Биография лайнуса полинга. История одной научной ошибки

Муниципальная средняя школа №8

Реферат

на тему:

Лайнус Карл Полинг
"Как жить долго и быть здоровым"

Выполнила:
ученица 11 Б класса
Шарова Ольга

Утвердил:
учитель биологии
Кузнецова Л. А.

Кострома 2001 год.

"Жизнь - это не свойство какой-либо
одной молекулы, а скорее результат взаимодействия между молекулами"
Лайнус Полинг

Введение

"ОН НАСТОЯЩИЙ гений!" - Альберт Эйнштейн о Лайнусе Полинге". Телевизионный рекламный ролик вот уже, наверное, месяца два напоминает нам о 100-летии со дня рождения действительно незаурядного американского ученого. Однако в такое бескорыстие рекламодателей верится с трудом. В конце концов, почему бы не напомнить о дне рождения самого Альберта Эйнштейна (14 марта 1879 г.). Да мало ли еще достойных имен в мире науки! Почему же все-таки Лайнус Карл Полинг?

Полинг, Крик и Уотсон возможно не осознавали в свое время, что их работы подвели к порогу новой эры в биологической науке. К моменту открытия двойной спирали биология, и химия были в первую очередь ремеслом, искусством практики. Эти науки создавались небольшими группами людей в основном в рамках академических исследований. Но семена перемен были уже посеяны. Благодаря ряду открытий в области лекарственных средств, и в первую очередь благодаря открытиям вакцины против полиомелита и пенициллина, наука биология подошла вплотную к тому, чтобы стать отраслью промышленности.

Сегодня такие области, как органическая химия, молекулярная биология и основные исследования по созданию лекарственных препаратов перестали быть делом небольшого числа «ремесленников»; они превратились в промышленное производство. Академические исследования еще продолжаются, однако же, явно большая часть исследователей и финансов, выделяемых на исследования, сосредоточены в фармацевтической промышленности. Союз науки с промышленностью, по меньшей мере, непрост. С одной стороны, фармацевтические компании в состоянии финансировать исследования в объемах, о которых академические институты могут только мечтать. С другой стороны, это финансирование направляется только в темы, представляющие для компаний интерес. Судите сами, что предпочтет профинансировать фармацевтическая компания: исследования в области поисков способов излечения болезни, или исследования.

Биография

Американский химик Лайнус Карл Полинг (Паулинг) родился в Портленде (штат Орегон), в семье Льюси Айзабелл (Дарлинг) Полинг и Хермана Хенри Уильяма Полинга, фармацевта. Полинг-старший умер, когда его сыну исполнилось 9 лет. Полинг с детства увлекался наукой. Вначале он собирал насекомых и минералы. В 13-летнем возрасте один из друзей Полинг приобщил его к химии, и будущий ученый начал ставить опыты. Делал он это дома, а посуду для опытов брал у матери на кухне. Лайнус посещал Вашингтонскую среднюю школу в Портленде, но не получил аттестата зрелости. Тем не менее, он записался в Орегонский государственный сельскохозяйственный колледж (позже он стал Орегонским государственным университетом) в Корваллисе, где изучал главным образом химическую технологию, химию и физику. Чтобы поддержать материально себя и мать, он подрабатывал мытьем посуды и сортировкой бумаги. Когда Полинг учился на предпоследнем курсе, его как на редкость одаренного студента приняли на работу ассистентом на кафедру количественного анализа. На последнем курсе он стал ассистентом по химии, механике и материалам. Получив в 1922 г. степень бакалавра естественных наук в области химической технологии, Полинг приступил к подготовке докторской диссертации по химии в Калифорнийском технологическом институте в Пасадене.

Полинг был первым в Калифорнийском технологическом институте, кто по окончании этого высшего учебного заведения сразу стал работать ассистентом, а затем преподавателем на кафедре химии. В 1925 г. ему была присуждена докторская степень по химии summa cum laude (с наивысшей похвалой. – лат .). В течение последующих двух лет он работал исследователем и был членом Национального научно-исследовательского совета при Калифорнийском технологическом институте. В 1927 г. П. получил звание ассистент-профессора, в 1929 – адъюнкт-профессора, а в 1931 г. – профессора химии.

Работая все эти годы исследователем, Полинг стал специалистом по рентгеновской кристаллографии – прохождению рентгеновских лучей через кристалл с образованием характерного рисунка, по которому можно судить об атомной структуре данного вещества. Применяя этот метод, Лайнус изучал природу химических связей в бензоле и других ароматических соединениях (соединениях, которые, как правило, содержат одно или несколько бензольных колец и обладают ароматичностью). Стипендия Гуггенхейма позволила ему провести учебный год за изучением квантовой механики у Арнольда Зоммерфельда в Мюнхене, в Цюрихе и у в Копенгагене. Созданной Шредингером в 1926 г. квантовой механике, которая была названа волновой механикой, и изложенному Вольфгангом Паули в 1925 г. принципу запрета предстояло оказать глубокое влияние на изучение химических связей.

В 1928 г. Полинг выдвинул свою теорию резонанса, или гибридизации, химических связей в ароматических соединениях, которая основывалась на почерпнутой из квантовой механики концепции электронных орбиталей. В более старой модели бензола, которая время от времени еще использовалась для удобства, три из шести химических связей (связывающих электронные пары) между смежными атомами углерода были одинарными связями, а остальные три – двойными. Одинарные и двойные связи чередовались в бензольном кольце. Таким образом, бензол мог обладать двумя возможными структурами в зависимости от того, какие связи были одинарными, а какие – двойными. Известно было, однако, что двойные связи короче, чем одинарные, а дифракция рентгеновских лучей показывала, что все связи в молекуле углерода имеют равную длину. Теория резонанса утверждала, что все связи между атомами углерода в бензольном кольце были промежуточными по характеру между одинарными и двойными связями. Согласно модели Полинга, бензольные кольца можно рассматривать как гибриды их возможных структур. Эта концепция оказалась чрезвычайно полезной для предсказания свойств ароматических соединений.

В течение последующих нескольких лет Лайнус продолжал изучать физико-химические свойства молекул, особенно связанных с резонансом. В 1934 г. он обратил внимание на биохимию, в частности на биохимию белков. Совместно с А.E. Мирски он сформулировал теорию строения и функции белка, вместе с Ч.Д. Корвеллом изучал влияние оксигенирования (насыщения кислородом) на магнитные свойства гемоглобина, кислородсодержащего белка в красных кровяных клетках.

Когда в 1936 г. умер Арту Нойес, Полинг был назначен деканом факультета химии и химической технологии и директором химических лабораторий Гейтса и Креллина в Калифорнийском технологическом институте. Находясь на этих административных должностях, он положил начало изучению атомной и молекулярной структуры белков и аминокислот (мономеров, из которых состоят белки) с применением рентгеновской кристаллографии, а в учебном 1937-1938 гг. был лектором по химии в Корнеллском университете в Итаке (штат Нью-Йорк).

В 1942 г. ему и его коллегам, получив первые искусственные антитела, удалось изменить химическую структуру некоторых содержащихся в крови белков, известных как глобулины. Антитела представляют собой молекулы глобулина, выработанные специальными клетками в ответ на вторжение в тело антигенов (чуждых веществ), таких, как вирусы, бактерии и токсины. Антитело сочетается с особым видом антигена, который стимулирует его образование. Полинг выдвинул верный постулат, что трехмерные структуры антигена и его антитела комплементарны и, таким образом, «несут ответственность» за образование комплекса антиген – антитело. В 1947 г. он и Джордж У. Бидл получили субсидию для проведения рассчитанных на пять лет исследований механизма, с помощью которого вирус полиомиелита разрушает нервные клетки. В течение следующего года Полинг занимал должность профессора Оксфордского университета.

Работа над серповидноклеточной анемией началась в 1949 г., когда он узнал, что красные кровяные клетки больных этой наследственной болезнью становятся серповидными только в венозной крови, где низок уровень содержания кислорода. На основе знания химии гемоглобина П. немедленно выдвинул предположение, что серповидная форма красных клеток вызывается генетическим дефектом в глубине клеточного гемоглобина. (Молекула гемоглобина состоит из железопорфирина, который называется гема, и белка глобина.) Это предположение – наглядное свидетельство удивительной научной интуиции, столь характерной для Полинга. Три года спустя ученому удалось доказать, что нормальный гемоглобин и гемоглобин, взятый у больных серповидноклеточной анемией, можно различать с помощью электрофореза, метода разделения различных белков в смеси. Сделанное открытие подтвердило убеждение П. в том, что причина аномалии кроется в белковой части молекулы.

В 1951 г. П. и Р.Б. Кори опубликовали первое законченное описание молекулярной структуры белков. Это был результат исследований, длившихся долгих 14 лет. Применяя методы рентгеновской кристаллографии для анализа белков в волосах, шерсти, мускулах, ногтях и других биологических тканях, они обнаружили, что цепи аминокислот в белке закручены одна вокруг другой таким образом, что образуют спираль. Это описание трехмерной структуры белков ознаменовало крупный прогресс в биохимии.

Но не все научные начинания Лайнуса оказывались успешными. В начале 50-х гг. он сосредоточил свое внимание на дезоксирибонуклеиновой кислоте (ДНК) – биологической молекуле, которая содержит генетический код. В 1953 г., когда ученые в разных странах мира пытались установить структуру ДНК, П. опубликовал статью, в которой описывал эту структуру как тройную спираль, что не соответствует действительности. Несколько месяцев спустя Фрэнсис Крик и Джеймс Д. Уотсон опубликовали свою ставшую знаменитой статью, в которой молекула ДНК описывалась как двойная спираль.

В 1954 г. Полингу была присуждена Нобелевская премия по химии «за исследование природы химической связи и ее применение для определения структуры соединений». В своей Нобелевской лекции Полинг предсказал, что будущие химики станут «опираться на новую структурную химию, в т. ч. на точно определенные геометрические взаимоотношения между атомами в молекулах и строгое применение новых структуральных принципов, и что благодаря этой технологии будет, достигнут значительный прогресс в решении проблем биологии и медицины с помощью химических методов».

Несмотря на то, что в юные годы, которые пришлись на первую мировую войну, Полинг был пацифистом, во время второй мировой войны ученый занимал официальный пост члена Национальной научно-исследовательской комиссии по обороне и работал над созданием нового ракетного топлива и поисками новых источников кислорода для подводных лодок и самолетов. В качестве сотрудника Управления научных исследований и развития он внес значительный вклад в разработку плазмозаменителей для переливания крови и для военных нужд. Однако вскоре после того, как США сбросили атомные бомбы на японские города Хиросиму и Нагасаки, Полинг начал кампанию против нового вида оружия и в 1945-1946 гг., являясь членом Комиссии по национальной безопасности, читал лекции об опасностях ядерной войны.

