжённость электрического поля доходит до величин, при которых возникают условия для выхода электронов из поверхности не нагретого катода.

Соотношение влияния описанных процессов на зарождение дуги зависит от силы выключаемого тока, металла контактной группы, чистоты контактной поверхности, скорости разъединения контактов и иных факторов. Доминирование одного вида эмиссии над другим индивидуально.

Процессы поддерживающие горение дуги.

При помощи следующих механизмов взаимодействия частиц создаются условия для горения разряда:

  • ионизация толчком (разогнанный электрон врезается в нейтральную частицу и «выбивает» и неё электрон);
  • тепловая ионизация (разрушение нейтральных атомов значительными температурами).

Ионизация толчком . Свободный электрон с определённой скоростью способен разбить нейтральную частицу на электрон и ион. Вновь полученный электрон способен разорвать внутренние связи у следующей частицы, в результате получается цепная реакция. Скорость электрона является функцией от разности потенциалов на участке движения (достаточный потенциал для выбивания электрона: 13 - 16 вольт для кислорода, водорода, азота; 24 вольта для гелия; 7,7 вольта для медных паров).

Тепловая ионизация . При высоких температурах увеличиваются скорости движения частиц в плазме, что ведёт к разрушению нейтральных атомов по принципу ионизации толчком.

Единовременно с процессами ионизации проходят процессы деионизации за счёт рекомбинации (взаимный контакт «-» и «+» частиц ведёт к слиянию их в нейтральный атом) и диффузии (выход из ствола дуги электронов во внешнюю среду, где в нормальных условиях происходит их поглощение).

Существенным фактором для продолжения горения дуги в нашем случае является тепловая ионизация, поэтому для гашения разряда применяется охлаждение его ствола (контакт с материалом высокой теплопроводности), а также удлинение самой дуги в отведённом ей пространстве.

Методы гашения электрической дуги

Чтобы ограничить негативное воздействие электрической дуги на контакты коммутационного аппарата и его узлы, следует за кратчайшее время погасить дугу. К отрицательным воздействиям относят:

  • высокие температуры (оплавление, испарение контактного материала);
  • создание перешейков-проводников электрического тока (дуга легко проводит ток, поэтому может провести его на участки, которые не проводят ток при нормальной работе);
  • нарушение нормальной электрической схемы аппарата (разрушение изоляции).

Дуга - это частное проявление, одного из состояний вещества, называемого плазмой . Ствол дуги имеет высокие температуры и большое количество свободных ионов. Так как основным фактором, продлевающим горение, является тепловая ионизация , то нужно интенсивно охладить ствол электрической дуги. Для этих целей в коммутационных аппаратах применяются следующие конструктивные решения :

  • магнитное дутьё или нагнетание охлаждающёй жидкости или газа для того, чтобы удлинить дугу (бо льшая поверхность, больше отдаёт тепла);
  • деионная решётка или набор профилированных стальных пластин, которые единовременно работают радиаторами и расчленяют дугу на отдельные составляющие;
  • дугогасительная камера щелевого типа , выполненная из материала с большой теплопроводностью и стойкостью к высоким температурам (электрическая дуга, контактируя с материалом камеры, отдаёт тепловую энергию);
  • создание закрытого пространства из материала, выделяющего газ под воздействием температуры (высокое давление газов препятствует горению дуги);
  • специальные контактные сплавы для снижения содержания металлов в плазме;
  • откачивать воздух из околоконтактного пространства для создания вакуума (нет вещества - нет ионизации);
  • в аппаратах на переменный ток производить размыкание в момент перехода тока через ноль (меньше энергии для рождения дуги);
  • вводить в промежуток, между расходящимися контактами, полупроводники, которые воспримут ток и не дадут дуге разгореться;
  • применять двойной разрыв в цепи (исключая из цепи часть проводника, мгновенно и значительно увеличивается расстояние между катодом и анодом).

Список литературы

Марков А. М. Электрические и электронные аппараты. Часть 1. Электромеханические аппараты. - Псков: Издательство Псков ГУ, 2013 год - 128 с (ссылка на книгу на странице «Прайс-лист »).

В коммутационных электрических аппаратах, предназначенных для замыкания и размыкания цепи с током, при отключении возникает электрический разряд в газе либо в виде в виде тлеющего разряда , либо в виде дуги . Тлеющий разряд возникает когда ток ниже 0,1А, а напряжение на контактах 250-300В. Тлеющий разряд встречается на контактах маломощных реле. Дуговой разряд наблюдается только при больших токах. Минимальный ток для металлов 0,4-0,9А.


В дуговом разряде различают три области: околокатодную, область ствола дуги, околоанодную (рис.15).

Рис. 15. Области дугового разряда

Околокатодная область занимает весьма небольшое пространство (общая длина ее и анодной области порядка 10 -6 м). Падение напряжения на ней составляет 10-20В и практически не зависит от тока. Средняя напряженность электрического поля достигает 100кВ/см. Такая весьма высокая напряженность электрического поля, достаточная для ударной ионизации газа (воздуха при нормальном атмосферном давлении) или паров материала катода, обусловлена наличием в этой области нескомпенсированного положительного объемного заряда. Однако ввиду малой протяженности околокатодной области электроны не набирают скорости, достаточной для ударной ионизации. Чаще всего после удара атом переходит в возбужденное состояние (электрон атома переходит на более удаленную от ядра орбиту). Теперь для ионизации возбужденного атома требуется меньшая энергия. Такая ионизация называется ступенчатой . При ступенчатой ионизации необходим многократный (несколько десятков) удар электронов по атому.

Наличие нескомпенсированного положительного объемного заряда в значительной степени определяет чрезвычайно высокую плотность тока на катоде - 100-1000А/мм 2 .

Положительные ионы разгоняются в поле катодного падения напряжения и бомбардируют катод. При ударе ионы отдают свою энергию катоду, нагревая его и создавая условия для выхода электронов, происходит термоэлектронная эмиссия электронов с катода.

Область ствола электрической дуги представляет собой газообразную, термически возбужденную ионизированную квазинейтральную среду- плазму, в которой под действием электрического поля носители зарядов (электроны и ионы) движутся в направлении к электродам противоположного знака.

Средняя напряженность электрического поля около 20-30В/см, что недостаточно для ударной ионизации. Основным источником электронов и ионов является термическая ионизация, когда при большой температуре скорость нейтральных частиц увеличивается настолько, что при их столкновении происходит их ионизация.

Околоанодная область , имеющая весьма малую протяженность характеризуется также резким падением потенциала, обусловленным наличием нескомпенсированного отрицательного объемного заряда. Электроны разгоняются в поле анодного падения напряжения и бомбардируют анод который нагревается до температуры как правило большей чем температура катода. Околоанодная область не оказывает существенного влияния на возникновение и условие существования дугового разряда. Задача анода сводится к приему электронного потока из ствола дуги.



Если U c <(U к +U А), то дуга называется короткой, она характерна для некоторых низковольтных аппаратов.

Если U c >(U к +U А), то дуга называется длинной, она характерна для высоковольтных аппаратов.

Статическая вольт-амперная характеристика – устанавливает связь между различными значениями установившегося постоянного тока и падением напряжения на дуге при неизменной длине дуги и неизменных условиях ее горения. В этом случае при каждом значении установившегося постоянного тока устанавливается тепловой баланс (количество тепла выделяемого в дуге равно количеству тепла отдаваемого дугой в окружающую среду)

где m - показатель, зависящий от вида (способа) воздействия окружающей среды на ствол дуги; A m – постоянная, определяемая интенсивностью теплообмена в зоне ствола дуги при данном (m ) способе воздействия окружающей среды; l – длина дуги.

Характеристика имеет падающий характер. При увеличении силы тока возрастает термоэлектронная эмиссияэлектронов с катода и степень ионизации дуги вследствие чего снижается сопротивление дуги. Причем скорость снижения сопротивления дуги выше, чем скорость роста тока.

Динамическая вольт-амперная характеристика – устанавливает связь между током, изменяющемся определенным образом во времени и падением напряжения на дуге при неизменной длине дуги и неизменных условиях ее горения. В этом случае скорость изменения тока такова, что тепловой баланс не успевает установиться, изменение сопротивления дуги отстает от изменения тока.