В 1946 г. он стал одним из основателей Чрезвычайного комитета ученых-атомщиков, учрежденного и 7 другими прославленными учеными с тем, чтобы добиваться запрещения испытаний ядерного оружия в атмосфере. Четыре года спустя гонка ядерных вооружений уже набрала скорость и Полинг выступил против решения своего правительства о создании водородной бомбы, призвав положить конец всем испытаниям ядерного оружия в атмосфере. В начале 50-х гг., когда и США, и СССР провели испытания водородных бомб и уровень радиоактивности в атмосфере повысился, он использовал свой немалый талант оратора, чтобы обнародовать возможные биологические и генетические последствия выпадения радиоактивных осадков. Озабоченность ученого потенциальной генетической опасностью отчасти объяснялась проводимыми им исследованиями молекулярных основ наследственных заболеваний. Полинг и 52 других нобелевских лауреата подписали в 1955 г. Лайнаускую декларацию, призывавшую положить конец гонке вооружений.

Когда в 1957 г. Полинг составил проект воззвания, в котором содержалось требование прекратить ядерные испытания, его подписало более 11 тыс. ученых из 49 стран мира, и среди них свыше 2 тыс. американцев. В январе 1958 г. Лайнус представил этот документ Дагу Хаммаршёльду, который был тогда генеральным секретарем ООН. Предпринятые им усилия внесли свой вклад в учреждение Пагуошского движения за научное сотрудничество и международную безопасность, первая конференция сторонников которого состоялась в 1957 г. в Пагуоше (провинция Новая Шотландия, Канада) и которому, в конечном счете, удалось способствовать подписанию договора о запрещении ядерных испытаний. Такая серьезная общественная и личная озабоченность по поводу опасности заражения атмосферы радиоактивными веществами привела к тому, что в 1958 г., несмотря на отсутствие какого бы то ни было договора, США, СССР и Великобритания добровольно прекратили испытания ядерного оружия в атмосфере.

Однако усилия Полинга, направленные на то, чтобы добиться запрета испытаний ядерного оружия в атмосфере, встречали не только поддержку, но и значительное сопротивление. Такие известные американские ученые, как Эдвард Теллер и Уиллард Ф. Либби, оба члены Комиссии по атомной энергии США, утверждали, что Полинг преувеличивает биологические последствия выпадения радиоактивных осадков. Он также наталкивался на политические препятствия из-за приписываемых ему просоветских симпатий. В начале 50-х гг. у ученого были трудности с получением паспорта (для выезда за рубеж. – Ред .), и он получил паспорт без всяких ограничений только после того, как был награжден Нобелевской премией.

Как это ни странно, но в тот же самый период Полинг подвергался нападкам и в Советском Союзе, поскольку его резонансная теория образования химических связей считалась противоречащей марксистскому учению. (После смерти Иосифа Сталина в 1953 г. эта теория была признана в советской науке.) его дважды (в 1955 и 1960 гг.) вызывали в подкомиссию по вопросам внутренней безопасности сената США, где ему задавали вопросы относительно его политических взглядов и политической деятельности. В обоих случаях он отрицал, что когда бы то ни было, являлся коммунистом или симпатизировал марксистским взглядам. Во втором же случае (в 1960 г.) он, рискуя вызвать обвинение в презрении к конгрессу, отказался назвать имена тех, кто помог ему собрать подписи под воззванием 1957 г. В конце концов, дело было прекращено.

В июне 1961 г. Полинг и его жена созвали конференцию в Осло (Норвегия) против распространения ядерного оружия. В сентябре того же года, несмотря на обращения П. к Никите Хрущеву, СССР возобновил испытания ядерного оружия в атмосфере, а на следующий год, в марте, это сделали США. Он начал вести дозиметрический контроль над уровнями радиоактивности и в октябре 1962 г. сделал достоянием гласности информацию, которая показывала, что из-за проводимых в предыдущем году испытаний уровень радиоактивности в атмосфере поднялся вдвое по сравнению с предшествующими 16 годами. Полинг также составил проект предлагаемого договора о запрещении таких испытаний. В июле 1963 г. США, СССР и Великобритания подписали договор о запрещении ядерных испытаний, в основе которого лежал проект П.

В 1963 г. Полинг был награжден Нобелевской премией мира 1962 г. В своей вступительной речи от имени Норвежского нобелевского комитета Гуннар Ян заявил, что Полинг «вел непрекращающуюся кампанию не только против испытаний ядерного оружия, не только против распространения этих видов вооружений, не только против самого их использования, но против любых военных действий как средства решения международных конфликтов». В своей Нобелевской лекции, названной «Наука и мир» («Science and Peace»), Полинг выразил надежду на то, что договор о запрещении ядерных испытаний положит «начало серии договоров, которые приведут к созданию нового мира, где возможность войны будет навсегда исключена».

В том же году, когда он получил свою вторую Нобелевскую премию, он вышел в отставку из Калифорнийского технологического института и стал профессором-исследователем в Центре изучения демократических институтов в Санта-Барбаре (штат Калифорния). Здесь он смог уделять больше времени проблемам международного разоружения. В 1967 г. Полинг также занял должность профессора химии в Калифорнийском университете (Сан-Диего), надеясь проводить больше времени за исследованиями в области молекулярной медицины. Спустя два года он ушел оттуда и стал профессором химии Стэнфордского университета в Пало-Альто (штат Калифорния). К этому времени он уже вышел в отставку из Центра изучения демократических институтов.

В конце 60-х гг. Лайнус заинтересовался биологическим воздействием витамина С. Ученый и его жена сами стали регулярно принимать этот витамин, Полинг же начал публично рекламировать его употребление для предотвращения простудных заболеваний. В монографии «Витамин С и простуда» («Vitamin C and the Common Cold»), которая вышла в 1971 г., он обобщил опубликованные в текущей печати практические свидетельства и теоретические выкладки в поддержку терапевтических свойств витамина С. В начале 70-х гг. Полинг также сформулировал теорию ортомолекулярной медицины, в которой подчеркивалось значение витаминов и аминокислот в поддержании оптимальной молекулярной среды для мозга. Эти теории, получившие в то время широкую известность, не нашли подтверждения в результатах последующих исследований и в значительной мере были отвергнуты специалистами по медицине и психиатрии. Полинг, однако, придерживается точки зрения, что основания их контраргументов далеко не безупречны.

В 1973 г. П. основал Научный медицинский институт Лайнуса Полинга в Пало-Альто. В течение первых двух лет он был его президентом, а затем стал там профессором. Он и его коллеги по институту продолжают проводить исследования терапевтических свойств витаминов, в частности возможности применения витамина С для лечения раковых заболеваний. В 1979 г. Полинг опубликовал книгу «Рак и витамин С» («Cancer and Vitamin С»), в которой утверждает, что прием в значительных дозах витамина С способствует продлению жизни и улучшению состояния больных определенными видами рака. Однако авторитетные исследователи раковых заболеваний не находят его аргументы убедительными.

В 1922 г. Лайнус женился на Аве Элен Миллер, одной из его студенток в Орегонском государственном сельскохозяйственном колледже. У супругов три сына и дочь. После смерти жены в 1981 г. Полинг живет в их загородном доме в Биг-Сюре (штат Калифорния).

Помимо двух Нобелевских премий, Полинг был удостоен многих наград. В их числе: награда за достижения в области чистой химии Американского химического общества (1931), медаль Дэви Лондонского королевского общества (1947), советская правительственная награда – международная Ленинская премия «За укрепление мира между народами» (1971), национальная медаль «За научные достижения» Национального научного фонда (1975), золотая медаль имени Ломоносова Академии наук СССР (1978), премия по химии американской Национальной академии наук (1979) и медаль Пристли Американского химического общества (1984). Ученому присвоены почетные степени Чикагского, Принстонского, Йельского, Оксфордского и Кембриджского университетов. Полинг состоит во многих профессиональных организациях. Это и американская Национальная академия наук, и Американская академия наук и искусств, а также научные общества или академии Германии, Великобритании, Бельгии, Швейцарии, Японии, Индии, Норвегии, Португалии, Франции, Австрии и СССР. Он был президентом Американского химического общества (1948) и Тихоокеанского отделения Американской ассоциации содействия развитию науки (1942...1945), а также вице-президентом Американского философского общества (1951...1954).

Материальный носитель

До начала 40-х годов главными "кандидатами" на роль материальных структур наследственности считались белки, макромолекулы большой молекулярной массы, состоящие из ограниченного разнообразия мономеров - аминокислот. Мономеры связаны между собой стандартными пептидными связями, а все разнообразие белков определяется составом и порядком боковых радикалов.

Сопоставимые данные для нуклеиновых кислот получили значительно позже, и это было связано с некоторыми драматическими обстоятельствами. Ключевую и противоречивую роль в выявлении мономеров, связей между ними, а также в формировании общих представлений о роли нуклеиновых кислот сыграл американский биохимик русского происхождения Ф.А.Левин.

В то же время Левин - автор так называемой "тетрануклеотидной гипотезы", основанной на ранних и достаточно неточных данных о молярных концентрациях оснований в нуклеиновых кислотах. В 1908 - 1909 гг. он и сотрудники показали, что нуклеиновые кислоты из тимуса теленка и дрожжей имеют равные молярные концентрации всех четырех нуклеотидов. Это дало основание предположить, что четыре разных нуклеотида связаны последовательно в стандартный тетрануклеотид, который многократно повторяется в структуре нуклеиновой кислоты. В более поздних вариантах гипотеза допускала высокую полимерность нуклеиновых кислот путем повторения тетрануклеотида, но, очевидно, исключала возможную комбинаторику нуклеотидов.

Таким образом, "стандартный тетрануклеотидный кирпич" (М ~ 1500) позволял строить только унылую, однообразную последовательность. В этом случае нуклеиновые кислоты не годились на роль материальной структуры генов. Однако большинство выдающихся биохимиков приняло эту гипотезу на веру, что надолго задержало развитие молекулярных представлений о генах.

Но в 40-е годы Э.Чаргафф и многие другие исследователи подвергли тетрануклеотидную гипотезу уничтожающей критике, а ее автор оказался "козлом отпущения" за свое заблуждение. По мнению историков науки Ф.Португала и Дж.Коэна, именно тетрануклеотидная гипотеза помешала Левину получить Нобелевскую премию за другие работы, которой он несомненно заслуживал. Умер Левин в 1940 г., когда уже началась война, и вопросы чистой науки оказались за пределами внимания большинства ученых.

Тем не менее к началу 40-х годов уже было ясно, что нуклеиновые кислоты (нынешние ДНК и РНК) могут быть высоко полимерны (М ~ 500 тыс. - 1 млн). В конце 40-х годов Чаргафф показал, что ДНК разного видового происхождения имеют разный состав нуклеотидов, а общая их эквимолярность не выполняется. Использовав новый метод хроматографии на бумаге, Чаргафф обнаружил, что между молярными концентрациями пуринов и пиримидинов имеются другие регулярные соотношения: A=T и G=C. И хотя он не объяснил эти свойства, стало совершенно ясно, что мономеры нуклеиновых кислот - не тетрануклеотиды, а четыре стандартных нуклеотида, у которых одинаковая сахаро-фосфатная часть, участвующая в образовании стандартных фосфо-диэфирных связей, и различные основания. Их комбинаторика и допускает огромное разнообразие вариантов.

Тем не менее, даже с учетом этих свойств, генетическую роль ДНК еще предстояло доказать. Это сделал в 1944 г. О.Эвери с сотрудниками. Еще в 1928 г. английский врач-инфекционист Ф.Гриффитс обнаружил, что пневмококки одного штамма (невирулентные) приобретают наследуемую вирулентность при контакте с лизатом инфекционных бактерий, убитых нагреванием (явление трансформации). Свыше 10 лет Эвери и сотрудники отрабатывали методы фракционирования лизата бактерий пока, наконец, не выделили активную фракцию, по физико-химическим свойствам совпадающую с ДНК. С одной стороны, это была сенсация, опровергавшая тетрануклеотидную гипотезу (ДНК обладала генетическими свойствами), с другой - интерпретация такой трансформации не была однозначной. ДНК могла быть либо генетическим материалом, который рекомбинирует с гомологичным геномом бактерии-реципиента, либо мутагеном, вызывающим мутации генов (тогда природа генов может быть другой), либо специфическим сигналом, переключающим функциональное состояние гена (этот вариант выявился позже). Дж.Ледерберг насчитал семь альтернативных гипотез о природе трансформации. Многие генетики не поняли фундаментального значения работы Эвери. Например, выдающийся цитолог А.Мирский, работавший в том же Рокфеллеровском институте, резко возражал против доказательств трансформирующей роли ДНК.

Тем не менее, значительная группа биохимиков, генетиков и физиков сосредоточилась на изучении химии, генетической роли и молекулярного строения ДНК. Дискуссии прекратились только после 1952 г., когда А.Херши и М.Чейз показали, что при заражении бактерии E.coli фагом T2 инфекционным началом является почти чистая ДНК фага 2. Эвери умер в 1955 г., не дождавшись своей Нобелевской премии, которой, несомненно, был достоин. В 1939 - 1940 гг. близкое открытие сделал С.М.Гершензон в Киеве, показав, что введение или скармливание дрозофиле чужеродной ДНК вызывает вспышку мутаций признаков крыла.

Двойная спираль ДНК

Следующее "одиночное касание", высекшее "искру гения", состоялось в английском Кембридже между двумя очень непохожими людьми. Осенью 1951 г. туда приехал Дж.Уотсон, только что защитивший докторскую диссертацию у С.Лурии в Университете штата Индиана (США). Он был членом "фаговой группы" М.Дельбрюка и находился под влиянием этой легендарной личности, а также книги Э.Шредингера "Что такое жизнь". Его "интерес к ДНК вырос из возникшего в колледже на последнем курсе желания узнать, что же такое ген".

Формально Уотсон получил стипендию для изучения методов рентгеноструктурного анализа белков в группе М.Перуца в Кавендишской лаборатории Кембриджского университета. Тогда в этой группе физик Ф.Крик работал над теорией дифракции рентгеновских лучей. Во время войны он занимался оборонными исследованиями в Военно-морском ведомстве. В 1946 г. под впечатлением книги Э.Шредингера и лекции Л.Полинга он решил заняться приложением физики в биологии.

Итак, Уотсон и Крик оказались в одной комнате. Позже Уотсон вспоминал: "После разговоров с Френсисом моя судьба была решена. Мы быстро поняли, что в биологии мы намереваемся идти одинаковым путем. Центральной проблемой биологии были ген и контролируемый им метаболизм. Главной задачей было понять репликацию гена и путь, которым гены контролируют синтез белков. Было очевидно, что приступить к решению этих проблем можно лишь после того, как станет ясной структура гена. А это значило выяснение структуры ДНК ".

"В лаборатории Макса Перуца. нашелся человек, который знал, что ДНК важнее, чем белки, - это было настоящей удачей .

Вот как Ф.Португал и Дж.Коэн характеризуют этот научный тандем:

"Контраст между Уотсоном и Криком мог показаться очень большим. Крику во время их встречи в 1951 г. было 35 лет, и он еще не имел докторской степени. Уотсону было 23 года, он получил свою докторскую степень необычно рано - в 22 года и был приглашен в члены фаговой группы. Крик был крупным и гениальным, Уотсон - тощим и угловатым. Но они имели много общего. Оба были одиночками, которые, тем не менее, не скрывали своих веских идей по многим вопросам. Оба имели выраженный интерес к открытию строения генетического материала. Но там, где из разных подходов - рентгеноструктурного анализа и генетики фагов - возникала их комплементарность, такой синтез вел к существенным результатам. В этом важном отношении Уотсон выполнял роль моста между информационной и структурной школой в молекулярной биологии ".

Чтобы понять причины успеха совместной работы Уотсона и Крика, надо учесть некоторые обстоятельства.

Во-первых, поблизости от Кембриджа, в Лондонском Кингс-Колледже, работали крупнейшие английские специалисты по рентгеноструктурному анализу ДНК, М.Уилкинс и Р.Франклин. Именно их экспериментальные данные Уотсон и Крик использовали для обоснования и проверки своей модели.

Во-вторых, существенную роль для молодых исследователей играл дух конкуренции с крупнейшим американским физико-химиком Лайнусом Полингом. В то время звезда Полинга достигла своего зенита: он был автором блестящей классической книги "Природа химической связи" (1939); вместе с Г.Кори теоретически, с помощью молекулярных стереомоделей, предсказали существование альфа-спиралей в глобулярных белках. С тех пор идея спирали как бы "висела в воздухе" применительно к любым макромолекулам. Вот мнение Дж.Уотсона: "Спирали в то время были в центре внимания лаборатории, главным образом из-за альфа-спирали Полинга". <...> Через несколько дней после моего (Уотсона. - В.Р. ) приезда мы уже знали, что нам следует предпринять: пойти по пути Полинга и одержать над ним победу его же оружием ". Но и Полинг активно обдумывал варианты молекулярных моделей ДНК.

В-третьих, к началу работы Крик уже имел опыт разработки теории диффракции рентгеновых лучей на спиралях, что позволяло ему мгновенно отыскивать признаки спиральности на фотографиях диффракции рентгеновских лучей. Иначе говоря, он был подготовлен к поиску спиралей.

В-четвертых, Уотсон и Крик понимали, что ставки очень высоки. Речь шла о молекулярной структуре генов - ключевых объектов биологической организации. Это требование налагало на любую модель ряд очевидных требований. Следовало в молекулярных терминах объяснить, как гены выполняют свои основные функции: самоудвоение, мутирование, запись информации, контроль над синтезом белков и др.

В частности, следовало понять, каков механизм самоудвоения (репликации) ДНК. Генетическая традиция, основанная на микрофотографиях поведения хромосом в митозе и мейозе, постулировала идею гомологичного узнавания подобных генов и сегментов хромосом. Уже в модели Н.К.Кольцова репликация хромосом рисуется как гомологичное выстраивание сегментов вдоль матрицы. Для этого требуются определенные молекулярные силы и отношения. Поддерживая этот подход, известный немецкий физик-теоретик П.Иордан предположил, что помимо известного физико-химического "близкодействия" (Ван-дер-Ваальсовы силы, солевые мостики, водородные связи и др.) существуют пока неизвестные квантовые резонансные "силы дальнодействия", которые способны притягивать гомологичные структуры друг к другу.

Против этого резко возражал Полинг. Весь опыт структурной химии и квантовой физики подсказывал ему, что воображаемые "силы дальнодействия" - это фикция. Что касается "сил близкодействия", то они требуют наиболее тесного контакта между взаимодействующими молекулярными поверхностями. Ясно, что этому отвечал широко известный к тому времени принцип взаимодействия антиген - антитело, фермент - субстрат и др., т.е. принцип "ключ - замок". Иначе говоря, тесно взаимодействующие поверхности должны быть взаимно комплементарны. В 1940 г. Полинг и Дельбрюк изложили свои аргументы против Иордана в журнале "Science".

Мозговой штурм продолжался 18 месяцев. Он сопровождался довольно сложными отношениями между его участниками. Так, Уотсон и Крик встречали решительный отпор со стороны Франклин, хотя именно ее данные по В-форме ДНК дали ключевой импульс для разработки модели и лучше всего соответствовали результатам моделирования. Авторы перебрали многие десятки возможных спиральных структур, но все они имели какие-нибудь недостатки.

Полинг тоже исследовал различные варианты спиральных структур, но он остановился на трехцепочечных спиралях, т.е. пошел по неправильному пути. Отсутствие непосредственных контактов Уотсона - Крика и Полинга позволило первым совершить "интеллектуальный рывок". Даже случай способствовал этому. Полинг неоднократно просил прислать ему рентгенограммы диффракции, но Уилкинс не торопился. А когда Полинг собрался на конференцию в Лондон, чтобы посетить Кембридж и увидеть все воочию, Госдепартамент США не выдал ему визу (!). Виной тому была активная пацифистская деятельность Полинга против ядерных испытаний.

В начале 1953 г. Уотсон и Крик познакомились (полулегально!) с последними данными Франклин по диффракции рентгеновских лучей на препаратах В-формы ДНК в условиях высокой влажности. Они сразу узнали признаки спирали с шагом 34 A и диаметром 20 A . Для проверки срочно нужны были стереомодели, однако мастерские задерживали изготовление металлических деталей, моделирующих пурины и пиримидины. Тогда Уотсон нарезал их из толстого картона и стал раскладывать на плоскости стола. Тут его и настигло озарение. Впоследствии он вспоминал: "И вдруг я заметил, что пара аденин - тимин, соединенная двумя водородными связями, имеет точно такую же форму, как и пара гуанин - цитозин, тоже соединенная, по меньшей мере, двумя водородными связями. <...> Если пурин всегда соединяется водородными связями с пиримидином, то две нерегулярные последовательности оснований прекрасно укладываются регулярно в центре спирали. При этом аденин всегда должен спариваться только с тимином, а гуанин только с цитозином, и правила Чаргаффа, таким образом, неожиданно оказывались следствием двуспиральной структуры ДНК. А главное, такая двойная спираль подсказывала гораздо более приемлемую схему репликации. Последовательности оснований двух переплетенных цепей комплементарны друг другу. <...> Поэтому было очень легко представить себе, как одна цепь может стать матрицей для другой ".

В течение ближайших дней была построена стерео-модель двуцепочечной ДНК. Она оказалась правовинтовой спиралью с противоположной ориентацией цепей.