При возрастании тока динамическая характеристика (кривая В на рис. 16) идет выше статистической (кривая А на рис. 16), так как при быстром росте тока сопротивление дуги падает медленнее, чем растет ток. При уменьшении – ниже, поскольку в этом режиме сопротивление дуги меньше, чем при медленном изменении тока (кривая С на рис. 16).


Динамическая характеристика в значительной степени определяется скоростью изменения тока в дуге. Если в цепь ввести очень большое сопротивление за время, бесконечно малое по сравнению с тепловой постоянной времени дуги, то в течении времени спада тока до нуля сопротивление дуги останется постоянным. в этом случае динамическая характеристика изобразится прямой, проходящей в начало координат (прямая D на рис. 16), т. е. дуга ведет себя как металлический проводник, так как напряжение на дуге пропорционально току.

Условия стабильного горения и гашения дуги постоянного тока . Рассмотрим цепь постоянного тока (рис. 17).

Рис.17. Дуга в цепи постоянного тока

Для рассматриваемой цепи

Очевидно, что стационарным режимом, когда дуга горит стабильно будет такой, при котором ток в цепи не меняется, т. е. . В этом режиме скорость роста числа ионизированных частиц равна скорости их исчезновения в результате процессов деионизации -устанавливается динамическое равновесие.

На графике приведена падающая вольт-амперная характеристика дуги и наклонная прямая U-iR . Из (48) следует, что

Отсюда очевидно, что в точках 1 и 2. Причем точка 1 является точкой неустойчивого равновесия; случайные как угодно малые отклонения тока приводят или к увеличению тока до значения i 2 , или уменьшают его до нуля. В точке 2 дуга горит стабильно; случайные малые отклонения тока в ту или другую сторону приводят его к обратно к значению i 2 . Из графика видно, что дуга при всех значениях тока не может гореть стабильно если падение напряжения на дуге () превосходит напряжение подаваемое на дугу от источника ()

Таким образом, для гашения дуги необходимо создать условия при которых падение напряжения на дуге превосходило бы напряжение подаваемое на дугу от источника, в пределе напряжение сети.

Для гашения дуги используют три явления :

1. Увеличение длины дуги путём её растяжения.

Чем длиннее дуга, тем большее напряжение необходимо для ее существования (тем выше располагается ее вольт-амперная характеристика – (кривая U 1 д на рис.17). Если напряжение, подаваемое на дугу от источника (прямая ) окажется меньше вольт-амперной характеристики дуги – (кривая U 1 д), то нет условий стабильного горения дуги, дуга гаснет.

Это самый простой, но самый не эффективный способ. Например, для того, чтобы, например, погасить дугу с током 100A при напряжение 220 B требуетсярастянуть дугу на расстояние 25 ÷ 30 см, что практически в электрических аппаратах сделать невозможно (увеличиваются габариты). Поэтому данный способ используется в качестве основного только услаботочных электрических аппаратов (реле, магнитные пускатели, выключатели).

2. Воздействие на ствол дуги путём охлаждения, добиваясь увеличения продольного градиента напряжения.


2.1 Гашение дуги в узких щелях (рис. 18). Если дуга горит в узкой щели, образованной дугостойким материалом, то благодаря соприкосновению с холодными поверхностями происходит интенсивное охлаждение и диффузия заряженных частиц из канала дуги в окружающую среду. Это приводит к гашению дуги. Способ используется в аппаратах на напряжение до 1000В.

Рис. 18. Гашение дуги в узких щелях

2.2 Гашение дуги в масле (рис.19). Если контакты отключающего аппарата поместить в масло, то возникающая при размыкании дуга приводит к интенсивному газообразованию и испарению масла. Вокруг дуги образуется газовый пузырь, состоящий в основном из водорода, обладающего высокими дугогасящими свойствами. Повышенное давление внутри газового пузыря способствует лучшему охлаждению дуги и ее гашению. Способ используется в аппаратах на напряжение выше 1000В.


2.3 Газовоздушное дутье (рис.20). Охлаждение дуги улучшается, если создать направленное движение газов - дутье вдоль или поперек дуги.

Рис.20.Газовоздушное дутье: а - вдоль дуги, б - поперек дуги.

Способ используется в аппаратах на напряжение выше 1000В.

3. Используя околоэлектродное падение напряжения.