"Уже через два дня Морис (Уилкинс. - В.Р. ) позвонил нам и сказал, что, как убедились они с Рози (Франклин. - В.Р. ) рентгенографические данные явно подтверждают существование двойной спирали ".

"Полинг впервые услышал о двойной спирали от Дельбрюка. Полинг, как и Дельбрюк, был сразу же покорен. ... Открытие двойной спирали принесло нам не только радость, но и облегчение. Это было невероятно интересно и сразу позволило нам сделать важное предположение о механизме дупликации генов ".

Модель Уотсона - Крика благодаря своим неоспоримым достоинствам признали быстро и повсеместно. Она полностью выдержала также испытание временем. Одним ударом она разрешила множество трудных проблем; прежде всего объяснила правила Чаргаффа и рентгеноструктурные данные. Сам Чаргафф, который весьма скептически относился к тандему Уотсон - Крик, не смог ничего возразить по существу, его критика скорее напоминала брюзжание: "...мне кажется, что то огромное искусство и изобретательность, которые были затрачены на конструирование различных малоподходящих моделей, по существу пропали даром ".

Модель утвердила матричный принцип, основанный на парной комплементарности нуклеотидов (т.е. на принципе "близкодействия"), из чего вытекала простая и естественная схема матричной репликации. Ясно, что в этом случае копирование отдельной матрицы можно произвести только в два этапа:

позитив --> негатив --> позитив.

Однако двуцепочечность спирали решает и эту проблему. Двойная цепь способна к точному копированию в один этап благодаря двум сопряженным матричным процессам, т.е. обладает вожделенным генетическим свойством - удвоением путем контактного гомологичного выстраивания сегментов на матрице:

позитив - негатив-->позитив – негатив + позитив – негатив

Наконец, модель как бы открыла путь для понимания других фундаментальных генетических процессов и свойств. Оказалось, что генетическое разнообразие можно свести к вариантам порядка мономеров, как предполагали Кольцов, Дельбрюк, Шредингер и многие другие. Тогда сохранение порядка обеспечивает консервативность наследственности. Двойная цепь ДНК, где стандартный сахаро-фосфатный костяк расположен снаружи, а вся специфичность (водородные связи оснований) спрятана внутри и менее доступна для воздействий, прекрасно соответствовала ожиданиям генетиков. Изменения же порядка мономеров, очевидно, должны были вызывать наследственные изменения, т.е. мутации.

В 1962 г. Дж.Уотсон, Ф.Крик и М.Уилкинс получили Нобелевскую премию по физиологии и медицине за установление молекулярной структуры нуклеиновых кислот и ее роли в передаче информации в живой материи. К сожалению, Р.Франклин не дождалась такого признания, она умерла в 1958 г.

Оценим полученные результаты с точки зрения информационно-кибернетического подхода. Материальный носитель генетической информации найден - это нуклеиновые кислоты (ДНК и, как стало ясно позже, РНК). Определен также промежуточный получатель генетической информации - белки. Те и другие имеют ряд общих особенностей: это линейные полимеры, построенные из небольшого разнообразия мономеров - нуклеотидов и аминокислот. В обоих случаях у мономеров есть стандартная, универсальная часть, позволяющая им соединяться в последовательности произвольной длины и порядка. Кроме этого, мономеры имеют специфические боковые группы (основания, радикалы аминокислот), порядок которых определяет функциональные свойства соответствующих последовательностей. Разнообразие перестановок астрономическое. Между мономерами полинуклеотидов существуют особые парные отношения комплементарности (A - T, G - C), позволяющие полинуклеотидам выполнять матричные функции.

Ясно, что ситуация весьма напоминает лингвистические и другие информационные системы, где информация кодируется при помощи порядка символов. Налицо алфавиты (мономеры), тексты (последовательности), матричный принцип копирования (комплементарность). Можно ожидать, что существуют некие правила кодирования, которые используются клеткой.

"Крик и Гам"

Этим словесным каламбуром Н.В.Тимофеев-Ресовский охарактеризовал события, последовавшие за расшифровкой структуры ДНК. Уотсон и Крик, разумеется, хорошо понимали генетико-информационный смысл и значение своей модели. Недаром Уотсон в своей книге сообщает: "Буквально все имевшиеся тогда факты убеждали меня в том, что ДНК служит матрицей, на которой образуются цепочки РНК. В свою очередь, цепочки РНК были вполне вероятным кандидатом на роль матриц для синтеза белка. <...> Идея бессмертия генов была похожа на правду, и я повесил на стену над своим столом листок с надписью

ДНК --> РНК --> Белок .

Стрелки обозначают не химические превращения, а перенос генетической информации... "

В 1958 г. Крик сформулировал этот принцип как "центральную догму" молекулярной генетики.

Однако вскоре после публикации модели в бой вступила неожиданная и свежая сила. Это был крупнейший физик-теоретик Г.А.Гамов (в английской транскрипции Дж.Эн. Геймов). В конце 20-х - начале 30-х годов Гамов был гордостью молодой советской теоретической физики. Его, выпускника и аспиранта Ленинградского университета, друга Л.Д.Ландау, послали за границу в Геттинген (Германия) к М.Борну, а затем в Копенгаген (Дания) к Н.Бору для научной стажировки. Там он выполнил ряд теоретических работ высочайшего класса и был признан одним из самых обещающих молодых физиков Европы. Интересно, что одна из его статей в 1930 г. была опубликована совместно с молодым немецким физиком-теоретиком Дельбрюком. А в 1932 г., когда Гамова не выпустили за границу, его доклад Сольвеевскому конгрессу представил его друг Дельбрюк.

В 1932 г. по представлению В.А.Вернадского и двух других академиков Гамова избрали член-корреспондентом АН СССР. Ему было 28 лет, его воспевали поэты:

"...советский парень Гамов <...> уже до атома добрался лиходей "

(Д.Бедный).

Но в 1933 г., выехав на очередной Сольвеевский конгресс, Гамов не дождался продления командировки и не вернулся, став невозвращенцем. За этот большой грех его отлучили от Академии наук, от Родины. И посмертно восстановили только в 1990 г.

Гамову принадлежали два крупнейших открытия: теория альфа-распада и космологическая теория "горячей Вселенной" - работы нобелевского уровня. Третьим своим основным достижением Гамов считал постановку проблемы генетического кода.

Вот как сам Гамов описывал этот момент: "Прочитав в "Nature" в мае 1953 г. статью Уотсона и Крика, которая объясняла, как наследственная информация хранится в молекулах ДНК в форме последовательности четырех видов простых атомных групп, известных как "основания" (аденин, гуанин, тимин и цитозин), я задался вопросом, как эта информация переводится в последовательность двадцати аминокислот, которые образуют молекулы протеина. Простая идея, которая пришла мне в голову, состояла в том, что можно получить 20 из 4 подсчетом числа всех возможных триплетов, образующихся из четырех различных сущностей. Возьмем, например, колоду игральных карт, в которой мы обращаем внимание только на масть карты. Сколько триплетов одного и того же вида можно получить? Четыре, конечно: трое червей, трое бубен, трое пик и трое треф. Сколько триплетов с двумя картами одной и той же масти и одной другой? Пусть мы имеем четыре выбора для третьей карты. Поэтому мы имеем 4x3 = 12 возможностей. В дополнение мы имеем четыре триплета со всеми тремя различными картами. Итак, 4+12+4=20, а это и есть точное число аминокислот, которое мы хотели получить".

Таким образом, Гамов первым сформулировал проблему генетического кода. Генетическая информация записана в полинуклеотидах в виде последовательности символов четырех типов: A, T, G и C. Затем она перекодируется в последовательность 20 типов (аминокислот). Кодирующие группы символов могут быть только триплетными. Правила соответствия триплетных групп нуклеотидных символов (в дальнейшем названных кодонами) и символов аминокислот образуют генетический код. Главная задача - расшифровать этот код, в том числе - объяснить происхождение числа 20, имея в наличии 64 триплета.

Чтобы понять такой поворот мысли, надо учесть некоторые обстоятельства.

Во-первых, Гамов сравнил последовательность нуклеотидов с длинным числом, записанным в четверичной системе счета. В шутку он назвал его "звериным числом", имея в виду религиозную легенду из "Апокалипсиса", где имя антихриста ("зверя из бездны") скрыто под неизвестным числом. Расшифровка "звериного числа" необходима для победы над зверем. Кроме того, 20 - число аминокислот - он назвал "магическим числом", предполагая, что объяснить его из внутренней структуры кода - это и значит решить проблему.

Первая статья Гамова и Томкинса была послана в "Proceedings of the National Academy of Sciences of the United States of America", и отвергнута редакцией, поскольку Томкинс - это мифический персонаж популярных книг Гамова, а не реальное лицо. Эта статья вышла в свет в 1954 г. в Докладах Датской академии наук в Копенгагене от имени одного Гамова.

Во-вторых, летом 1953 г. Уотсон и Крик составили стандартный список из 20 аминокислот, непосредственно участвующих в синтезе белков, а вторичные их производные исключили. Впоследствии этот список был канонизирован.

В-третьих, Гамов очень непринужденно использовал карточную терминологию. Чего стоят хотя бы такие пассажи: "Возьмем, например, колоду игральных карт... " или "Допустим, мы играем в "упрощенный покер..." и далее по тексту. Образ оказался очень точным. Действительно, имеем четыре масти - две черных с ножками (пурины) и две красных без ножек (пиримидины). Последовательность нуклеотидов можно представить в до боли знакомом виде.

Природа как бы играет с теоретиком в "упрощенный покер", игра азартная, а выигрыш - крупнейшее открытие XX века. Ясно, что души теоретиков дрогнули! Сбывались предсказания Шредингера! Интерес к проблеме стремительно достиг апогея. Начался оптимистический этап в изучении генетического кода.

В-четвертых, Гамов попытался использовать для решения проблемы генетического кода методы дешифровки шпионских кодов, в которых имел некоторый опыт. Вначале он предложил гипотезу о "перекрывающемся ромбическом коде", когда можно было проследить за определенными закономерностями в структуре известных полипептидов. В своей автобиографии Гамов писал: "...работа была столь же трудна, как расшифровка секретного военного кода на основе только двух коротких посланий, добытых шпионами. Так как в то время я (Гамов. - В.Р. ) был консультантом в Военно-морском министерстве Соединенных Штатов в Вашингтоне, я пошел к адмиралу, под командованием которого находился, и спросил, можно ли поручить сверхсекретной криптографической группе расшифровку японского кода. В результате в моем отделе Университета им.Дж.Вашингтона появились три человека...

Я поставил перед ними задачу, и через несколько недель они сообщили мне, что она не имеет решения. То же заключение было получено моими друзьями-биологами: Мартинасом Ичасом, уроженцем Литвы, и Сиднеем Бреннером, уроженцем Южной Африки. Это исключило возможность перекрывающегося кода... "

В целом такая же судьба постигла и другие гипотезы. Гамов и Ичас предложили гипотезу "комбинаторного" кода, где все триплеты одинакового состава считались синонимами; 64 триплета образовали 20 групп (магическое число!); код был вырожден, триплеты в тексте не перекрывались. Очень похоже на правду! Но и этот код был забракован.

Крик, Гриффитс (племянник открывателя трансформации) и Л.Орджел предложили идею "кода без запятых", когда триплеты в тексте не отделены какими-либо знаками, но считываются единственным образом: кодирующие - 20 гетеротриплетов, а все их циклические перестановки (40) - некодирующие. Четыре гомотриплета в этом случае - тоже некодирующие. Этот вариант также не подтвердился, хотя сама проблема "кодов без запятых" исследуется математиками до сих пор.

В этом умственном состязании участвовали многие выдающиеся математики, физики, химики, инженеры, а также - научная молодежь. Однако, несмотря на остроумие многих предложений, все они оказались неверными.

"Природа хитра... " - заключил Гамов через 10 лет.

Оптимистический этап изучения генетического кода закончился. Наступило время экспериментального решения, которое в итоге оказалось очень успешным и совершенно иным. Имя Гамова почти исчезло из научной литературы по молекулярной биологии. В 1968 г. он умер.

Значение работ Гамова было очень точно сформулировано Криком: "Важность работы Гамова состояла в том, что это была действительно абстрактная теория кодирования, которая не была перегружена массой необязательных химических деталей... " Иначе говоря, это был информационно-кибернетический подход в чистом виде, который позднее полностью себя оправдал при разработке теории молекулярно-генетических систем управления и генетического языка.

Молекулярные основы жизни оказались в центре научных интересов Л. Полинга. Вместе со своими сотрудниками Л. Полинг, выполнил ряд блестящих исследований по структуре белка и установил, что заболевание серповидно-клеточной анемией связано с образованием в эритроцитах человека аномального гемоглобина. Серповидно-клеточная анемия была названа Л. Полингом "Молекулярной болезнью". По мнению исследователя, изменение структуры и функции макромолекул или недостаток физиологически активных молекул в организме могут служить причиной расстройства здоровья и ряда заболеваний человека. В связи с этим понятен интерес Л. Полинга к проблемам заместительной терапии, в частности к витаминотерапии, направленной на концепцию дефицита в организме соединений, обеспечивающих оптимальный уровень физиологических процессов. С полным основанием к числу важнейших активаторов жизненных процессов и средств, повышающих устойчивость организма к простудным и инфекционным заболеваниям, относит Полинг витамин С

Человек и другие мутанты

Передо мной аптечный пузырек с этикеткой: "Аскорбиновая кислота 0,05 г. Детям 1 шт., взрослым 2 - 3 шт. ". Сверяюсь с таблицами...

Чтобы жить дольше и чувствовать себя лучше, таких желтеньких таблеток нужно глотать не менее двадцати в день, а лучше сразу пятьдесят или сто.

Бред какой-то. Однако Лайнуса Полинга, одного из отцов современной биохимии, открывателя белковой альфа-спирали, я привыкла уважать. Как говорил К.С.Льюис, если человек, сделавший невероятное заявление, до этого был разумен и правдив, мы не имеем права сразу назвать его лжецом или дураком. Надо, по крайней мере, выслушать его аргументы.

Все знают, что некоторые вещества, необходимые человеку, не синтезируются в организме, а поступают извне. В первую очередь это витамины и незаменимые аминокислоты, важнейшие компоненты полноценного питания (не в кризис будь сказано). Но мало кто задает себе вопрос: как получилось, что более десятка абсолютно необходимых веществ в нашем организме не синтезируется? Живут ведь лишайники и низшие грибы на минимуме органики и все необходимое создают в собственной биохимической кухне. Почему у нас так не выходит?

Вещества, которые добываются во внешней среде (а значит, могут поступать нерегулярно или совсем пропасть), вряд ли заняли бы важные "посты" в метаболизме. Вероятно, наши предки умели синтезировать и витамины, и все аминокислоты. Позднее гены, кодирующие нужные ферменты, были испорчены мутациями, но мутанты не погибали, если находили пищу, которая восполняла дефицит. Они даже получали преимущество перед немутантной родней: переваривание пищи и удаление отходов требует меньше энергии, чем синтез полезного вещества de novo. Неприятности начинались только при перемене рациона...

Очевидно, что-то подобное происходило и с другими видами. Кроме людей и человекообразных обезьян, аскорбиновую кислоту не умеют синтезировать и другие исследованные приматы (например, беличья обезьяна, макака-резус), морские свинки, некоторые летучие мыши, 15 видов птиц. А у многих других животных (в том числе у крыс, мышей, коров, коз, кошек и собак) с аскорбиновой кислотой все в порядке.

Интересно, что и среди морских свинок, и среди людей встречаются индивидуумы, которые неплохо обходятся без аскорбинки или нуждаются в гораздо меньших ее количествах. Самый знаменитый из таких людей - Антонио Пифагегга, спутник и хронист Магеллана. В его корабельном журнале отмечено, что во время путешествия на флагманском корабле "Тринидад" 25 человек из 30 заболело цингой, сам же Пифагегга, "благодарение Богу, не испытал такого недуга". Современные опыты с добровольцами также показали, что бывают люди с уменьшенной потребностью в витамине С: по долгу не едят ни фруктов, ни зелени и хорошо себя чувствуют. Возможно, в их генах произошли исправления, вернувшие активность, или же появились другие мутации, позволяющие более полно усваивать витамин С из пищи. Но пока запомним главное: потребность в аскорбиновой кислоте индивидуальна.


Рис.1

Превращение аскорбиновой кислоты в дегидроаскорбат необходимо для нормального протекания некоторых важнейших клеточных реакций. Действие витамина С как стимулятора иммунной системы еще не до конца изучено, но сам факт стимуляции не подлежит сомнению

Немного биохимии

Зачем вообще нужно это незаменимое вещество? Основная роль аскорбиновой кислоты (точнее, аскорбат-иона, поскольку в нашей внутренней среде эта кислота диссоциирует) - участие в гидроксилировании биомолекул (рис.1). Во многих случаях для того, чтобы фермент присоединил к молекуле ОН-группу, одновременно должно произойти окисление аскорбат-иона до дегидроаскорбата. (То есть витамин С работает не каталитически, а расходуется, как и другие реагенты.)

Важнейшая реакция, которую обеспечивает витамин С, - синтез коллагена. Из этого белка, по сути, сплетено наше тело. Коллагеновые тяжи и сетки формируют соединительные ткани, коллаген содержится в коже, костях и зубах, в стенках сосудов и сердца, в стекловидном теле глаз. А чтобы вся эта арматура могла собраться из белка-предшественника, проколлагена, определенные аминокислоты в его цепочках (пролин и лизин) должны получить ОН-группы. Когда аскорбинки не хватает, наблюдается дефицит коллагена: прекращается рост организма, обновление стареющих тканей, заживление ран. Как следствие - цинготные язвы, выпадение зубов, повреждения стенок сосудов и прочие страшные симптомы.

Другая реакция, в которой участвует аскорбат, превращение лизина в карнитин, протекает в мышцах, а сам карнитин необходим для мышечных сокращений. Отсюда усталость и слабость при С-авитаминозах. Кроме того, организм использует гидроксилирующее действие аскорбата, чтобы превращать вредные соединения в безвредные. Так, витамин С очень неплохо способствует выведению холестерина из организма: чем больше витамина принимает человек, тем быстрее холестерин превращается в желчные кислоты. Сходным образом быстрее выводятся и бактериальные токсины.

С обратным процессом - восстановлением аскорбата из дегидроаскорбата - по-видимому, связано действие витаминов-синергистов С (то есть усиливающих эффект от его приема): многие из этих витаминов, как, например, Е, обладают восстановительными свойствами. Интересно, что восстановление аскорбата из полудегидроаскорбата тоже вовлечено в очень важный процесс: синтез дофамина, норадреналина и адреналина из тирозина.

Наконец, витамин С вызывает физиологические эффекты, механизм которых еще не раскрыт до конца, но наличие их четко продемонстрировано. Самый известный из них - стимуляция иммунной системы. В усиление иммунного ответа вносит вклад и увеличение числа лимфоцитов, и быстрейшее перемещение фагоцитов к месту инфекции (если инфекция локальна), и некоторые другие факторы. Показано, что в организме больного при регулярных приемах витамина С повышается выработка интерферона.

От рака до сенной лихорадки

Из сказанного в предыдущей главе легко вычислить, какие болезни должен предотвращать витамин С. Про цингу мы говорить не будем, поскольку надеемся, что нашим читателям она не угрожает. (Хотя даже в развитых странах иногда болеют цингой. Причина, как правило, - не отсутствие денег на фрукты, а лень и равнодушие больного. Апельсины, конечно, дорогое удовольствие, но смородина летом и квашеная капуста зимой никого еще не разорили.)

Однако цинга - экстремальный случай авитаминоза С. Потребность в этом витамине возрастает и во многих других случаях. Усиление иммунного ответа и активный синтез коллагена - это и заживление ран и ожогов, и послеоперационная реабилитация, и торможение роста злокачественных опухолей. Как известно, опухоли, чтобы расти, выделяют в межклеточное пространство фермент гиалуронидазу, который "разрыхляет" окружающие ткани. Ускорив синтез коллагена, организм мог бы противодействовать этому разбойному нападению, локализовать опухоль и, может быть, даже задушить ее в коллагеновых сетях.

Разумеется, простое, и общедоступное средство от рака не внушает доверия. Но надо подчеркнуть, что сам Полинг никогда не призывал онкологических больных заменить все виды терапии ударными дозами аскорбиновой кислоты, а предлагал применять и то, и другое. А не испробовать средство, которое теоретически может помочь, было бы преступно. Еще в 70-е годы Полинг и шотландский медик Айвен Камерон провели несколько серий экспериментов в клинике "Вейл оф Левен" в Лох-Ломондсайде. Результаты были настолько впечатляющими, что в скором времени Камерон перестал выделять среди своих пациентов "контрольную группу" - счел безнравственным ради чистоты эксперимента лишать людей лекарства, которое доказало свою пригодность (рис.2) .


Рис.2 Действие сверхдоз аскорбиновой кислоты при восьми видах онкологических заболеваний.