Деление длинной дуги на ряд коротких (рис. 21). Если длинную дугу затянуть в дугогасительное устройство, имеющее металлические пластины (дугогасительную решетку), то она разделится на п коротких дуг. У каждой пластины решётки возникают околоэлектродные падения напряжения. За счёт суммы околоэлектродных падений напряжений суммарное падение напряжения становится больше,чем даваемое источником питания, и дуга гаснет. Дуга гаснет, если U где U - напряжение сети: U кат - катодное падение напряжения (20-25 В в дуге постоянного тока; 150-250 В в дуге переменного тока). Способ используется в аппаратах на напряжение выше 1000В.


Рис.21. Деление длинной дуги на ряд коротких

Гашению дуги способствуют, используемые в качестве внутренней изоляции аппаратов на напряжение выше 1000В, высокоразряженные газы или газы высокого давления.

Гашение дуги в вакууме. Высокоразряженный газ обладает электрической прочностью в десятки раз большей, чем газ при атмосферном давлении; это используется в вакуумных контакторах и выключателях.

Гашение дуги в газах высокого давления. Воздух при давлении 2 МПа и более обладает высокой электрической прочностью, что позволяет создать компактные гасительные устройства в воздушных выключателях. Эффективно использование шестифтористой серы SF 6 (элегаза) для гашения дуги.

Условия гашения дуги переменного тока .

Пусть контакты разошлись в точке а. Между ними загорается дуга. К концу полупериода из-за уменьшения тока увеличивается сопротивление ствола дуги и соответственно увеличивается напряжение на дуге. При подходе тока к нулю к дуге подводится малая мощность, температура дуги уменьшается, соответственно замедляется термическая ионизация и ускоряются процессы деионизации - дуга гаснет (точка 0 ). Ток в цепи обрывается до своего естественного прохождения через нуль. Напряжение соответствующие обрыву тока – пик гашения U г .


Рис. 22. Гашения дуги переменного тока при активной нагрузке

После гашения дуги происходит процесс восстановления электрической прочности дугового промежутка (кривая а 1 – б 1). Под электрической прочности дугового промежутка подразумевается напряжение, при котором происходит электрический пробой дугового промежутка. Начальная электрическая прочность (точка а 1) и скорость ее возрастания зависят от свойств дугогасительного устройства. В момент t 1 кривая напряжения на дуговом промежутке пересекается с кривой восстановления электрической прочности дугового промежутка – происходит зажигание дуги. Напряжение зажигания дуги – пик зажигания U з . Кривая напряжения на дуге имеет седлообразную форму.

В точке 0 1 дуга вновь гаснет и происходят процессы, аналогичные описанным ранее. К моменту 0 1 вследствие расхождения контактов длина дуги возрастает, отвод тепла от дуги увеличивается, Увеличивается соответственно и начальная электрическая прочность (точка а 2) и скорость ее возрастания (кривая а 2 –в 2). Соответственно этому увеличивается и бестоковая пауза 0 1 - t 2 > 0 - t 1 .

В момент t 2 снова происходит зажигание дуги. В точке 0 11 дуга гаснет. Вновь увеличивается начальная электрическая прочность (точка а 3) и скорость ее возрастания (кривая а 3 –б 3). Кривая напряжения не пересекается с кривой возрастания электрической прочности. Дуга в этом полупериоде не зажигается.

В открытой дуге при высоком напряжении (роговой разрядник), определяющим фактором является активное сопротивление сильно растянутого ствола дуги условия гашения дуги переменного тока приближаются к условиям гашения дуги постоянного тока и процессы после перехода тока через нуль мало влияют на гашение дуги.

При индуктивной нагрузке бестоковая пауза очень мала (примерно 0,1мкс), то есть дуга горит практически непрерывно. Отключение индуктивной нагрузки сложнее, чем активной. Здесь нет обрыва тока.

В целом процесс дугогашения на переменном токе легче, чем на постоянном. Рациональным условием гашения дуги переменного тока следует считать такое, когда гашение осуществляется в первый после размыкания контактов переход тока через нуль.

Вопросы для самопроверки:

· Области дугового разряда.

· Статическая вольт-амперная характеристика.

· Динамическая вольт-амперная характеристика.

· Условия стабильного горения и гашения дуги постоянного тока.

· Какие явления используются для гашения дуги?

· Условия гашения дуги переменного тока.

Loading...Loading...