В контрольной группе (она показана гладкой линией) спати не удалось никого, а среди пациентов Полинга и Камерона есть выздоровевшие

Про лечение гриппа и простуды "по Полингу" знают все. Регулярный прием больших доз аскорбинки снижает заболеваемость. Сверхдозы при первых симптомах предотвращают болезнь, а сверхдозы, принятые с опозданием, облегчают ее течение. С этими положениями Полинга уже никто всерьез и не спорит. Споры идут лишь о том, на сколько процентов и при каких условиях приема снижается процент заболевших и ускоряется выздоровление. (Об этом мы еще поговорим.) Снижение температуры после приема витамина С вызывается его противовоспалительным эффектом - угнетением синтеза специфических сигнальных веществ, простагландинов. (Так что жертвам сенной лихорадки и прочим аллергикам аскорбинка тоже может быть полезна.)

Подобным образом действуют многие антигистаминные средства, например аспирин. С одним "но": синтез одного из простагландинов, а именно PGE1, аскорбиновая кислота не угнетает, а стимулирует. Между тем именно он повышает специфический иммунитет

Суточная доза по Минздраву и по горилле

Словом, в том, что витамин С полезен для здоровья, не сомневаются даже самые непримиримые противники Полинга. Яростные споры на протяжении тридцати с лишним лет идут только о количестве, в котором его надо принимать.

Прежде всего, откуда взялись общепринятые нормы - суточные дозы витамина С, которые фигурируют в энциклопедиях и справочниках? Ежедневная норма для взрослого мужчины, рекомендуемая Академией наук США, - 60 мг. Наши нормы варьируют в зависимости от пола, возраста и профессии человека: 60 - 110 мг для мужчин и 55 - 80 для женщин. При этих и больших дозах не бывает ни цинги, ни выраженного гиповитаминоза (утомляемости, кровоточивости десен). По данным статистики, у людей, потребляющих не менее 50 мг витамина С, признаки старости проявляются позже на 10 лет, чем у тех, чье потребление не дотягивает до этого минимума (зависимость тут не плавная, а именно скачкообразная).

Однако минимальная и оптимальная доза - не одно и то же, и, если человек не болен цингой, это не означает, что он совершенно здоров. Мы, несчастные мутанты, неспособные обеспечить себя этим жизненно важным веществом, должны быть рады любому его количеству. Но сколько витамина С нужно для полного счастья?

Содержание аскорбинки в организме (как и других веществ, необходимых всем органам и тканям) часто выражают в миллиграмах на единицу веса животного. В организме крысы синтезируется 26 - 58 мг аскорбиновой кислоты на килограмм. (Таких больших крыс, к счастью, не бывает, но в килограммах удобнее сравнивать данные по разным видам.) Если пересчитать на средний вес человека (70 кг), это даст 1,8 - 4,1 г - по порядку величины ближе к Полингу, чем к официальным нормам! Сходные данные получены и для других животных.

Одним из самых известных американских химиков является Лайнус Полинг. Биография его интересует не только жителей США, но и людей по всему миру. Неудивительно, ведь он исследовал витамины - столь популярные сегодня биологически активные добавки. И нужно сказать, Лайнус Карл Полинг пришел к интересным результатам. Именно об этом ученом, ставшим лауреатом двух Нобелевских премий, мы и поговорим сегодня.

Происхождение и детство Лайнуса Полинга

Лайнус Полинг, фото и биография которого представлены в статье, родился в Портленде 28 февраля 1901 г. Отцом мальчика был фармацевт (на фото ниже), а его мать - домохозяйкой. Когда Лайнусу исполнилось 9 лет, отец его умер. Из-за этого семье пришлось трудно в материальном плане.

Лайнус рос замкнутым и задумчивым ребенком. Он мог долго наблюдать за насекомыми, однако особенно Полинга привлекали минералы. Его завораживал и манил мир цветных камней. Эта страсть к кристаллам проявлялась порой и во взрослой жизни: ученый изучил несколько минералов, исходя из теории, которую он создал.

В возрасте 13 лет Полинг впервые побывал в химической лаборатории. То, что он увидел там, произвело на него большое впечатление. Лайнус решил немедленно заняться опытами. Он позаимствовал "химическую" посуду на кухне у своей матери, а его собственная комната стала местом для изысканий.

Обучение в колледже

Полинг так и не окончил среднюю школу, что не помешало ему поступить в Орегонский сельскохозяйственный колледж, преобразованный позже в Орегонский университет. Во время обучения Лайнус всерьез увлекся А вечерами и ночами ему приходилось добывать средства к существованию. Полинг работал в ресторане мойщиком посуды, а также сортировал бумагу в типографии.

Лайнус учился блестяще. Вундеркинда заметили преподаватели и на предпоследнем курсе предложили ему стать ассистентом. Так Полинг начал работать на кафедре количественного анализа. Спустя год он стал ассистентом по механике, химии и материалам.

Защита докторской диссертации, начало карьеры ученого

Лайнус Полинг в 1922 году стал бакалавром естественных наук (химическая технология). Для работы над докторской диссертацией его пригласили в Калифорнийский технологический институт, находящийся в Пасадене. Он блестяще защитил работу в 1925 году.

Молодой ученый начал делать карьеру в технологическом институте. Он стал ассистент-профессором уже в 1927 году, адъюнкт-профессором - в 1929 г. В 1931 году Полинг уже являлся профессором химии.

Изучение рентгеновской кристаллографии

За это время он приобрел важные навыки в области рентгеновской кристаллографии. Лайнус с легкостью читал рентгенограммы, будто мог наблюдать атомную структуру веществ своими собственными глазами. Эти знания приблизили ученого к природе химической связи - основной области исследования на всю оставшуюся жизнь. Он поехал в Европу, где посетил известных ученых: в Мюнхене - А. Зоммерфельда, в Цюрихе - в Копенгагене - Н. Бора.

Теория гибридизации (резонанса)

В 1928 году Лайнус выдвинул свою теорию гибридизации (по-другому - теорию резонанса). Это был настоящий прорыв в структурной химии. В это время все еще нерешенной оставалась проблема отражения строения и свойств соединения в химической формуле. Несмотря на то что ученые договорились использовать черточку для обозначения валентной связи, возникало множество неясностей. Дело в том, что на деле все оказалось сложнее нарисованных на бумаге схем.

Вскоре понадобились дополнительные обозначения. В частности, если связь была полярна, это обозначалось дополнительной стрелкой; если же она была ионной - над атомами дополнительно ставили минусы и плюсы. Однако и это не сильно помогало. Выходило, что для адекватного изображения свойств и строения множества молекул, особенно сложных, следовало прибегать уже к нескольким структурным формулам. В частности для бензола необходимо было целых пять. Так как каждую рассматривали отдельно, ни одна из них не могла точно описать свойства и строение этого ароматического соединения.

Предложенная Полингом идея заключалась в том, что молекула является результатом резонанса, то есть наложения друг на друга нескольких структур. При этом каждая из этих структур описывает различные особенности химических свойств и строения молекулы.

В 1939 году появился труд Лайнуса "Природа химической связи". Ученый применил квантовую теорию для решения различных проблем, стоявших перед наукой. Это позволило ему объяснить множество разрозненных фактов с единых теоретических позиций.

Новые открытия

Лайнус Полинг во второй половине 1930-х годов исследовал строение молекул на основании теории резонанса. Его заинтересовали также антитела, в частности способность их обеспечивать иммунитет. Ученый сделал целый ряд открытий в области вирусологии, иммунологии и биохимии. Например, он изучил молекулу гемоглобина. Лайнус Полинг в 1951 году издал первое описание трехмерной молекулярной структуры белков (в соавторстве с Р. Корном). Оно было получено на основе данных рентгеновской кристаллографии.

Отношение к теории Полинга в СССР

Теория Полинга вызвала в СССР настоящую бурю. В нашей стране после разгрома лингвистов, кибернетиков и генетиков взялись за квантовую механику, а затем мишенью НКВД стала и химия. Теория резонанса Полинга, а также теория мезомерии К. Ингольда, родственная ей, были главными объектами нападок. Советский Союз объявил, что представления Полинга о реальной молекуле как о среднем между двумя или несколькими крайними абстрактными структурами - идеалистические и буржуазные. 11 июня 1951 г. было проведено Всесоюзное совещание, на котором были рассмотрены проблемы химического строения. На этом мероприятии теория резонанса была разгромлена.

Нобелевские премии и другие достижения Полинга

Однако достижения Лайнуса по достоинству были оценены за границей. Полингу в 1954 году дали Нобелевскую премию за изучение природы химической связи, а также за применение ее для исследования структуры соединений. А в 1962 году ученый получил эту премию во второй раз - как борец за мир.

Полинг является автором порядка 250 научных публикаций и множества книг, включая уникальное по своей глубине и простоте изложения учебное пособие по современной химии. В 1948 году за достижения в науке он стал возглавлять Американское химическое общество, а также был избран членом Национальной АН США и множества других научных обществ различных стран.

Деятельность по установлению мира

Глубоко осознав угрозу, которую несет человечеству атомное оружие, Лайнус принялся активно бороться против создания новых ядерных вооружений. Этот ученый был в числе инициаторов Пагуошского движения. Полинг в 1957 году передал обращение подписанное 11 021 ученым, которые представляли 49 стран мира. В книге 1958 года "Не бывать войне!" Лайнус Полинг выразил свои пацифистические взгляды.

В июне 1961 года ученый вместе со своей супругой созвал конференцию в Норвегии (Осло), тема которой - противодействие распространению ядерного оружия. Несмотря на обращения Лайнуса к Никите Хрущеву, в сентябре того же года СССР возобновил испытания. А в марте следующего года это же сделали и США. Тогда ученый принялся осуществлять дозиметрический контроль радиоактивности. Полинг в октябре 1962 года распространил информацию о том, что ее уровень увеличился вдвое по сравнению с предыдущими 16 годами. Кроме того, Полинг составил проект договора о запрещении подобного рода испытаний. В июле 1963 г. СССР, США и Великобритания подписали его.

Ученый перестал работать в Калифорнийском технологическом институте в 1963 году и приступил к деятельности в Центре исследований общественных институтов, расположенном в Санта-Барбаре. Здесь он начал заниматься проблемами войны и мира. Лайнус осуществил ряд экспериментов по угрозе радиоактивного заражения. Ученый выяснил, что радиоактивные элементы вызывают лейкемию, рак костей, рак щитовидной железы и некоторые другие болезни. Несмотря на то что Лайнус одинаково активно осуждал за гонку вооружений правительства СССР и США, некоторые консервативные политики подвергли сомнению его лояльность к Соединенным Штатам.

В 1969 году ученый прекратил работать в где осуществлял свои исследования в течение двух лет. Он это сделал в знак протеста против проводимой Р. Рейганом, образовательной политики. Лайнус начал работать в профессором.

Личная жизнь Полинга

В 1922 году ученый женился на студентке Орегонского сельскохозяйственного колледжа - Аве Элен Миллер (фото ее представлено ниже). У них родилась дочь, а также три сына. В 1981 году Ава Элен умерла. После ее смерти Полинг проживал в штате Калифорния, в Биг-Сюре, где находился их загородный дом.

Ортомолекулярная медицина Полинга

Полинг является приверженцем и популяризатором так называемой ортомолекулярной медицины. Суть ее заключается в том, что лечение осуществляется с помощью веществ, которые присутствуют в организме человека. Ученый полагал, что для победы над тем или иным заболеванием нужно всего лишь правильно изменить их концентрацию. Его Научно-медицинский институт был основан в 1973 году для изучения способа лечения и предотвращения болезни путем потребления необходимых доз полезных минералов и витаминов. Полинг полагал, что особенно важно потреблять в большом количестве витамин С. В 1979 году появилась книга этого ученого под названием "Рак и витамин С". В ней было рассказано о том, как аскорбиновая кислота помогает справиться с этой опасной болезнью. Лайнус Полинг "Витамин С и насморк" создал в этом же году. Обе эти книги встретили неоднозначное отношение со стороны медиков, однако стали весьма популярными.

Исследование аскорбиновой кислоты

Витамины доктора Лайнуса Полинга заинтересовали уже в пожилом возрасте. Исследованию аскорбиновой кислоты и возможностям ее клинического использования ученый посвятил последних 30 лет своей жизни и пришел к выводу о том, что употребление ее в больших количествах положительно сказывается на человеческом организме.

Сразу следует сказать, что никакие витамины не спасут вас в том случае, если вы ведете нездоровый образ жизни. Их можно сравнить с ремнями безопасности. Когда человек пристегнут, это просто предохраняет его при аварии, но не является гарантией безопасной езды. Витамины также лишь дают нам дополнительную защиту. Подтверждение их действия - активная и долгая жизнь такого ученого, как Лайнус Полинг. Витамин С он принимал в количестве 18 г в день, а витамин Е (токоферол) - по 800 МЕ, начиная с седьмого десятка лет. Лайнусу удалось дожить до 93 лет! В 1994 году умер Лайнус Полинг. Краткая биография его свидетельствует о том, что он не страдал от серьезных болезней.

Кстати, даже непримиримые противники этого ученого согласны с тем, что аскорбиновая кислота полезна для здоровья. Яростные споры вот уже много лет ведутся лишь о ее количестве, которое следует принимать.

Что говорит статистика?

Академия наук США рекомендует взрослому мужчине ежедневно принимать 60 мг витамина С. Российские нормы различаются в зависимости от возраста, пола и профессии человека. Для мужчин это 60-110 мг, для женщин - 55-80. При этих и больших количествах не бывает ни гиповитаминоза (кровоточивости десен, утомляемости), ни цинги. У людей, которые потребляют более 50 мг аскорбиновой кислоты в день, по данным статистики, признаки старости возникают на 10 лет позже, чем у остальных.

ЛАЙНУС ПОЛИНГ

Дважды лауреат Нобелевской премии в предисловии к своему известному учебнику «Общая химия» для студентов писал: «Химики - это те, кто на самом деле понимает мир».

Как указывается книге «Великие ученые XX века»: «Выдающийся американский химик Лайнус Карл Полинг, или, как его фамилию переводили на русский в пятидесятых годах, Паулинг, родился 28 февраля 1901 года в Портленде. Его отец был фармацевтом, а мать - домохозяйкой. Когда мальчику было девять лет, отец умер и семья оказалась в затруднительном материальном положении.

Лайнус рос задумчивым и замкнутым мальчиком. Он часами мог наблюдать за жизнью насекомых, но особенно привлекали его минералы. Мир цветных камней манил и завораживал. Эта детская страсть к кристаллам иногда врывалась и во взрослую жизнь Полинга: несколько минералов ученый впоследствии изучил исходя из сформулированной им теории.

В тринадцатилетнем возрасте Лайнус впервые посетил настоящую химическую лабораторию. Увиденное там произвело на подростка такое впечатление, что он немедленно сам занялся опытами. "Химическую" посуду Лайнус позаимствовал на кухне у матери, а местом для изысканий избрал свою комнату».

Так и не окончив среднюю школу, в 1917 году Лайнус поступил в Орегонский государственный сельскохозяйственный колледж в городе Корвэллис. Чтобы добыть средства к существованию, студент мыл посуду в ресторане и сортировал бумагу в небольшой типографии.

По окончании колледжа в 1922 году он получил степень бакалавра по специальности «химическая технология». Осенью того же года в качестве аспиранта Калифорнийского технологического института в Пасадене Лайнус приступает к исследованию молекулярной структуры кристаллов с помощью дифракции рентгеновских лучей.

В 1923 году Полинг женится на Эйве Хелен Миллер. Супруги неразлучно прожили долгие и счастливые пятьдесят восемь лет. Эйва Хелен стала для Лайнуса и подругой, и помощницей, и соратницей. Она помогла мужу пройти через все тяжелые испытания.

В 1925 году молодой ученый защитил докторскую диссертацию по результатам исследования в области рентгеноструктурного анализа неорганических соединений. Одновременно он получил и степень бакалавра по математической физике. Полингу также присудили персональную Гугенхеймовскую стипендию, позволившую ему на два года отправиться на учебу в Европу. Здесь он занимался изучением атомной физики и квантовой теории под руководством таких известных ученых, как А. Зоммерфельд в Мюнхене, Э. Шрёдингер в Цюрихе, Н. Бор в Копенгагене и У.Г. Брэгг в Лондоне.

В 1927 году ученый вернулся в Калифорнийский технологический институт в качестве ассистента профессора химии. В этом институте Полинг с 1931 года занимал должность профессора химии, преподавал и вел исследовательскую работу до 1964 года.

Его первые исследования относились к кристаллографии. Полинг занимался расчетом величин ионных радиусов, составил их таблицы, сформулировал некоторые общие правила образования ионных кристаллических структур. За работы в этой области он первым получил премию И. Ленгмюра (1931).

Но главные научные работы Полинга посвящены изучению строения молекул и природы химической связи методами квантовой механики.

Наряду с американским физико-химиком Дж. Слэтером Полинг разработал квантовомеханический метод изучения и описания структуры молекул - метод валентных связей (1931-1934).

В тридцатые годы Полингу удалось объяснить молекулярное строение веществ на основании квантовохимических представлений, опираясь на работу Гейзенберга по расчету атома гелия, где немецкий физик ввел понятие «квантовомеханического резонанса». Вместо классической структурной теории Полинг предложил разработанную им «теорию резонанса».

Термин «резонанс» Полинг использовал как метафору. Теория резонанса исходит из того, что не каждую молекулу можно описать при помощи лишь одной электронной структуры и что в таких случаях «различные возможные электронные структуры находятся друг с другом в состоянии резонанса».

Поэтому химическая связь в подобных соединениях гибридна. Очень важное значение в созданной Полингом теории имеет разработанная им шкала электроотрицательности химических элементов, по которой можно оценивать энергию связи двух элементов и, таким образом, сделать вывод об ее устойчивости и характере. На этом основании ученый смог теоретически объяснить переходы от ионной связи к атомной. Полинг при помощи своей теории истолковал строение многих веществ. Квантовомеханическая теория химической связи - теория резонанса - позволила Полингу объяснить новые экспериментальные данные значительно лучше, чем с помощью классической теории химической связи, недостаточность которой он ощущал.

Ученый высоко оценивал влияние, которое оказала разработка учения о химической связи на развитие химии. Он писал: «Если темпы нынешнего научного прогресса сохранятся, уже у следующего поколения ученых будет такая теория валентности, которая превратит химию в столь же точную и действенную науку, как и теоретическая физика».

Книга Полинга «Природа химической связи», опубликованная в 1939 году, явилась одной из самых известных монографий, посвященных современной структурной химии.

Именно за проведение этих исследований, которые наметили основные пути применения новейших достижений физики и химии в биологии и медицине, Полинг был удостоен звания лауреата Нобелевской премии по химии в 1954 году.

В 1934 году появилась первая работа ученого по биохимии, посвященная магнитным свойствам и кислородному обмену гемоглобина. Далее на основании представлений теории резонанса Полинг исследовал строение молекул белков и изучал способность антител обеспечивать иммунитет.

«С раннего возраста Полинг прекрасно знал, что генетически вовсе не предрасположен к долголетию, - пишет А. Смирнов. - Его отец умер в возрасте 34 лет, мать прожила всего 45 лет. По сути, ученый Лайнус Полинг начал борьбу с самой Природой. Еще в 1940 году ему был поставлен диагноз серьезного почечного заболевания - болезни Брайтона. Тогда это было равносильно смертному приговору, с которым Полинг не желал согласиться. Двенадцать лет после этого он следовал строгой диете, исключившей соль и мясные белки, и победил болезнь. Фактически он пережил собственную смерть более чем на полвека! Видимо, именно в этот период у него окрепла убежденность в возможности найти способ справиться с болезнями и немощной старостью без помощи лекарств.

И здесь он вновь одержал блестящую победу. Его биохимический подход к здоровью, созданная им ортомолекулярная медицина (медицина "правильных" молекул) заняли подобающее место в системе человеческих знаний.

"Необходимым условием хорошего здоровья является наличие нужных молекул в нужном количестве, в нужном месте человеческого тела, в нужное время" - эти слова Лайнуса Полинга стали своего рода девизом новой науки».

Вторая мировая война заставила ученого на время отказаться от исследования белка. За время войны он создает несколько видов мощной взрывчатки и ракетного топлива, измеритель содержания кислорода для подводных лодок и самолетов. Также Полинг со своими помощниками создал синтетическую кровяную плазму для срочных переливаний в условиях полевых госпиталей. За эти работы в 1948 году ученый получил Президентскую медаль за заслуги.

После победы над фашизмом Полинг возобновил свои исследования. В результате работ, выполненных в 1945-1949 годах, ученый доказал, что серповидно-клеточная анемия обусловлена дефектом молекул гемоглобина.

В 1948 году Полинг дает представление о структуре полипептидной цепи в белках, впервые высказав мысль о ее спиральном строении и дав описание альфа-спирали. В 1950-1951 годах он опубликовал совместно с американским биохимиком Р.Б. Кори статьи на эту тему.

Круг интересов Полинга был очень широк. Он исследовал дезоксирибонуклеиновую кислоту, структуру антител, природу иммунологических реакций, интересовался проблемами эволюционной биологии.

Осознав, какую угрозу человечеству несет атомная бомба, Полинг в 1946 году стал членом возглавляемого Эйнштейном «Комитета озабоченных ученых», ставящего целью информировать общественность об опасностях, связанных с ядерным оружием.

В 1952 году Государственный департамент США отказал Полингу в получении заграничного паспорта по причине «недостаточной антикоммунистичности» его заявлений. Еще через три года ученый вместе с другими 55 Нобелевскими лауреатами подписывает «декларацию Майнау», призывающую прекратить все войны.

Полинг выступил одним из инициаторов Пагуошского движения. В 1957 году он написал обращение американских ученых к президенту США о прекращении испытаний атомного оружия. В январе 1958 года Полинг передал составленное им обращение генеральному секретарю ООН и много сделал для того, чтобы Организация Объединенных Наций приняла меры к прекращению испытаний атомного оружия. Это обращение подписали свыше одиннадцати тысяч ученых из 49 стран. В том же году он опубликовал книгу «Не бывать войне!», вызвавшую широкий общественный резонанс.

21 июня 1960 года в связи со сбором подписей под воззванием о запрещении ядерных испытаний ученый был вызван в подкомитет сената США для дачи показаний. На этом заседании председатель комиссии сенатор Т. Дуд предъявил ему ультиматум: либо Полинг сообщит имена тех, кто помогал ему собирать подписи под воззванием, либо он будет подвергнут тюремному заключению. Таким образом, была сделана попытка не только воспрепятствовать дальнейшему активному участию Полинга в международном движении за мир, но одновременно дискредитировать американское движение за сохранение мира. Однако Полинг не поддался скандальным методам слежки за умами. Он подал жалобу на сенатскую подкомиссию за нарушение прав человека, записанных в конституции США, в Верховный суд страны.

Вновь и вновь выступал Полинг в разных странах, призывая людей бороться за мир. Огромный интерес во всем мире вызвала книга Полинга «No More War!», которая была опубликована на многих языках.

Холодной войне Полинг противопоставлял политику мирного сосуществования. Однажды на вопрос, не приведет ли экономическое соревнование со странами социалистического лагеря к нежелательным для США последствиям, Полинг ответил, что экономические вопросы могут быть решены намного лучше, если американский народ будет жить в нормальных условиях и вести здоровый образ жизни, чем если все люди погибнут.

В 1963 году в признание его выдающихся заслуг в борьбе за мир Полинг был удостоен звания лауреата Нобелевской премии мира.

Представитель Норвежского нобелевского комитета Гуннар Ян, в частности, сказал, что Полинг «вел непрекращающуюся кампанию не только против испытаний ядерного оружия, не только против распространения этих видов вооружений, не только против самого их использования, но против любых военных действий как средства решения международных конфликтов».

В 1963 году Полинг оставил Калифорнийский технологический институт и начал работать в Центре исследований общественных институтов в Санта-Барбаре, где занялся изучением проблем войны и мира.

Чтобы нагляднее можно было представить угрозу радиоактивного заражения, Полинг провел многочисленные научные работы. Он показал, что стронций-90 вызывает рак костей и лейкемию, йод-131 - рак щитовидной железы, углерод-14 и цезий-137 - другие опасные болезни.

В 1965 году ученый подписал Декларацию гражданского неповиновения «Совесть против войны во Вьетнаме».

Продолжалась и научная деятельность ученого. В 1961 году появилась работа Полинга о молекулярной теории общей анестезии - теория кристаллогидратов. В 1964 году совместно с Роджером Хейвордом он издает книгу «Архитектура молекул». Еще через год началась публикация серии статей о сферонной теории структуры атомного ядра.

С 1967 по 1969 год Полинг занимал должность профессора химии в Калифорнийском университете Сан-Диего, где основал две новые области биохимии: ортомолекулярную психиатрию и ортомолекулярную медицину.

Калифорнийский университет ученый покинул в знак протеста против образовательной политики губернатора Калифорнии Р. Рейгана. Полинг перешел на должность профессора химии в Стэнфордском университете.

«Полинг был приверженцем и пропагандистом ортомолекулярной медицины - врачевания с помощью веществ, присутствующих в самом человеческом организме, - пишет Е.А. Хайбуллина. - Он считал, что для победы над болезнью необходимо лишь нужным образом изменить их концентрацию. В 1973 году он основал Научно-медицинский институт Полинга для изучения предотвращения и лечения болезни методом потребления оптимальных доз витаминов и полезных минералов, особенно ежедневного потребления больших доз витамина C. Его книги "Витамин C и насморк", "Рак и витамин C" (1979), "Как жить дольше и чувствовать себя лучше" (1986) вызвали споры среди медиков».

Сам Полинг говорил: «Я убежден, что вы сможете продлить благополучную часть вашей жизни на 25 и даже на 35 лет, если в молодости или в среднем возрасте начнете принимать нужное количество витаминов… Удлинится именно та часть жизни, когда человек счастлив…»

Лайнус Полинг родился в Портленде, штат Орегон, в семье булочника Германа Генри Уильяма Полинга и его жены Люси Изабель («Белль») Дарлинг. Семья ютилась в скромной однокомнатной квартирке.

После рождения сестры Лайнуса, Полин, семья переезжает в г. Салем, штат Орегон, где отец получает работу продавца в фармацевтической компании “Skidmore”.

В детстве Лайнус увлечённо читает книги, живо интересуется химией и даже, с помощью старшего друга, обустраивает собственную лабораторию.

Прежде, чем в 1917 г. поступить в Университет штата Орегон, мальчик берётся за любую работу: трудится в бакалейной лавке, становится помощником механика, а также открывает с друзьями фотолабораторию, – и всё для того, чтобы накопить денег себе на образование.

В 1922 г. Полинг выпускается из Университета штата Орегон с дипломом химика-технолога, после чего поступает в Калифорнийский технологический институт.

За время учёбы он публикует семь научных статей на тему исследования кристаллической решётки минералов и в 1925 г., блестяще защитив диссертацию, получает учёную степень доктора философии.

Научная деятельность

В 1927 г. Полинг становится старшим преподавателем теоретической химии в Калифорнийском технологическом институте, и за пять лет пребывания на этом посту издаст пятьдесят статей и откроет «правила Полинга».

В 1930 г. учёный отправляется в Европу, чтобы изучить применение на практике дифракции электронов, и, по возвращении домой, он конструирует собственный прибор, получивший название «электронограф», для изучения молекулярной структуры химических веществ.

В 1932 г. Полинг публикует статью по теории гибридизации атомных орбиталей, в которой проводит анализ четырёхвалентности атома углерода.

Этот учёный представляет теорию электроотрицательности и составляет «шкалу электроотрицательности Полинга», с помощью которой можно приблизительно оценить величину полярности связей в молекуле. Во время Второй мировой войны Полинг не берётся почти ни за один военный проект и категорически отказывается от участия в Манхэттенском проекте – исследованиях и разработках, приведших к созданию первой атомной бомбы.

В 1946 г. он становится членом Чрезвычайного комитета физиков-ядерщиков – организации, предупреждающей международную общественность о всём ужасе вероятных последствий изобретения ядерного оружия.

В 1949 г. в научном журнале “Science” выходит статья «Серповидноклеточная анемия, молекулярная болезнь», которую Полинг написал в соавторстве со своими коллегами.

В 1955 г., совместно с другими представителями учёного сообщества – Альбертом Эйнштейном и Бертрандом Расселом, – Полинг подписывает «Манифест Рассела-Эйнштейна», призывающий к поиску мирных путей решения конфликтов и прекращению разработки ядерного оружия.

В 1958 г. Полинг принимает участие в «Исследовании молочного зуба», наглядно демонстрировавшем опасность проведения наземных испытаний ядерного оружия. В этом же году он, вместе со своей женой, подаёт в ООН петицию о прекращении ядерных испытаний, под которой поставили свою подпись 11 000 учёных.

В 1960-х г.г. Полинг ведёт активную деятельность против вступления США во Вьетнамскую войну, произнося многочисленные речи, публикуя протестные письма и подавая петиции.

В 1965 г. он пишет исследовательскую статью «Компактная сферическая модель атомного ядра», которая появится в целом ряде авторитетных научных изданий, в т.ч. и в журнале “Science”.

В 1970 г. выходит книга «Витамин С и обычная простуда», описывающая пользу от применения этого витамина.

При этом Полинг продолжает активно бороться за мир во всём мире, и в 1974 г. основывает «Международную лигу гуманистов» – организацию, основной целью которой было продвижение идей мира и защита прав человека.

В 1986 г. учёный пишет ещё одну работу о лечебных свойствах витамина С, вышедшую под названием «Как жить дольше и чувствовать себя лучше». Книга отстаивала идею применения витамина в большой дозировке.

Основные работы

Работа Полинга «О природе химических связей», увидевшая свет в 1939 г., является одной из самых значимых книг в области химии, на которую и поныне ссылаются и которую цитируют многие влиятельные журналы и авторы научных статей.

Именно он впервые высказал идею существования «молекулярной болезни», благодаря чему был открыт и изучен целый ряд подобных наследственных нарушений, а также положено начало сегодняшним исследованиям «генома человека».

Награды и достижения

В 1926 г. Полинг удостаивается чести стать членом общества Гуггенхайма, что даёт ему возможность учиться у немецкого физика Арнольда Соммерфельда в Мюнхене, датского физика Нильса Бора в Копенгагене и австрийского физика Эрвина Шрёдингера в Цюрихе.

В 1931 г. Американское химическое общество награждает его Ленгмюровской премией за существенный вклад в «фундаментальную науку» молодыми дарованиями, не достигшими 30-летнего возраста.

В 1954 г. Лайнусу Полингу присуждается Нобелевская премия за «исследование природы химической связи и его применение для понимания структуры сложных веществ». В 1962 г. учёный получает вторую Нобелевскую премию, на сей раз за «участие в движении за мир».

В 1970 г. Полинг награждается Международной ленинской премией мира.

Личная жизнь и наследие

17 июня 1923 г. Полинг женится на Аве Хелен Миллер, и их союз продержится до самой её смерти в 1981 г. В семье появляется три сына-близнеца.

Несмотря на то, что Лайнус вырос в семье приверженцев лютеранства, в сознательном возрасте он переходит в унитарианскую церковь, а за два года до своей смерти и вовсе провозглашает себя атеистом.

В возрасте 40 лет, у Полинга диагностируют брайтову болезнь – заболевание почек.

В возрасте 93 лет, учёный умирает от рака предстательной железы в собственном доме в городке Биг-Сур в штате Калифорния.

Полинг – единственный человек, получивший две Нобелевские премии единолично, не деля их ни с кем.

Будущий лауреат Нобелевской премии в раннем возрасте, подрабатывая, где только мог, скопил 200 долларов, чтобы оплатить своё образование. Однако большую часть этих сбережений, доставшихся тяжким трудом, он потратил на девушку по имени Ирен, в которую влюбился во время учёбы в университете.

Выдающемуся учёному, лауреату Нобелевской премии Лайнусу Полингу правительство США отказало в разрешении на выезд в Лондон, из-за его публичных выступлений на тему опасностей, связанных с ядерным оружием.

Оценка по биографии

Новая функция! Средняя оценка, которую получила эта биография. Показать оценку

Loading...Loading...